Search for the exclusive hadronic W boson decays at the ATLAS experiment Júlia Cardoso Silva 7th February 2024 ### W boson discovery (E MIS) 500 1000 1500 6 candidate Vumber of events/(5 GeV)² $W\rightarrow e\nu$ events 70 events -10 -40 (GeV) Missing transverse energy CERN announcement of W boson discovery by UA1 and UA2 ### W boson discovery (E MIS) 500 1000 1500 6 candidate Vumber of events/(5 GeV)² $W\rightarrow e\nu$ events 70 events -10 -40 (GeV) Missing transverse energy CERN announcement of W boson discovery by UA1 and UA2 #### W⁺ DECAY MODES W^- modes are charge conjugates of the modes below. | | Mode | Fraction (Γ_i/Γ) | Confidence level | | |----------------------------------|-------------------|------------------------------|----------------------|--| | $\overline{\Gamma_1}$ | $\ell^+ u$ | [a] (10.86± 0.09) % | _ | | | Γ_2 | $e^+ u$ | $(10.71 \pm 0.16) \%$ | | | | Γ ₃
Γ ₄ | $\mu^+ u$ | $(10.63 \pm 0.15) \%$ | | | | Γ_4 | $ au^+ u$ | $(11.38 \pm 0.21) \%$ | | | | Γ_5 | hadrons | (67.41± 0.27) % | | | | Γ_6 | $\pi^+ \gamma$ | < 7 × 1 | 10^{-6} 95% | | | Γ_7 | $D_s^+ \gamma$ | < 1.3 × 1 | 10^{-3} 95% | | | Γ ₈ | cX | (33.3 \pm 2.6) % | | | | Γ_9 | c s | $(31 {}^{+13}_{-11}) \%$ | | | | Γ_{10} | invisible | [b] $(1.4 \pm 2.9)\%$ | | | | Γ ₁₁ | $\pi^+\pi^+\pi^-$ | < 1.01 × 1 | 10 ⁻⁶ 95% | | | | | Z DECAY MODES | |-----------------|--|---| | | Mada | Scale factor/ | | | Mode | Fraction (Γ_i/Γ) Confidence level | | Γ_1 | e^+e^- | [a] (3.3632±0.0042) % | | Γ_2 | $\mu^{+}_{\cdot}\mu^{-}_{\cdot}$ | [a] (3.3662±0.0066) % | | Гз | $\tau^+\tau^-$ | [a] (3.3696±0.0083) % | | Γ_4 | $\ell^+\ell^-$ | [a,b] (3.3658±0.0023) % | | Γ ₅ | $\ell^+\ell^-\ell^+\ell^-$ | [c] $(3.5 \pm 0.4) \times 10^{-6}$ S=1.7 | | Γ_6 | invisible | [a] (20.000 ±0.055)% | | Γ_7 | hadrons | [a] (69.911 ±0.056)% | | Г8 | $(u\overline{u}+c\overline{c})/2$ | (11.6 ± 0.6) % | | Γ_9 | $(d\overline{d} + s\overline{s} + b\overline{b})/3$ | (15.6 ±0.4)% | | Γ_{10} | c <u>c</u> | (12.03 ±0.21)% | | Γ_{11} | $b\overline{b}$ | (15.12 ±0.05) % | | Γ_{12} | $b\overline{b}b\overline{b}$ | $(3.6 \pm 1.3) \times 10^{-4}$ | | Γ_{13} | ggg | < 1.1 % CL=95% | | Γ_{14} | $\pi^0 \gamma$ | $< 2.01 \times 10^{-5} \text{ CL}=95\%$ | | Γ_{15} | $\eta \gamma$ | $< 5.1 \times 10^{-5} \text{ CL}=95\%$ | | Γ_{16} | $\omega \gamma$ | $< 6.5 \times 10^{-4} \text{ CL}=95\%$ | | Γ_{17} | $\eta'(958)\gamma$ | $<$ 4.2 \times 10 ⁻⁵ CL=95% | | Γ_{18} | $\phi\gamma$ | $< 8.3 \times 10^{-6} \text{ CL}=95\%$ | | Γ_{10} | $\gamma \gamma$ | $< 1.46 \times 10^{-5} \text{ CL}=95\%$ | | Γ_{20} | $\pi^{0}\pi^{0}$ | $< 1.52 \times 10^{-5} \text{ CL}=95\%$ | | Γ_{21} | $\gamma\gamma\gamma$ | $< 2.2 \times 10^{-6} \text{ CL}=95\%$ | | Γ_{22} | $\pi^{\pm}W^{\mp}$ | $[d] < 7 \times 10^{-5} CL=95\%$ | | Γ_{23} | $ ho^{\pm}W^{\mp}$ | $[d] < 8.3 \times 10^{-5} CL=95\%$ | | Γ_{24} | $J/\psi(1S)X$ | $(3.51 \ ^{+0.23}_{-0.25} \) \times 10^{-3}$ S=1.1 | | Γ_{25} | $J/\psi(1S)\gamma$ | $< 2.6 \times 10^{-6} \text{ CL}=95\%$ | | Γ_{26} | $\psi(2S)X$ | $(1.60 \pm 0.29) \times 10^{-3}$ | | Γ_{27} | $\chi_{c1}(1P)X$ | $(2.9 \pm 0.7) \times 10^{-3}$ | | Γ_{28} | $\chi_{c2}(1P)X$ | $< 3.2 \times 10^{-3} \text{ CL}=90\%$ | | Γ ₂₉ | $\Upsilon(1S) \times + \Upsilon(2S) \times + \Upsilon(3S) \times $ | $(1.0 \pm 0.5) \times 10^{-4}$ | | Γ ₃₀ | $\Upsilon(1S)X$ | $< 3.4 \times 10^{-6} \text{ CL}=95\%$ | | Γ ₃₁ | Υ(25)X | < 6.5 × 10 ⁻⁶ CL=95% | | Γ ₃₂ | r(3S)X | < 5.4 × 10 ⁻⁶ CL=95% | | Γ ₃₃ | $(D^0/\overline{D}^0) \times$ | (20.7 ±2.0)% | | Γ ₃₄ | $D^{\pm}X$ | (12.2 ±1.7)% | | Γ ₃₅ | D*(2010)±X | [d] (11.4 ±1.3)% | | Γ ₃₆ | $D_{s1}(2536)^{\pm}X$ | $(3.6 \pm 0.8) \times 10^{-3}$ | | Γ ₃₇ | $D_{sJ}(2573)^{\pm} X$ | $(5.8 \pm 2.2) \times 10^{-3}$ | | Γ ₃₈ | $D^{*'}(2629)^{\pm}X$ | searched for | | Γ ₃₉ | BX | | | Γ ₄₀ | B* X | | etc. #### W⁺ DECAY MODES W^- modes are charge conjugates of the modes below. | | Mode | Fraction (Γ_i/Γ) | Confidence level | |----------------------------------|-------------------------|---|------------------| | $\overline{\Gamma_1}$ | $\ell^+ u$ | [a] (10.86± 0.09) % | | | Γ_2 | $e^+ u$ | $(10.71 \pm 0.16) \%$ | | | Γ_3 | $\mu^+ u$ | $(10.63 \pm 0.15) \%$ | | | Γ ₃
