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Monolithic active pixel sensors (MAPS)

• MAPS combine sensitive volume and readout 
electronics in a single volume

- This enables lower material budget, reduced complexity, and 
reduced production cost compared to hybrid sensors

- A low material budget is essential for particle tracking 
applications

• MAPS have made significant progress in recent years

- First MAPS used in the STAR experiment

- Currently used in ALICE; the ALPIDE chip
- The MALTA and MonoPix developments: developed as 

candidates for ATLAS

- Current developments for the next ALICE tracker upgrade 
and the EIC

- Large collection electrode MAPS prototypes widely 
investigated (e.g. MuPix, MightyPix, TelePix, ...)

Hybrid sensor sketch

Monolithic sensor sketch
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Monolithic active pixel sensors (MAPS)

• The ALPIDE chip is the current state-of-the-art MAPS sensor installed 
in a collider experiment

- It utilises a development allowing for a small collection electrode, which 
reduces both detector noise and power consumption

- The ALPIDE chip is made using a 180 nm CMOS imaging process

• Recently, access has been granted to a 65 nm CMOS imaging process, 
and this is envisioned to be used for the next ALICE inner tracker 
upgrade sensor

• The 65 nm process allows a higher logic density compared to 
previously used processes, leading to reduced pixel size or more in-pixel 
functionality

- It also allows for decreased power consumption, and stitching for large-area 
sensor production

- The process is so far unused in particle physics applications, however. It is 
crucial to test it

Artistic view of the ALPIDE chip 
cross section. Figure from here

https://indico.cern.ch/event/766859/contributions/3251732/attachments/1776362/2888148/ALICE_ITS_Upgrade_Jan_2019.pdf
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The Tangerine project (Towards next generation silicon detectors)

• Started in 2021 with the aim of developing and investigating particle detection sensors in 
new silicon technologies

• This presentation focuses on Work Package 1 of the project; monolithic active pixel sensors 
in a novel CMOS imaging technology (65 nm)

- The project encompasses all aspects of sensor developments: electronics design, sensor design, 
prototype test chip characterisation

• The goal is development of a sensor with high precision and low material

- Spatial resolution below 3 µm

- Time resolution of less than 10 ns

- Very low material budget, corresponding to at most 50 µm of silicon (0.05% X/X0)

- Per-pixel charge measurement

• Primary initial goal: development of a sensor for telescope use, for test beams

- This will demonstrate the capabilities of the 65 nm technology in a particle physics context



DESY. Page 6

Possible future applications

• Lepton colliders, e.g.

- CLIC

- ILC

- FCC-ee

• Electron-ion collider

- Synergies, at least (same CIS 
technology developments)

• Test beam reference system

• Common denominator: radiation 
damage is not much of an issue

CLIC: https://home.cern/science/accelerators/compact-linear-collider

http://cds.cern.ch/record/2689893 https://www2.kek.jp/ipns/en/research/ilc/
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Sensor design

• The sensor design comprises both sensitive volume and electronics design

• For the sensitive volume design, there are three available layouts (all with a small collection electrode) originally 
designed for a 180 nm CMOS imaging process:

W. Snoeys et al. doi:10.1016/j.nima.2017.07.046

• Standard layout

- ALPIDE-like

• N-blanket layout

- Blanket layer of n-doped 
silicon, creating a deep 
planar junction

• N-gap layout

- Blanket n-layer with gaps 
at pixel edges

M. Münker et al 2019 JINST 14 C05013S. Senyukov et al. doi:10.1016/j.nima.2013.03.017
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Sensor design at DESY

• Design of an analog front-end with a charge-sensitive 
amplifier circuit

- Krummenacher type feedback network for continuous reset 
and leakage current compensation
- Higher Krummenacher current -> faster return to baseline

• Comparator with tunable threshold in each pixel

https://indico.cern.ch/event/1323113/contributions/5823784/

https://indico.cern.ch/event/1323113/contributions/5823784/


Sensors and sensor testing
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Lab measurements and test beams

• Measurements performed with x-ray sources (mainly 
iron-55) in labs, and with particle beams at test beam 
facilities

• Test beams at DESY

- MIMOSA26 or ALPIDE reference telescope
• Provides particle hit position information
• Six planes
• Device under test in the middle
• DUT mounted on motion stages

