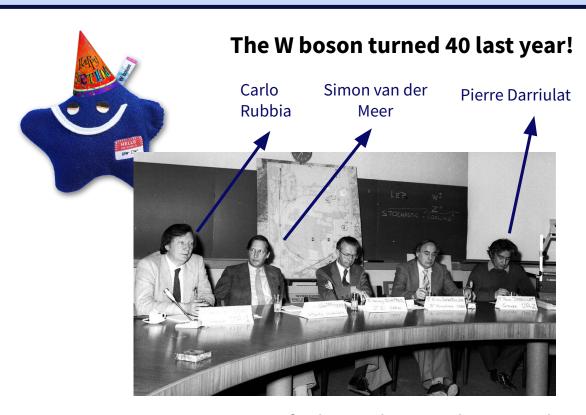
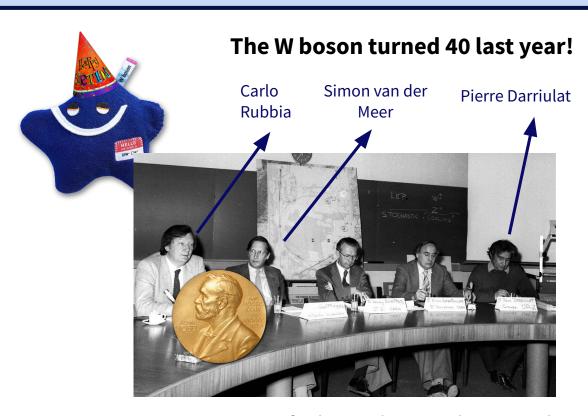


Search for the exclusive hadronic W boson decays at the ATLAS experiment

Júlia Cardoso Silva

7th February 2024




W boson discovery

(E MIS) 500 1000 1500 6 candidate Vumber of events/(5 GeV)² $W\rightarrow e\nu$ events 70 events -10 -40 (GeV) Missing transverse energy

CERN announcement of W boson discovery by UA1 and UA2

W boson discovery

(E MIS) 500 1000 1500 6 candidate Vumber of events/(5 GeV)² $W\rightarrow e\nu$ events 70 events -10 -40 (GeV) Missing transverse energy

CERN announcement of W boson discovery by UA1 and UA2

W⁺ DECAY MODES

 W^- modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)	Confidence level	
$\overline{\Gamma_1}$	$\ell^+ u$	[a] (10.86± 0.09) %	_	
Γ_2	$e^+ u$	$(10.71 \pm 0.16) \%$		
Γ ₃ Γ ₄	$\mu^+ u$	$(10.63 \pm 0.15) \%$		
Γ_4	$ au^+ u$	$(11.38 \pm 0.21) \%$		
Γ_5	hadrons	(67.41± 0.27) %		
Γ_6	$\pi^+ \gamma$	< 7 × 1	10^{-6} 95%	
Γ_7	$D_s^+ \gamma$	< 1.3 × 1	10^{-3} 95%	
Γ ₈	cX	(33.3 \pm 2.6) %		
Γ_9	c s	$(31 {}^{+13}_{-11}) \%$		
Γ_{10}	invisible	[b] $(1.4 \pm 2.9)\%$		
Γ ₁₁	$\pi^+\pi^+\pi^-$	< 1.01 × 1	10 ⁻⁶ 95%	