Γ ₄ | $ au^+ u$ | $(11.38 \pm 0.21) \%$ | | | Γ_5 | hadrons | $(67.41 \pm 0.27) \%$ | | | Γ_6 | $\pi^+\gamma$ | < 7 × | 10^{-6} 95% | | Γ_7 | $D_s^+ \gamma$ | < 1.3 × | 10^{-3} 95% | | Γ ₈ | cX | (33.3 \pm 2.6) % | | | Γ_9 | c s | $\begin{pmatrix} 31 & +13 \\ -11 \end{pmatrix}$) % | | | Γ_{10} | invisible | [b] (1.4 \pm 2.9) % | | | Γ ₁₁ | $\pi^{+}\pi^{+}\pi^{-}$ | < 1.01 × | 10^{-6} 95% | | | 2 | Z DECAY MODES | | |-----------------|--|---|-------------------------| | | | | Scale factor, | | | Mode | Fraction (Γ_i/Γ) | Confidence leve | | Γ1 | e^+e^- | [a] (3.3632±0.0042) % | ó | | Γ_2 | $\mu^{+} \mu^{-}$ | [a] (3.3662±0.0066) % | ó | | Γ3 | $\tau^+\tau^-$ | [a] (3.3696±0.0083)% | ó | | Γ4 | $\ell^+\ell^-$ | [a,b] (3.3658±0.0023) % | ó | | Γ ₅ | $\ell^+\ell^-\ell^+\ell^-$ | [c] (3.5 ±0.4)× | 10 ⁻⁶ S=1. | | Γ_6 | invisible | [a] (20.000 ±0.055)% | ó | | Γ ₇ | hadrons | [a] (69.911 ±0.056) % | ó | | Γ8 | $(u\overline{u}+c\overline{c})/2$ | (11.6 ±0.6) % | ó | | Γ9 | $(d\overline{d} + s\overline{s} + b\overline{b})/3$ | (15.6 ±0.4) % | ó | | Γ ₁₀ | c̄c | (12.03 ±0.21)% | ó | | Γ11 | $b\overline{b}$ | (15.12 ±0.05) % | ó | | Γ ₁₂ | $b\overline{b}b\overline{b}$ | (3.6 ±1.3)× | 10-4 | | Γ_{13} | ggg | < 1.1 % | CL=95% | | Γ_{14} | $\pi^0 \gamma$ | < 2.01 × | 10 ⁻⁵ CL=95% | | Γ ₁₅ | $\eta \gamma$ | | 10 ⁻⁵ CL=95% | | Γ_{16} | $\omega \gamma$ | < 6.5 × | 10 ⁻⁴ CL=95% | | Γ_{17} | $\eta'(958)\gamma$ | | 10 ⁻⁵ CL=95% | | Γ ₁₈ | $\phi \gamma$ | | 10 ⁻⁶ CL=95% | | Γ10 | $\gamma \gamma$ | | 10 ⁻⁵ CL=95% | | Γ_{20} | $\pi^{0}\pi^{0}$ | < 1.52 × | 10 ⁻⁵ CL=95% | | Γ_{21} | $\gamma\gamma\gamma$ | | 10 ⁻⁶ CL=95% | | Γ_{22} | $\pi^{\pm}W^{\mp}$ | | 10 ⁻⁵ CL=95% | | Γ_{23} | $ ho^\pm W^\mp$ | | 10 ⁻⁵ CL=95% | | Γ ₂₄ | $J/\psi(1S)X$ | $(3.51 \begin{array}{c} +0.23 \\ -0.25 \end{array}) \times ($ | 10 ⁻³ S=1.1 | | Γ_{25} | $J/\psi(1S)\gamma$ | < 2.6 × | 10 ⁻⁶ CL=95% | | Γ ₂₆ | $\psi(2S)X$ | (1.60 ±0.29)× | 10-3 | | Γ_{27} | $\chi_{c1}(1P)X$ | (2.9 ±0.7)× | ₁₀ -3 | | Γ_{28} | $\chi_{c2}(1P)X$ | < 3.2 × | 10 ⁻³ CL=90% | | Γ ₂₉ | $\Upsilon(1S) \times + \Upsilon(2S) \times + \Upsilon(3S) \times $ | (1.0 ±0.5)× | 10-4 | | Γ ₃₀ | r(1S)X | < 3.4 × | 10 ⁻⁶ CL=95% | | Γ ₃₁ | r(25)X | < 6.5 × | 10 ⁻⁶ CL=95% | | Γ ₃₂ | $\Upsilon(3S)X$ | < 5.4 × | 10 ⁻⁶ CL=95% | | Γ_{33} | (D^0/\overline{D}^0) X | (20.7 ±2.0) % | | | Γ ₃₄ | $D^{\pm}X$ | (12.2 ±1.7)% | | | Γ ₃₅ | $D^*(2010)^{\pm}X$ | [d] (11.4 ±1.3)% | | None of the exclusive hadronic decays of the W boson have been observed! - None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed - Can offer novel precision studies of <u>QCD factorisation</u> - Amplitudes written as expansions in terms of Λ_{OCD}/E - bound states described by meson LCDAs - Existing applications have non-negligible power corrections - Cannot disentangle higher power effects from LCDAs uncertainties - None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed - o Can offer novel precision studies of QCD factorisation - Amplitudes written as expansions in terms of Λ_{OCD}/E - bound states described by meson LCDAs - Existing applications have non-negligible power corrections - Cannot disentangle higher power effects from LCDAs uncertainties - Power corrections become negligible when using W→Mγ! - Can probe meson LCDAs in a clean way! #### Grossman, König & Neubert | Decay Channel | SM Branching Fraction | |-------------------------------------|---------------------------------| | $W^\pm o \pi^\pm \gamma$ | $(4.0 \pm 0.8) \times 10^{-9}$ | | $W^\pm o ho^\pm \gamma$ | $(8.7 \pm 1.9) \times 10^{-9}$ | | $W^{\pm} ightarrow K^{\pm} \gamma$ | $(3.3 \pm 0.7) \times 10^{-10}$ | | $W^\pm o K^{*\pm}\gamma$ | $(4.8 \pm 1.4) \times 10^{-10}$ | | $W^\pm o D_S^\pm\gamma$ | $(3.7 \pm 1.6) \times 10^{-8}$ | | $W^\pm o D^{ ilde\pm}\gamma$ | $(1.4 \pm 0.5) \times 10^{-9}$ | | $W^\pm o B^\pm\gamma$ | $(1.6 \pm 0.8) \times 10^{-12}$ | - None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed - o Can offer novel precision studies of QCD factorisation - Amplitudes written as expansions in terms of Λ_{OCD}/E - bound states described by meson LCDAs - Existing applications have non-negligible power corrections - Cannot disentangle higher power effects from LCDAs uncertainties - Power corrections become negligible when using W→Mγ! - Can probe meson LCDAs in a clean way! Very rare! SM predictions ranging from O(10⁻⁸)-O(10⁻¹²) #### Grossman, König & Neubert | Decay Channel | SM Branching Fraction | |--------------------------------------|---------------------------------| | $W^\pm o \pi^\pm \gamma$ | $(4.0 \pm 0.8) \times 10^{-9}$ | | $W^\pm o ho^\pm \gamma$ | $(8.7 \pm 1.9) \times 10^{-9}$ | | $W^\pm o K^\pm\gamma$ | $(3.3 \pm 0.7) \times 10^{-10}$ | | $W^{\pm} ightarrow K^{*\pm} \gamma$ | $(4.8 \pm 1.4) \times 10^{-10}$ | | $W^\pm o D_S^\pm\gamma$ | $(3.7 \pm 1.6) \times 10^{-8}$ | | $W^\pm o D^{\check\pm}\gamma$ | $(1.4 \pm 0.5) \times 10^{-9}$ | | $W^\pm o B^\pm\gamma$ | $(1.6 \pm 0.8) \times 10^{-12}$ | - None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed - Could enable <u>W mass measurement</u> through fully-reconstructed decays - Very precise SM prediction (> 0.1 per mille)! - More precise than experimental result - Sensitive to radiative corrections from BSM particles - None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed - Could enable <u>W mass measurement</u> through fully-reconstructed decays - Very precise SM prediction (> 0.1 per mille)! - More precise than experimental result - Sensitive to radiative corrections from BSM particles