- 5 GeV electron beam
- Trigger plane with configurable RoI (TelePix)

- Corryvreckan used for analysis

https://www.sciencedirect.com/science/article/abs/pii/S0168900222012396
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Example observables for sensor characterisation
Cluster size

• Number of pixels that register hits 
for a single incident particle 
(charge sharing)

• This will depend on the position of 
the incident particle, but with a large 
number of particles a mean value 
can be found, as well as the cluster 
size versus hit position

• Varies with threshold value

• Denotes the fraction of particles 
incident on the sensor that 
produce a signal in the sensor

• Goes between 0 and 1

- If all particles traversing the 
sensor produce a signal, the sensor 
is 100% efficient
- Desirable to have as high as 

possible
• Strongly related to threshold value

• Can find mean efficiency across the 
sensor, and look at efficiency versus 
hit position 

Efficiency :   Pixel registering hit

:   Particle track
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Analog Pixel Test Structure (APTS)

• Test chip designed at CERN

- 4x4 active pixel matrix

- Several versions and layouts available
• Different pixel layouts and sizes
• Different output buffers

• Tests carried out at several labs, including DESY

- Focused on the source follower output buffer, and the 
standard and n-gap pixel layouts

- Main focus on a 25x25 µm2 pixel size

• At DESY: integrated with the Caribou readout system, 
on a new chip board
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APTS labs and testbeams Mean cluster size

• Comparisons made of different layouts under different 
biasing conditions

• Example results shown on the right, comparing the 
standard and n-gap layouts

• Cluster size reduced with increasing threshold

• Standard layout has more charge sharing, due to 
undepleted region at pixel edges

• Detection efficiency decreases as threshold increases

• N-gap layout maintains efficiency to higher thresholds, 
due to increased depletion and lateral electric field 
component

- Trade-off between cluster size and efficiency

https://in dico.cern .ch/event /1184921 /contribu tions/55 74840/

Mean efficiency

https://indico.cern.ch/event/1184921/contributions/5574840/
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APTS labs and testbeams, timing results

• Goal: understand the signal generation and possible time 
resolution of the sensor

• Rise time of signal pulses investigated for the four inner 
pixels, using a fast oscilloscope

• Can study the rise time for different particle incidence 
positions, giving information about the charge collection 
behaviour

• Figures show in-pixel rise time distributions for the 
standard and n-gap layouts

- Standard layout shows a clear difference between centre and 
corner incidence
• Undepleted outside of a bubble around the collection 

electrode

- N-gap layout faster and more uniform
• Fully depleted, and charge pushed towards electrode

https://indico.cern.ch/event/1323113/contributions/5823791/

https://indico.cern.ch/event/1323113/contributions/5823791/
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H2M from the ER1 submission - current chip
Hybrid-to-Monolithic

• Goals of the sensor:

- Study challenges of porting a known hybrid pixel detector 
architecture into a monolithic chip

- Exercise digital-on-top design flow and methodology in 
monolithic process

- Design and test a compact digital cell library

• Several institutes collaborating in the development

- Analog part designed at DESY
- Prototype testing done at DESY and CERN

• Sensor specifications:

- 64x16 pixels, of 35x35 µm2 size and in the n-gap layout

- Full analog and digital FE in each pixel

- 4 (non-simultaneous) acquisition modes; 8-bit ToA, 8-bit 
ToT, photon counting, and triggered
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H2M results - tuning

• Per-pixel threshold trimming possible using a 4-bit 
register

- Used to counter pixel-to-pixel variations
- Reducing threshold dispersion makes sensor response more 

uniform, allowing for a lower threshold

- Performed using intrinsic noise

• Front-end parameter optimisation

- Global biasing currents can be varied, and their impacts on 
noise and threshold dispersion observed

- The goal is to find an optimised working point
- Varies with different chip bias settings
- In the end a compromise between low threshold dispersion 

and high amount of tunable pixels

https://indico.cern.ch/event/1323113/contributions/5823784/

https://indico.cern.ch/event/1323113/contributions/5823784/
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H2M results - test beam

• Several test beams carried out, investigating the different 
acquisition modes

• Figure shows time-over-threshold spectrum for 
different Krummenacher currents

- Reminder: ToT proportional to collected charge

- Higher IKrum means faster return to baseline for the signal

• Results qualitatively follow expectations:
- Landau-like distribution

- Lower ToT with higher Krummenacher current

• H2M is a fully-functioning advanced monolithic digital-
on-top sensor in a 65 nm CMOS imaging technology!