		Z DECAY MODES
	Mada	Scale factor/
	Mode	Fraction (Γ_i/Γ) Confidence level
Γ_1	e^+e^-	[a] (3.3632±0.0042) %
Γ_2	$\mu^{+}_{\cdot}\mu^{-}_{\cdot}$	[a] (3.3662±0.0066) %
Гз	$\tau^+\tau^-$	[a] (3.3696±0.0083) %
Γ_4	$\ell^+\ell^-$	[a,b] (3.3658±0.0023) %
Γ ₅	$\ell^+\ell^-\ell^+\ell^-$	[c] $(3.5 \pm 0.4) \times 10^{-6}$ S=1.7
Γ_6	invisible	[a] (20.000 ±0.055)%
Γ_7	hadrons	[a] (69.911 ±0.056)%
Г8	$(u\overline{u}+c\overline{c})/2$	(11.6 ± 0.6) %
Γ_9	$(d\overline{d} + s\overline{s} + b\overline{b})/3$	(15.6 ±0.4)%
Γ_{10}	c <u>c</u>	(12.03 ±0.21)%
Γ_{11}	$b\overline{b}$	(15.12 ±0.05) %
Γ_{12}	$b\overline{b}b\overline{b}$	$(3.6 \pm 1.3) \times 10^{-4}$
Γ_{13}	ggg	< 1.1 % CL=95%
Γ_{14}	$\pi^0 \gamma$	$< 2.01 \times 10^{-5} \text{ CL}=95\%$
Γ_{15}	$\eta \gamma$	$< 5.1 \times 10^{-5} \text{ CL}=95\%$
Γ_{16}	$\omega \gamma$	$< 6.5 \times 10^{-4} \text{ CL}=95\%$
Γ_{17}	$\eta'(958)\gamma$	$<$ 4.2 \times 10 ⁻⁵ CL=95%
Γ_{18}	$\phi\gamma$	$< 8.3 \times 10^{-6} \text{ CL}=95\%$
Γ_{10}	$\gamma \gamma$	$< 1.46 \times 10^{-5} \text{ CL}=95\%$
Γ_{20}	$\pi^{0}\pi^{0}$	$< 1.52 \times 10^{-5} \text{ CL}=95\%$
Γ_{21}	$\gamma\gamma\gamma$	$< 2.2 \times 10^{-6} \text{ CL}=95\%$
Γ_{22}	$\pi^{\pm}W^{\mp}$	$[d] < 7 \times 10^{-5} CL=95\%$
Γ_{23}	$ ho^{\pm}W^{\mp}$	$[d] < 8.3 \times 10^{-5} CL=95\%$
Γ_{24}	$J/\psi(1S)X$	$(3.51 \ ^{+0.23}_{-0.25} \) \times 10^{-3}$ S=1.1
Γ_{25}	$J/\psi(1S)\gamma$	$< 2.6 \times 10^{-6} \text{ CL}=95\%$
Γ_{26}	$\psi(2S)X$	$(1.60 \pm 0.29) \times 10^{-3}$
Γ_{27}	$\chi_{c1}(1P)X$	$(2.9 \pm 0.7) \times 10^{-3}$
Γ_{28}	$\chi_{c2}(1P)X$	$< 3.2 \times 10^{-3} \text{ CL}=90\%$
Γ ₂₉	$\Upsilon(1S) \times + \Upsilon(2S) \times + \Upsilon(3S) \times $	$(1.0 \pm 0.5) \times 10^{-4}$
Γ ₃₀	$\Upsilon(1S)X$	$< 3.4 \times 10^{-6} \text{ CL}=95\%$
Γ ₃₁	Υ(25)X	< 6.5 × 10 ⁻⁶ CL=95%
Γ ₃₂	r(3S)X	< 5.4 × 10 ⁻⁶ CL=95%
Γ ₃₃	$(D^0/\overline{D}^0) \times$	(20.7 ±2.0)%
Γ ₃₄	$D^{\pm}X$	(12.2 ±1.7)%
Γ ₃₅	D*(2010)±X	[d] (11.4 ±1.3)%
Γ ₃₆	$D_{s1}(2536)^{\pm}X$	$(3.6 \pm 0.8) \times 10^{-3}$
Γ ₃₇	$D_{sJ}(2573)^{\pm} X$	$(5.8 \pm 2.2) \times 10^{-3}$
Γ ₃₈	$D^{*'}(2629)^{\pm}X$	searched for
Γ ₃₉	BX	
Γ ₄₀	B* X	

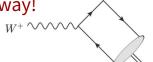
etc.

W⁺ DECAY MODES

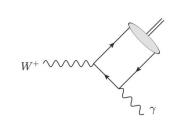
 W^- modes are charge conjugates of the modes below.