Renewed interest after CDF mass measurement - None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed - Could enable <u>W mass measurement</u> <u>through fully-reconstructed decays</u> - Very precise SM prediction (> 0.1 per mille)! - More precise than experimental result - Sensitive to radiative corrections from BSM particles Renewed interest after CDF mass measurement 7σ above expectation?! - None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed - Could enable <u>W mass measurement</u> through fully-reconstructed decays - Very precise SM prediction (> 0.1 per mille)! - More precise than experimental result - Sensitive to radiative corrections from BSM particles m_w [MeV] ATLAS W boson mass reanalysis at 7 TeV 15% improvement in precision!! Closer to SM, further from CDF - None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed - Could enable <u>W mass measurement</u> <u>through fully-reconstructed decays</u> - Very precise SM prediction (> 0.1 per mille)! - More precise than experimental result - Sensitive to radiative corrections from BSM particles - Measurements have been performed through leptonic W decays - Uncertainties from incomplete kinematics - None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed - Could enable <u>W mass measurement</u> <u>through fully-reconstructed decays</u> - Very precise SM prediction (> 0.1 per mille)! - More precise than experimental result - Sensitive to radiative corrections from BSM particles - Measurements have been performed through leptonic W decays - Uncertainties from incomplete kinematics Could take advantage of high mass resolution for decays to charged particles and photons #### W⁺ DECAY MODES W^- modes are charge conjugates of the modes below. | | Mode | Fraction (Γ_i/Γ) | Confider | Confidence level | | |----------------------------------|-------------------------|---|------------------|------------------|--| | Γ ₁ | $\ell^+ u$ | [a] (10.86± 0.09 |) % | _ | | | Γ_2 | $e^+ u$ | (10.71 ± 0.16) |) % | | | | Γ ₃ | $\mu^+ u$ | (10.63 ± 0.15) |) % | | | | Γ ₃
Γ ₄ | $ au^+ u$ | (11.38 ± 0.21) |) % | | | | Γ_5 | hadrons | (67.41 ± 0.27) |) % | | | | Γ ₆ | $\pi^+\gamma$ | < 7 | $\times 10^{-6}$ | 95% | | | Γ ₇ | $D_s^+ \gamma$ | < 1.3 | $\times 10^{-3}$ | 95% | | | Γ ₈ | cX | (33.3 ± 2.6) |) % | | | | Γ_9 | c s | $(31 \begin{array}{cc} +13 \\ -11 \end{array}$ |) % | | | | Γ_{10} | invisible | [b] (1.4 \pm 2.9 |) % | | | | Γ_{11} | $\pi^{+}\pi^{+}\pi^{-}$ | < 1.01 | $\times 10^{-6}$ | 95% | | #### W⁺ DECAY MODES W^- modes are charge conjugates of the modes below. | | Mode | Fraction (Γ_i/Γ) | Confidence level | | |--|-------------------------|------------------------------|----------------------|-----| | Γ ₁ | $\ell^+ u$ | [a] (10.86± 0.09) % | | | | Γ_2 | $e^+ u$ | $(10.71 \pm 0.16) \%$ | | | | Γ ₃ | $\mu^+ u$ | $(10.63 \pm 0.15) \%$ | | | | Γ ₁
Γ ₂
Γ ₃
Γ ₄ | $ au^+ u$ | $(11.38 \pm 0.21) \%$ | | | | Γ_5 | hadrons | $(67.41 \pm 0.27) \%$ | | | | Γ_6 | $\pi^+\gamma$ | < 7 × 1 | _{LO} -6 95% | CDE | | Γ ₇ | $D_s^+ \gamma$ | < 1.3 × 1 | 10^{-3} 95% | CDF | | Γ ₈ | cX | (33.3 \pm 2.6) % | | | | Γ_9 | c s | $(31 {}^{+13}_{-11}) \%$ | | | | Γ_{10} | invisible | [b] (1.4 \pm 2.9) % | | | | Γ_{11} | $\pi^{+}\pi^{+}\pi^{-}$ | < 1.01 × 1 | 10 ⁻⁶ 95% | CMS | #### W⁺ DECAY MODES W^- modes are charge conjugates of the modes below. | | Mode | Fraction (Γ_i/Γ) | | Confidence level | | |--|-------------------------|------------------------------|---|---------------------|------| | Γ_1 | $\ell^+ u$ | [a] | (10.86 ± 0.09) % | | | | Γ_2 | $e^+ u$ | | $(10.71 \pm 0.16) \%$ | | | | Γ_3 | $\mu^+ u$ | | $(10.63 \pm 0.15) \%$ | | | | Γ ₂
Γ ₃
Γ ₄ | $ au^+ u$ | | $(11.38 \pm \ 0.21) \%$ | | | | Γ_5 | hadrons | | (67.41± 0.27) % | | CDE | | Γ ₆ | $\pi^+\gamma$ | | < 7 × 10 | ₉₅ % | CDF | | Γ ₇ | $D_s^+\gamma$ | 3 | < 6.5 x 10 ⁻⁴ | 95% | LHCb | | Γ ₈ | cX | | $(33.3 \pm 2.6)\%$ | | | | Γ ₉ | c s | | $\begin{pmatrix} 31 & +13 \\ -11 \end{pmatrix}$) % | | | | Γ_{10} | invisible | [<i>b</i>] | (1.4 ± 2.9) % | | | | Γ ₁₁ | $\pi^{+}\pi^{+}\pi^{-}$ | | < 1.01 × 10 | o ⁻⁶ 95% | CMS | ### Search for $W^{\pm} \rightarrow \pi^{\pm} + \gamma$ at CDF - Dataset: pp̄ collisions, 4.3 fb⁻¹, at √s = 1.96 TeV - **Trigger:** Photon triggers requiring $E_{\tau} > 25 \text{ GeV}$ ### Search for $W^{\pm} \rightarrow \pi^{\pm} + \gamma$ at CDF - Dataset: pp̄ collisions, 4.3 fb⁻¹, at √s = 1.96 TeV - Trigger: Photon triggers requiring E_⊤ > 25 GeV - Offline selection: back-to-back isolated photon (E_T > 25 GeV) and isolated track (p_T > 25 GeV) - Background estimation: Fit to W sidebands, using exponential function - W[±]→e[±]v used as reference, allowing cancellation of common systematics ### Search for $W^{\pm} \rightarrow \pi^{\pm} + \gamma$ at CDF ### B(W \to πγ) < 7x10⁻⁶ at 95% CL - Dataset: pp̄ collisions, 4.3 fb⁻¹, at √s = 1.96 TeV - **Trigger:** Photon