- Some things left to understand, however
https://indico.cern.ch/event/1323113/contributions/5823792/

https://indico.cern.ch/event/1323113/contributions/5823792/
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H2M results - test beam and laser setup: efficiency

• Efficiency displays an unexpected 
pattern

• Asymmetric low-efficiency region

• Reproduced both at test beam and 
laser deposition measurements

• Leading theory: related to electric 
field perturbations below the 
deep p-well, caused by the 
internal n-wells 

- Mitigation strategies discussed in 
preparation of the next submission

• New chip working point being 
investigated; may reduce pixel-to-
pixel variations

https://indico.cern.ch/event/1323113/contributions/5823792/

In-pixel efficiency, test beam In-pixel efficiency,  IR laser

https://indico.cern.ch/event/1323113/contributions/5823792/
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DESY ER1
Increasing 
Krummenacher 
current

• Same analog part as in H2M, but more 
detailed control possible

• 2x2 matrix with rectangular pixels of size 
35x25 µm2

• N-gap layout with two different gap sizes; 
2.5 µm and 4 µm

• Initial tests with iron-55

- Signal amplitude results are unexpected!

- Two-peak structure, but not Kα and Kβ

- Peaks shift with increasing IKrum

• Reminder: higher IKrum means faster return 
to baseline

• Theory: deposits far from pixel centre get 
collected slowly, so some charge drains 
away before peaking
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Simulations
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Motivation for simulations
Old workflow
example

• A way to understand and predict 
sensor behaviour

• Computing power is relatively 
cheap nowadays

- Simulations are cheaper and faster 
than prototype production

• Simulations also help in providing 
a deeper understanding of 
measurement results

• A combination of detailed 
simulations and prototype testing 
can be used to efficiently guide the 
way in sensor developments

Current workflow
example

Figures by A. Simancas, BTTB10

https://indico.cern.ch/event/1058977/contributions/4636892/attachments/2465983/4228834/Simancas_BTTB10_V1.pdf
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Silicon sensor simulations

• Goal: Accurate simulation of the charge collection 
behaviour in the sensitive volume

- Enables prediction of sensor performance (e.g. resolution, 
efficiency)

- Done by simulating the movement of electron-hole pairs 
created by an interacting particle

• Issue: The access to manufacturing process information 
may be very limited

- The Tangerine project for example utilises a commercial 
CMOS imaging process - detailed process information is 
proprietary

• Solution: development of a technology-independent 
simulation approach using generic doping profiles

- Currently writing a paper describing the approach, serving 
as a toolbox for such simulations

Simulated motion of individual electrons and holes deposited 
in the centre of a silicon sensor with a linear electric field
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Tools used in the simulation approach

• Models semiconductor devices using finite element 
methods

• Calculates realistic and accurate electric fields and 
potentials from doping concentrations

• Simulates full detector chain, from energy deposition 
through charge carrier propagation to signal digitisation

- Interfaces to Geant4 and TCAD

• Simulation performed quickly - allows for high-
statistics data samples across a full detector

https://allpix-squared.docs.cern.ch/

Allpix Squared: a Monte Carlo 
simulation framework for 
semiconductor detectors

Example electric field in TCAD Particle beam passing through a single sensor in Allpix2

https://allpix-squared.docs.cern.ch/
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TCAD
Technology computer-aided design

• Models semiconductor devices in 2D or 3D, and numerically 
solves equations using provided information

- By providing doping information, e.g. electric fields and 
weighting potentials can be calculated

- Capacitances, I-V and C-V curves, and transient properties can be 
extracted

• Fabrication steps in semiconductor manufacturing can be 
simulated

• Different pixel geometries and layouts can be simulated in 
great detail

• Some example resulting electric fields shown on the right

Enhanced Lateral Drift 
sensor simulation, A. Velyka

Hexagonal pixel simulation, L. Mendes

Rectangular pixel simulation, A. Simancas
 

https://bib-pubdb1.desy.de/record/440957
https://arxiv.org/abs/2303.18153
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Allpix Squared
A Monte Carlo simulation framework for semiconductor detectors