triggers requiring $E_T > 25$ GeV - Offline selection: back-to-back isolated photon (E_T > 25 GeV) and isolated track (p_T > 25 GeV) - Background estimation: Fit to W sidebands, using exponential function - W[±]→e[±]v used as reference, allowing cancellation of common systematics ### Search for $W^{\pm} \rightarrow \pi^{\pm} + \gamma$ at CMS - **Dataset**: pp collisions, 137 fb⁻¹, at $\sqrt{s} = 13$ TeV - **Trigger:** Lepton triggers - Targeting W boson production in tt events ### Search for $W^{\pm} \rightarrow \pi^{\pm} + \gamma$ at CMS - **Dataset**: pp collisions, 137 fb⁻¹, at \sqrt{s} = 13 TeV - **Trigger:** Lepton triggers - Targeting W boson production in tt events #### • Offline selection: - 1 muon or electron (p_T > 25 GeV) + one track (p_T > 20 GeV) with opposite charge wrt lepton + one isolated photon (E_T > 25 GeV) - BDT for signal/background discrimination - Background estimation: analytic shape defined in fit to data control region (linear polynomial) ### Search for $W^{\pm} \rightarrow \pi^{\pm} + \gamma$ at CMS ## B(W→πγ) < 1.5x10⁻⁵ at 95% CL #### sensitivity limited by tt cross section - **Dataset**: pp collisions, 137 fb⁻¹, at \sqrt{s} = 13 TeV - **Trigger:** Lepton triggers - Targeting W boson production in tt events #### • Offline selection: - 1 muon or electron (p_T > 25 GeV) + one track (p_T > 20 GeV) with opposite charge wrt lepton + one isolated photon (E_T > 25 GeV) - BDT for signal/background discrimination - Background estimation: analytic shape defined in fit to data control region (linear polynomial) ### Search for W[±] \rightarrow D[±]_s + γ at LHCb - **Dataset**: pp collisions, 2 fb⁻¹, at \sqrt{s} = 13 TeV - Targeting W \rightarrow **D**_s(\rightarrow KK π) + γ events (5% BF) - Trigger: Dedicated triggers targeting 3 displaced tracks consistent with D_s + photon ### Search for $W^{\pm} \rightarrow D^{\pm}_{\epsilon} + \gamma$ at LHCb - **Dataset**: pp collisions, 2 fb⁻¹, at \sqrt{s} = 13 TeV - Targeting W \rightarrow **D**_s(\rightarrow KK π) + γ events (5% BF) - **Trigger:** Dedicated triggers targeting 3 displaced tracks consistent with D_s + photon - **Offline selection:** photon ($E_{\tau} > 15 \text{ GeV}$) + D candidate ($p_T > 20 \text{ GeV } \&\& 1.92 < m < 2.02 \text{ GeV}$) - **Background estimation:** Non-parametric data-driven background model - Fit to W pseudomass and p_T - $W^{\pm} \rightarrow \mu^{\pm} v$ used as normalisation channel $$m(M\gamma) = \sqrt{2p^M p_{ m T}^M rac{p^\gamma}{p_{ m T}^\gamma} (1-\cos heta)}$$ θ - opening angle between meson and photon ### Search for W[±] \rightarrow D[±]_s + γ at LHCb - **Dataset**: pp collisions, 2 fb⁻¹, at \sqrt{s} = 13 TeV - Targeting W \rightarrow **D**_s(\rightarrow KK π) + γ events (5% BF) - Trigger: Dedicated triggers targeting 3 displaced tracks consistent with D_s + photon - Offline selection: photon (E_T > 15 GeV) + D_s candidate (p_T > 20 GeV && 1.92 < m < 2.02 GeV) - Background estimation: <u>Non-parametric</u> <u>data-driven background model</u> - Fit to W pseudomass and p_T - W[±]→μ[±]ν used as normalisation channel $B(W \rightarrow D_s \gamma) < 6.5 \times 10^{-4} \text{ at } 95\% \text{ CL}$ $$m(M\gamma) = \sqrt{2p^Mp_{ m T}^M rac{p^\gamma}{p_{ m T}^\gamma}(1-\cos heta)}$$ θ - opening angle between meson and photon ### Search for W[±] $\rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp}$ at CMS - **Dataset**: pp collisions, 77.3 fb⁻¹, at \sqrt{s} = 13 TeV - **Trigger:** Di-tau triggers ($p_T > 35/40 \text{ GeV}$) No precise theoretical calculation for this BF, but expected to be $O(10^{-7})$ - $O(10^{-9})$ ### Search for W[±] $\rightarrow \pi^{\pm}\pi^{\pm}$ at CMS - **Dataset**: pp collisions, 77.3 fb⁻¹, at \sqrt{s} = 13 TeV - **Trigger:** Di-tau triggers ($p_T > 35/40 \text{ GeV}$) #### • Offline selection: - 3 isolated charged pion candidates reconstructed as 1-prong taus (2 matched to trigger object) - Hadronic tau discrimination algorithms are leveraged - \circ p_{τ}(W) > 40 GeV #### • Background estimation: Template derived using anti-isolated, and p_⊤(W) < 40 GeV data CRs ### Search for W[±] $\rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp}$ at CMS - **Dataset**: pp collisions, 77.3 fb⁻¹, at \sqrt{s} = 13 TeV - **Trigger:** Di-tau triggers ($p_{\tau} > 35/40 \text{ GeV}$) #### • Offline selection: - 3 isolated charged pion candidates reconstructed as 1-prong taus (2 matched to trigger object) - Hadronic tau discrimination algorithms are leveraged - \circ p_{τ}(W) > 40 GeV #### • Background estimation: Template derived using anti-isolated, and p_⊤(W) < 40 GeV data CRs ### Searches for H/Z→Mγ at ATLAS - Several ATLAS publications on exclusive Higgs/Z decays - Potential to probes light quark Yukawa couplings - Many of the same techniques are used in the searches being discussed ### Searches for W→Mγ decays at ATLAS #### W⁺ DECAY MODES W^- modes are charge conjugates of the modes below. | | Mode | _ | | Confidence | | | | |-----------------|-------------------|--------------|-----------------------------|-----------------|----------------|---------------------------------------|--------------------------------------------| | 8. | Mode | F | raction (Γ_i/Γ) | Confidence | Dec | ay Channel | SM Branching Fraction | | Γ_1 | $\ell^+ u$ | [a] | $(10.86 \pm \ 0.09) \%$ | | \overline{W} | $T^{\pm} ightarrow \pi^{\pm} \gamma$ | $(4.0 \pm 0.8) \times 10^{-9}$ | | Γ_2 | $e^+ u$ | | $(10.71 \pm 0.16) \%$ | | И | $\gamma^\pm o ho^\pm \gamma$ | $(8.7 \pm 1.9) \times 10^{-9}$ | | Γ ₃ | $\mu^+ u$ | | $(10.63 \pm 0.15) \%$ | | W | $K^{\pm} ightarrow K^{\pm} \gamma$ | $(3.3 \pm 0.7) \times 10^{-10}$ | | Γ_4 | $ au^+ u$ | | $(11.38 \pm 0.21) \%$ | • | | , | | | Γ_5 | hadrons | | $(67.41 \pm 0.27) \%$ | | | Cooke | has for W± > =±v | | Γ_6 | $\pi^+\gamma$ | < | < 7 × 10 | ე—6 | 95% | | hes for W [±] → π [±] γ, | | Γ ₇ | $D_s^+ \gamma$ | | < 6.5 x 10 ⁻⁴ | | 95% | - | ±γ and W±→ K±γ, | | Γ ₈ | cX | | (33.3 \pm 2.6) % | | | using A | TLAS Run-2 data | | Γ_9 | C \overline{s} | | $(31 {}^{+13}_{-11}) \%$ | | | | | | Γ_{10} | invisible | [<i>b</i>] | (1.4 ± 2.9) % | | | | | | Γ ₁₁ | $\pi^+\pi^+\pi^-$ | < | < 1.01 × 10 | ₀ –6 | 95% | | | Introducing 2 decays to this list! ### **The ATLAS Experiment (in Run 2)** - Inner Detector: Silicon pixels and strips (SCT) with Transition Radiation Tracker (TRT) - LAr EM calorimeter: high granularity + longitudinally segmented - **Two level trigger:** L1 Hardwarwe Trigger (40 MHz → 100 kHz) + HLT Software Trigger (100 kHz → 1 kHz) ### **Analysis Final States** - $W^{\pm} \rightarrow \pi^{\pm}/K^{\pm} + \gamma$: Isolated high p_{τ} track recoiling against isolated high p_{τ} photon - $W^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^{\pm} + \pi^{0}) + \gamma$: extra electromagnetic energy deposition coming from π^{0} ### **Analysis Final States** - $W^{\pm} \rightarrow \pi^{\pm}/K^{\pm} + \gamma$: Isolated high p₊ track recoiling against isolated high p₊ photon - $W^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^{\pm} + \pi^{0}) + \gamma$: extra electromagnetic energy deposition coming from π^{0} - Analysis performed through track + photon and the tau+photon final states: - Different strategies employed #### track + photon - Sensitive to $W^{\pm} \rightarrow \pi^{\pm}/K^{\pm}/\rho^{\pm} + \gamma$ decays - No attempt to reconstruct π^0 - **Dedicated triggers**: track ($p_T > 30 \text{ GeV}$) + photon ($p_T > 25 \text{ GeV}$) #### tau + photon - Sensitive to $W^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^{\pm} \pi^{0}) \gamma$ decay - ρ-candidate reconstructed as 1-prong τ-lepton - No dedicated triggers, using **di-photon triggers** ### **Trigger Strategy** - Dedicated triggers allow us to identify specific event topologies - Using modified tau-lepton trigger algorithms - Collected 137 fb⁻¹ from 2016 to 2018 - With **58% signal efficiency** wrt offline selection (for $W^{\pm} \rightarrow \pi^{\pm} \gamma$ signal) #### **Requirements:** - single track (p_⊤ > 30 GeV) - **single photon** $(p_T > 25/35 \text{ GeV})$ - m(trk+y) > 50 GeV - $0.4 < E_T/p_T(trk) < 0.85$ - Dedicated triggers allow us to identify specific event topologies - Using modified tau-lepton trigger algorithms - Collected 137 fb⁻¹ from 2016 to 2018 - With **58% signal efficiency** wrt offline selection (for $W^{\pm} \rightarrow \pi^{\pm} \gamma$ signal) #### **Requirements:** - single track $(p_{\tau} > 30 \text{ GeV})$ - single photon (p_T > 25/35 GeV) - m(trk+y) > 50 GeV - $0.4 < E_T/p_T(trk) < 0.85$ - Lower acceptance for this final state from dedicated W→ πγ triggers: - \circ Mostly due to 0.4 < E_T/p_T < 0.85 requirement - **Diphoton** triggers are used instead - taking advantage of π⁰→ γγ decays - \circ p_T > 35 GeV, p_T>25 GeV - with **43% efficiency** wrt offline SR selection - Dedicated triggers allow us to identify specific event topologies - Using modified tau-lepton trigger algorithms - Collected 137 fb⁻¹ from 2016 to 2018 - With 58% signal efficiency wrt offline selection (for W[±]→ π[±]γ signal) #### **Requirements:** - single track $(p_{\tau} > 30 \text{ GeV})$ - single photon ($p_{\tau} > 25/35 \text{ GeV}$) - m(trk+y) > 50 GeV - $0.4 < E_T/p_T(trk) < 0.85$ - Lower acceptance for this final state from dedicated W→ πγ triggers: - \circ Mostly due to 0.4 < E_T/p_T < 0.85 requirement - Diphoton triggers are used instead - taking advantage of π⁰→ γγ decays - \circ p_T > 35 GeV, p_T>25 GeV - with **43% efficiency** wrt offline SR selection Dedicated triggers and diphoton triggers are orthogonal Can combine two final states in a simultaneous fit # track + photon #### Z → ee rejection - Resonant background arising from Z → ee events - not modelled by inclusive background modelling