• Simulates charge carrier motion in semiconductors, using well-tested and 
validated algorithms

- Includes different models for e.g. charge carrier mobility, lifetime and 
recombination, trapping and detrapping

- Support for several semiconductor materials and pixel and sensor geometries

• Provides a low entry barrier for new users

- Simulations are set up via human-readable configuration files

• Steady development over many years

- Framework is easily extendable and widely used
- Open-source, and written in modern C++
- Version 3.0.3 released on December 14th 2023

• User workshop presentations hold many example applications

Website and documentation:
https://allpix-squared.docs.cern.ch/

Minimal simulation configuration 
example

https://indico.cern.ch/e/apsqws4
https://allpix-squared.docs.cern.ch/
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Quick aside: Allpix Squared workshop 2024

• Held in Oxford, 22nd to 24th of May

• https://indico.cern.ch/e/apsqws5

• Basic registration is free, but lunches and workshop 
dinner can be provided for a fee

• In-person registration deadline: 4th of May

- If you want to present something: talk to me or anyone form 
the organising committee, and we can sort it out

- Abstract submission is still open

• Workshop brings together the Allpix Squared community 
for discussions and presentations

- Developers, users, and curious people welcome!

https://indico.cern.ch/e/apsqws5
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Silicon simulation layout and assumptions
Using the Tangerine project as an example

• High-resistivity epitaxial layer grown on low-resistivity 
substrate

• Approximate doping concentrations can be found in 
published papers and theses, that have been approved 
by the foundry

- The exact values are proprietary information, however

• Doping wells are simulated without internal structure 
and as flat profiles

- Small collection n-well in the centre of the pixel

- Deep p-well holding the in-pixel CMOS electronics

• 3D geometry simulated, including metal bias contacts 
and Ohmic contact regions in the silicon

“N-gap layout”, M. Münker et al 2019 JINST 14 C0501

Metal bias contacts

https://doi.org/10.1016/j.nima.2022.167025
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Finite element method simulations using TCAD
Using the Tangerine project as an example

• Using TCAD, doping profiles and electric fields are 
simulated

- Studies are made observing the impact of varying different 
parameters, such as well doping concentrations and mask 
geometries

• Starting by creating the geometry and doping regions
- Doping geometry is further refined by simulating diffusion 

between regions at reasonable sensor production process 
temperatures
• Gives a continuous interface between epi and substrate

• Device simulations used to simulate electric fields, 
electrostatic potentials, and performing transient 
simulations

Process simulation result, showing dopant diffusion 
between substrate and epitaxial layer

https://doi.org/10.1016/j.nima.2022.167025
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Finite element method simulations using TCAD
Example study: impact of n-gap size on electric field

• The gap in the n-gap layout is introduced to give a lateral electric field at pixel edges

• The magnitude of the field depends on the size of the gap

- A small gap makes the lateral components cancel, and a large gap leads to a low-field region

• Figures show simulation results for the lateral electric field (red and blue) for different gap sizes

Collection electrodes Gap Depletion boundary
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Finite element method simulations using TCAD
Transient simulations

• Extracting the time-dependent induced signal on the 
collection electrodes, from traversal of a MIP

• Investigating both pixel corner incidence and pixel 
centre incidence

- Gives indication of “worst case” and “best case” particle hit 
scenarios

Transient pulses for pixel centre and corner incidence

Corner incidenceCentre incidence
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Monte Carlo simulations using Allpix2

• Flexible and modular framework, describing each part of semiconductor signal generation and propagation

• Allows import of TCAD fields and doping profiles

- Allpix2 and TCAD make a powerful combination; fast and detailed simulations possible, allowing high statistics

Figure from S. Spannagel, BTTB10, and A. Simancas, 4th Allpix Squared User Workshop

https://indico.cern.ch/event/1058977/contributions/4632035/
https://indico.cern.ch/event/1252505/contributions/5388331/


DESY. Page 32

Monte Carlo simulations using Allpix2

Impact of dopant diffusion simulation

• Linegraphs to demonstrate charge carrier movement

• Without simulated dopant diffusion, a significant 
electric field appears in the epitaxial layer-substrate 
interface

- This is unphysical

• With simulated dopant diffusion (see slide 28), there 
is a smooth transition region rather than a step 
function