method - modelled with MC in final fit - Exploit differences between electrons and charged hadrons: - o hadronic leakage and transition radiation - Reject if Rhad(e) < 0.03 and eProbabilityHT(trk) > 0.1 - Signal efficiencies mainly driven by trigger p_⊤ thresholds - ~10% efficiency difference between $W^{\pm} \rightarrow \pi^{\pm} \gamma$ and $W^{\pm} \rightarrow K^{\pm} \gamma$ - originating from differences between $E_T/p_T(trk)$ and $Z \rightarrow ee$ rejection variables - Main background arising from dijet and jet + photon processes - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead - Main background arising from dijet and jet + photon processes - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead - Main background arising from dijet and jet + photon processes - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead - 1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region) # Generation Region Selection SR **Data Events** - Main background arising from **dijet** and **jet + photon** processes - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead - 1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region) - 2. Obtain conditional PDF of relevant **kinematic** and **isolation** variables 1D, 2D, 3D histograms describing most important correlations #### **Data Events** - Main background arising from dijet and jet + photon processes - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead - 1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region) - 2. Obtain conditional PDF of relevant **kinematic** and **isolation** variables 1D, 2D, 3D histograms describing most important correlations - 3. Generate sample of pseudo-candidates through **sequential sampling** - Main background arising from **dijet** and **jet + photon** processes - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead - 1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region) - 2. Obtain conditional PDF of relevant **kinematic** and **isolation** variables 1D, 2D, 3D histograms describing most important correlations - 3. Generate sample of pseudo-candidates through **sequential sampling** - 4. Apply **Signal Region** requirements to pseudo-candidates sample - Main background arising from **dijet** and **jet + photon** processes - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead - 1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region) - 2. Obtain conditional PDF of relevant **kinematic** and **isolation** variables 1D, 2D, 3D histograms describing most important correlations - 3. Generate sample of pseudo-candidates through **sequential sampling** - Apply Signal Region requirements to pseudo-candidates sample - obtain PDF of W invariant mass for statistical analysis - Main background arising from **dijet** and **jet + photon** processes - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead - 1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region) - 2. Obtain conditional PDF of relevant **kinematic** and **isolation** variables 1D, 2D, 3D histograms describing most important correlations - 3. Generate sample of pseudo-candidates through **sequential sampling** - Apply Signal Region requirements to pseudo-candidates sample - obtain PDF of W invariant mass for statistical analysis - Intermediate Validation Regions to check method - Main background arising from **dijet** and **jet + photon** processes - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead - 1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region) - 2. Obtain conditional PDF of relevant **kinematic** and **isolation** variables 1D, 2D, 3D histograms describing most important correlations - Generate sample of pseudo-candidates through sequential sampling - Apply Signal Region requirements to pseudo-candidates sample - obtain PDF of W invariant mass for statistical analysis - Intermediate Validation Regions to check method - Method described in <u>JHEP10 (2022) 001</u> Let's take a H→φ(K⁺K⁻)γ case study Similar signature: pair of collimated high-p_T isolated tracks recoiling against isolated photon - Main background : photon + jet and dijet - photon + jet MC sample as data H→φ(K⁺K⁻)γ case study for background model JHEP10 (2022) 001 - Let's take a H→φ(K⁺K⁻)γ case study - Similar signature: pair of collimated high-p_T isolated tracks recoiling against isolated photon - Main background: photon + jet and dijet - photon + jet MC sample as data #### Which variables do we need to include in the model? φ and γ 4-momentum vectors to ultimately obtain **m(φγ)** + extra variables which define Signal Region $pT(\Phi)$, $pT(\gamma)$, $\Delta\Phi(\Phi,\gamma)$, $\Delta\eta(\Phi,\gamma)$, $Iso(\Phi)$ H→φ(K⁺K⁻)γ case study for background model JHEP10 (2022) 001 - Let's take a H→φ(K⁺K⁻)γ case study - Similar signature: pair of collimated high-p_T isolated tracks recoiling against isolated photon - Main background: photon + jet and dijet - photon + jet MC sample as data #### Which variables do we need to include in the model? φ and γ 4-momentum vectors to ultimately obtain **m(φγ)** + extra variables which define Signal Region $pT(\Phi)$, $pT(\gamma)$, $\Delta\Phi(\Phi,\gamma)$, $\Delta\eta(\Phi,\gamma)$, $Iso(\Phi)$ H→φ(K⁺K⁻)γ case study for background model - Build PDFs of relevant variables following most important correlations in Generation Region - o 1D, 2D and 3D histograms to be sampled from in generation step H→φ(K⁺K⁻)γ case study for background model - Build PDFs of relevant variables following most important correlations in Generation Region - o 1D, 2D and 3D histograms to be sampled from in generation step H→φ(K⁺K⁻)γ case study for background model - Build PDFs of relevant variables following most important correlations in Generation Region - o 1D, 2D and 3D histograms to be sampled from in generation step H→φ(K⁺K⁻)γ case study for background model - Sample from PDFs and construct pseudo-candidates - each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an associated Φ isolation variable H→φ(K⁺K⁻)γ case study for background model - Sample from PDFs and construct pseudo-candidates - each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an associated Φ isolation variable $$φ = (\mathbf{p_T}, η, Φ, m)$$ $$γ = (\mathbf{p_T}, η, Φ, m)$$ $$Iso(φ)$$ H→φ(K⁺K⁻)γ case study for background model - **Sample** from PDFs and construct pseudo-candidates - each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an associated Φ isolation variable H→Φ(K⁺K⁻)γ case study for background model - **Sample** from PDFs and construct pseudo-candidates - \circ each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an associated Φ isolation variable H→φ(K⁺K⁻)γ case study for background model - Systematic uncertainties provided through variations of the nominal PDFs - selected to capture different modes of potential deformations of the background shape H→φ(K⁺K⁻)γ case study for background model Systematic uncertainties provided through variations of the nominal PDFs JHEP10 (2022) 001 selected to capture different modes of potential deformations of the background shape o each variation controlled by a nuisance parameter - directly H→φ(K⁺K⁻)γ case study for background model Value -0.07 1.01 0.26 0.30 0.10 Parameter - Model is robust under signal contamination: - Features of resonant contributions are diluted in the process of factorising the background PDF H→φ(K⁺K⁻)γ case study for background model - Model is robust under signal contamination: - Features of resonant contributions are diluted in the process of factorising the background PDF H→φ(K⁺K⁻)γ case study for background model #### Sampling sequence for track + photon final state #### **Validation Regions** | Region | Selection | |--------|------------------------------------| | VR1 | GR + $p_{T}(\pi) > 33 \text{ GeV}$ | | VR2a | GR + Photon Calo Iso | | VR2b | GR + Photon Track Iso | | VR3 | GR + Track Isolation | | SR | GR + all of the above | - Background modelling method **does not model resonant processes**: - small remaining contribution from Z → ee background modelled through MC #### **Background Shape Systematics** - Alternative pairs of m(track,γ) shapes are derived and implemented in the fit using **interpolation technique** - \circ $p_{\tau}(\gamma)$ shifted - o distortions to $\Delta\Phi(trk, \gamma)$ - linear re-weighting of m(trk, γ) #### **Signal Modelling** - Signals simulated using Powheg + Pythia - decays simulated isotropically and re-weighted to theoretical polarisation - Modelled in fit using: - W[±]→ π[±]/K[±] γ: double voigtian x efficiency function (parameters fixed to MC) #### **Signal Modelling** - Signals simulated using Powheg + Pythia - decays simulated isotropically and re-weighted to theoretical polarisation - Modelled in fit using: - W[±]→ π[±]/K[±] γ: double voigtian x efficiency function (parameters fixed to MC) - W[±]→ ρ[±]γ: MC distribution smoothed through KDE #### Signal Modelling - Signals simulated using Powheg + Pythia - decays simulated isotropically and re-weighted to theoretical polarisation - Modelled in fit using: - W[±]→ π[±]/K[±] γ: double voigtian x efficiency function (parameters fixed to MC) - W[±]→ ρ[±]γ: MC distribution smoothed through KDE #### **Signal Uncertainties (1% effect on upper limit)** - Theory scale variations 6.2% - Trigger Efficiency 3.6% - Cross Section 3.3 % - Luminosity 0.83% - Pileup 2.2% - Photon ID & Isolation 2.1% - Tracking Efficiency 1.2% # tau + photon #### - SR defined by simultaneous cut optimisation on $\mathbf{p}_{\tau}(\tau)$, $\Delta \mathbf{R}_{\tau}^{\text{max}}$ and τ impact parameter \mathbf{d}_{0} - Signal efficiency is ~½ of track-photon SR, but with higher background rejection | Tau-photon | | | | | |------------|---------------------------------------------------------|--|--|--| | VR1 | $p_{\mathrm{T}}(M) > 30GeV$ | | | | | VR2 | $\Delta R_{\tau_{\rm had}} < 0.065$ $\log d_0 < -1.2$ | | | | | VR3 | $\log d_0 < -1.2$ | | | | # ρ meson reconstructed as tau with exactly one associated charged hadron - Main background arising from dijet and jet + photon processes - The same non-parametric data-driven background modelling method used - \circ γ and τ variables used in the modelling - Background shape systematics derived and implemented in the same way as for track+photon #### **Signal Modelling** - $W^{\pm} \rightarrow \rho^{\pm} \gamma$ signal simulated using **Powheg + Pythia** - decays simulated isotropically and re-weighted to theoretical polarisation - Modelled in fit using voigtian x efficiency function (parameters fixed to MC) # Signal Systematics (very small effect on upper limit - 1%) - Theory scale variations 6.5% - Trigger Efficiency 10 % - Cross Section 3.3 % - Luminosity 0.83% - Pileup 5.5% - EG Scale 3.0% - EG Resolution 4.9% - Photon ID 1.1% - Photon Isolation 1.6% - Tau Efficiency 13% #### **Results** - Maximum Likelihood Fit in track + photon and tau + photon mass - single fit in two categories, with correlated μ(W→ ργ) - systematic uncertainties are treated in an uncorrelated matter, except x-section and luminosity systematics Track+photon Tau+photon No significant excess with respect to the background prediction is found in data #### **Results** - Asymptotic CL_s with profile likelihood as test statistic - Cannot disentangle W→π+γ and W→K+γ only one considered at a time (other signal assumed to be 0) - W→π/K+γ and W→ρ+γ have distinct shapes - other signal is profiled - B(W→ργ) expected upper limit improves by 7% wrt fit in tau+photon final state - 18% improvement observed | | Expected branching fraction $\times 10^{-6}$ | Observed branching fraction $\times 10^{-6}$ | |---------------------------------------|----------------------------------------------|----------------------------------------------| | $W^{\pm} ightarrow \pi^{\pm} \gamma$ | $1.2^{+0.5}_{-0.3}$ | 1.9 | | $W^{\pm} \to K^{\pm} \gamma$ | $1.1^{+0.4}_{-0.3}$ | 1.7 | | $W^{\pm} ightarrow ho^{\pm} \gamma$ | $6.0^{+2.3}_{-1.7}$ | 5.2 | #### **Results** - Asymptotic CL_s with profile likelihood as test statistic - Cannot disentangle W→π+γ and W→K+γ only one considered at a time (other signal assumed to be 0) - W→π/K+γ and W→ρ+γ have distinct shapes - other signal is profiled - B(W→ργ) expected upper limit improves by 7% wrt fit in tau+photon final state - **18%** improvement observed arXiv:2309.15887 - Search for the exclusive W boson hadronic decays $W^{\pm} \to \pi^{\pm} \gamma$, $W^{\pm} \to K^{\pm} \gamma$ and $W^{\pm} \to \rho^{\pm} \gamma$ with the ATLAS detector | | Expected branching fraction $\times 10^{-6}$ | Observed branching fraction $\times 10^{-6}$ | |---------------------------------|----------------------------------------------|----------------------------------------------| | $W^{\pm} o \pi^{\pm} \gamma$ | $1.2^{+0.5}_{-0.3}$ | 1.9 | | $W^{\pm} \to K^{\pm} \gamma$ | $1.1^{+0.4}_{-0.3}$ | 1.7 | | $W^{\pm} \to \rho^{\pm} \gamma$ | $6.0^{+2.3}_{-1.7}$ | 5.2 | #### Searches for H/Z→Mγ at ATLAS #### What does the future hold? - 3000 fb⁻¹ HL-LHC: - could be just enough to observe W→πππ - o would require further analysis improvements to observe W→Mγ - Future collider facilities currently being designed - FCC-ee projected to produce clean sample of O(10⁸) W⁺W⁻ events - Enough to observe W→D_sγ and W→πππ according to current expectations - FCC-hh projected to deliver O(10¹²) W bosons from inclusive production - $O(10^3)$ W $\rightarrow \pi \gamma$ and W $\rightarrow \rho \gamma$ Long road ahead, but these analyses and the developed techniques are fundamental first steps towards observation of these decays #### **Summary** - To date none of the exclusive hadronic decays of the W boson have been observed - Weak or no experimental constraints available - Searches for these decays enabled by: - Dedicated meson + photon triggers - Data-driven non-parametric background modelling method - "Inverse" analysis techniques: - photon trigger for $W^{\pm} \rightarrow \rho^{\pm} \gamma$ - taus to target ρ[±]→π[±] + π⁰ decay **Best UL** on B(W[±] $\rightarrow \pi^{\pm} \gamma$) **First limits** on B(W[±] $\rightarrow \rho^{\pm}\gamma$) and B(W[±] \rightarrow K[±] γ) | | Expected branching fraction $\times 10^{-6}$ | Observed branching fraction ×10 ⁻⁶ | |-------------------------------|----------------------------------------------|-----------------------------------------------| | $W^{\pm} o \pi^{\pm} \gamma$ | $1.2^{+0.5}_{-0.3}$ | 1.9 | | $W^{\pm} \to K^{\pm} \gamma$ | $1.1^{+0.4}_{-0.3}$ | 1.7 | | $W^\pm o ho^\pm \gamma$ | $6.0^{+2.3}_{-1.7}$ | 5.2 | arXiv:2309.15887 THANK YOU FOR LISTENING!