- More natural, and provides a better match to data

Collection electrodes

Epitaxial 
layer

Substrate

Epitaxial 
layer

Substrate
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Monte Carlo simulations using Allpix2

Impact of mobility model

• Physical parameters and models can easily be exchanged

• Example: mobility models in silicon

- Jacoboni-Canali model is doping-independent
• Sufficient for describing charge propagation in low-doped regions
• In high-doped regions (e.g. substrate) diffusion is unphysically 

large

- Extended Canali model (including the Masetti model) is doping-
dependent
• Describes charge carrier motion well also in highly-doped regions

• Linegraphs show the propagation paths of individual charge 
carriers
- Each blue line is the path of a single electron

Collection electrodes Gap

Epitaxial 
layer

Substrate

Epitaxial 
layer

Substrate

Incident particle track
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Monte Carlo simulations using Allpix2

Impact of mobility model

• Mobility model also impacts final observables

• High-statistics simulations allow extraction of 
observables such as cluster size, resolution, efficiency

• Figure shows sensor efficiency vs detection 
threshold, for two different mobility models

- Simulation carried out with a DESY II-like beam of 
electrons

- Each point corresponds to 500 000 events, so the statistical 
error bars are very small

• The doping-independent mobility model over-
estimates efficiency, due to an excess of charge 
collected from the highly-doped substrate Sensor efficiency vs threshold for two different 

mobility models
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Allpix2 combined with TCAD
Example result from the Tangerine project

• High-statistics simulations allow extraction of 
observables such as cluster size, resolution, 
efficiency

• Sensor mean efficiency versus detection 
threshold, for different bias voltage

- Simulation carried out with a DESY II-like beam of 
electrons; many events (500 000), so statistical error 
bars are small

• The trend is as expected:

- Efficiency decreases as threshold increases
- The sensor reaches its full efficiency potential already 

at -1.2 V

• 0 V deviates from the others by being less efficient 
as threshold increases, most likely due to 
incomplete depletion

https://doi.org/10.1016/j.nima.2022.167025
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Allpix2 combined with TCAD - different pixel geometries □ ⬡
Example result from the Tangerine project

• Simulations allow for comparison of the 
performance of different sensor geometries

• A hexagonal layout leads to reduced charge 
sharing in pixel corners and a reduced distance 
from pixel boundary to pixel centre

- Allows efficient operation at higher thresholds, and 
possibly better spatial resolution

• Tests have been performed comparing square pixels 
and hexagonal pixels, maintaining the pixel area

- The space available for readout electronics thus 
remains the same per pixel

• Figure compares hexagonal pixels 18 µm corner-to-
corner, and 15x15 µm2 square pixels, in the 
standard layout (ALPIDE-like)

https://doi.org/10.1016/j.nima.2022.167025
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Transient simulations, comparing TCAD and Allpix2

• Generating weighting potentials for use in Allpix2, from the 
electrostatic potentials from TCAD

- Using Allpix2 for the transient simulations gives a lower 
computational cost, and allows use of Geant4 energy 
deposition

• First step: compare Allpix2 results to TCAD results

- Allpix2 results are the average of 10 000 events, TCAD is a 
single event

- Same settings are used for charge carrier creation and mobility

- Results in general agreement

• Allows for simulation of sensor time response
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Allpix2 combined with TCAD - Charge collection time of DESY ER1
Example result from the Tangerine project

• Reminder: higher Krummenacher current (i.e. faster 
return to baseline) leads to two-peak structure of single-
energy x-ray (see slide 19)

• Charge deposition simulated over a full pixel, with 1640 
electrons in each point

• Plot shows time taken to collect 1600 electrons

• There are clear regions of different collection time

• This can explain the two-peak structure seen in lab tests

- Slower collection means that more charge drains away 
before peaking, leading to a lower maximum amplitude

http://dx.doi.org/10.1016/j.nima.2022.167025
https://doi.org/10.1016/j.nima.2022.167025
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Allpix2 combined with TCAD - Charge collection time of DESY ER1
Example result from the Tangerine project

• Reminder: higher Krummenacher current (i.e. faster 
return to baseline) leads to two-peak structure of single-
energy x-ray (see slide 19)

• Charge deposition simulated over a full pixel, with 1640 
electrons in each point

• Plot shows time taken to collect 1600 electrons

• There are clear regions of different collection time

• This can explain the two-peak structure seen in lab tests

- Slower collection means that more charge drains away 
before peaking, leading to a lower maximum amplitude

http://dx.doi.org/10.1016/j.nima.2022.167025
https://doi.org/10.1016/j.nima.2022.167025
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Allpix2 combined with TCAD - Charge collection time of DESY ER1
Example result from the Tangerine project

• Lateral electric field magnitude

• In x, we have a region with low field 
between gap and collection electrode

• This is also in y, but much smaller due to 
the smaller distance - we never go as low as 
in x

• This leads to overall faster charge collection, 
as charges are constantly pushed towards the 
collection electrode

• Simulations are a powerful tool for providing 
understanding of results

http://dx.doi.org/10.1016/j.nima.2022.167025
https://doi.org/10.1016/j.nima.2022.167025


Simulations compared to data
Does the procedure actually work?
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Allpix2 combined with TCAD - Preliminary comparison to data
Example result from the Tangerine project

• Testbeams have been carried out at DESY, and 
comparisons made to simulations

• Results from the “Analog Pixel Test Structure” (APTS)

- N-gap layout

- 25x25 µm2 pixel size

- 4x4 pixel matrix

- -4.8 V bias voltage

• The trend between simulations and data matches well

https://arxiv.org/abs/2402.14524

Cluster seed pixel charge distributionCluster charge distribution

http://dx.doi.org/10.1016/j.nima.2022.167025
https://doi.org/10.1016/j.nima.2022.167025
https://iopscience.iop.org/article/10.1088/1748-0221/18/01/C01065
https://arxiv.org/abs/2402.14524
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Allpix2 combined with TCAD - Preliminary comparison to data
Example result from the Tangerine project

• Testbeams have been carried out at DESY, and 
comparisons made to simulations

• Results from the “Analog Pixel Test Structure” (APTS)

- N-gap layout

- 25x25 µm2 pixel size

- 4x4 pixel matrix

- -4.8 V bias voltage

• The trend between simulations and data matches well

- Error bars on the simulated results are purely statistical here

• In conclusion, the developed simulation procedure 
works well, without any proprietary information https://arxiv.org/abs/2402.14524

Particle detection efficiency vs thresholdMean efficiency vs threshold

http://dx.doi.org/10.1016/j.nima.2022.167025
https://doi.org/10.1016/j.nima.2022.167025
https://iopscience.iop.org/article/10.1088/1748-0221/18/01/C01065
https://arxiv.org/abs/2402.14524
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Conclusions and outlook
• The Tangerine project is successfully participating in investigation of a 65 nm 

CMOS imaging process for particle physics applications

• Prototypes have been designed and tested within the project

• Simulations are a powerful tool for sensor understanding and development

- A technology-independent approach using generic doping profiles has been developed for 
silicon sensor simulations; a generic toolbox, free from proprietary information

• Next steps for sensor testing:

- Continue characterising H2M, figuring out where the unexpected behaviour comes from

- Further characterise the DESY ER1 chips (a new master’s student has started work on this)

• Next steps for simulations:

- Properly define the uncertainties of the simulation results and perform further 
comparisons to data to validate the predictive power of the simulations

- Allpix Squared is developing, and will be instrumental in DRD3 simulations

• The Tangerine project has a proposed succession within the DRD3 framework



Backup slides
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Transient simulations, comparing linear energy deposition to Geant4

• Using the n-blanket layout

• Each signal is the average of 10 000 events, incident in the 
pixel corner

• Geant4 energy deposition includes stochastic effects, while 
linear deposit generates 63 electron-hole pairs per µm



DESY. Page 47

The Tangerine project: published references

• The Tangerine project: Development of high-resolution 65 nm silicon MAPS

- https://doi.org/10.1016/j.nima.2022.167025

• Towards a new generation of Monolithic Active Pixel Sensors

- https://doi.org/10.1016/j.nima.2022.167821

• Developing a Monolithic Silicon Sensor in a 65 nm CMOS Imaging Technology for 
Future Lepton Collider Vertex Detectors

- https://arxiv.org/abs/2303.18153

https://doi.org/10.1016/j.nima.2022.167025
https://doi.org/10.1016/j.nima.2022.167821
https://arxiv.org/abs/2303.18153
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