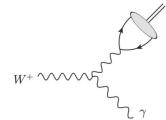
	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	$\ell^+ u$	[a] (10.86± 0.09) %	
Γ_2	$e^+ u$	$(10.71 \pm 0.16) \%$	
Γ_3	$\mu^+ u$	$(10.63 \pm 0.15) \%$	
Γ ₃ Γ ₄	$ au^+ u$	$(11.38 \pm 0.21) \%$	
Γ_5	hadrons	$(67.41 \pm 0.27) \%$	
Γ_6	$\pi^+\gamma$	< 7 ×	10^{-6} 95%
Γ_7	$D_s^+ \gamma$	< 1.3 ×	10^{-3} 95%
Γ ₈	cX	(33.3 \pm 2.6) %	
Γ_9	c s	$\begin{pmatrix} 31 & +13 \\ -11 \end{pmatrix}$) %	
Γ_{10}	invisible	[b] (1.4 \pm 2.9) %	
Γ ₁₁	$\pi^{+}\pi^{+}\pi^{-}$	< 1.01 ×	10^{-6} 95%

	2	Z DECAY MODES	
			Scale factor,
	Mode	Fraction (Γ_i/Γ)	Confidence leve
Γ1	e^+e^-	[a] (3.3632±0.0042) %	ó
Γ_2	$\mu^{+} \mu^{-}$	[a] (3.3662±0.0066) %	ó
Γ3	$\tau^+\tau^-$	[a] (3.3696±0.0083)%	ó
Γ4	$\ell^+\ell^-$	[a,b] (3.3658±0.0023) %	ó
Γ ₅	$\ell^+\ell^-\ell^+\ell^-$	[c] (3.5 ±0.4)×	10 ⁻⁶ S=1.
Γ_6	invisible	[a] (20.000 ±0.055)%	ó
Γ ₇	hadrons	[a] (69.911 ±0.056) %	ó
Γ8	$(u\overline{u}+c\overline{c})/2$	(11.6 ±0.6) %	ó
Γ9	$(d\overline{d} + s\overline{s} + b\overline{b})/3$	(15.6 ±0.4) %	ó
Γ ₁₀	c̄c	(12.03 ±0.21)%	ó
Γ11	$b\overline{b}$	(15.12 ±0.05) %	ó
Γ ₁₂	$b\overline{b}b\overline{b}$	(3.6 ±1.3)×	10-4
Γ_{13}	ggg	< 1.1 %	CL=95%
Γ_{14}	$\pi^0 \gamma$	< 2.01 ×	10 ⁻⁵ CL=95%
Γ ₁₅	$\eta \gamma$		10 ⁻⁵ CL=95%
Γ_{16}	$\omega \gamma$	< 6.5 ×	10 ⁻⁴ CL=95%
Γ_{17}	$\eta'(958)\gamma$		10 ⁻⁵ CL=95%
Γ ₁₈	$\phi \gamma$		10 ⁻⁶ CL=95%
Γ10	$\gamma \gamma$		10 ⁻⁵ CL=95%
Γ_{20}	$\pi^{0}\pi^{0}$	< 1.52 ×	10 ⁻⁵ CL=95%
Γ_{21}	$\gamma\gamma\gamma$		10 ⁻⁶ CL=95%
Γ_{22}	$\pi^{\pm}W^{\mp}$		10 ⁻⁵ CL=95%
Γ_{23}	$ ho^\pm W^\mp$		10 ⁻⁵ CL=95%
Γ ₂₄	$J/\psi(1S)X$	$(3.51 \begin{array}{c} +0.23 \\ -0.25 \end{array}) \times ($	10 ⁻³ S=1.1
Γ_{25}	$J/\psi(1S)\gamma$	< 2.6 ×	10 ⁻⁶ CL=95%
Γ ₂₆	$\psi(2S)X$	(1.60 ±0.29)×	10-3
Γ_{27}	$\chi_{c1}(1P)X$	(2.9 ±0.7)×	₁₀ -3
Γ_{28}	$\chi_{c2}(1P)X$	< 3.2 ×	10 ⁻³ CL=90%
Γ ₂₉	$\Upsilon(1S) \times + \Upsilon(2S) \times + \Upsilon(3S) \times $	(1.0 ±0.5)×	10-4
Γ ₃₀	r(1S)X	< 3.4 ×	10 ⁻⁶ CL=95%
Γ ₃₁	r(25)X	< 6.5 ×	10 ⁻⁶ CL=95%
Γ ₃₂	$\Upsilon(3S)X$	< 5.4 ×	10 ⁻⁶ CL=95%
Γ_{33}	(D^0/\overline{D}^0) X	(20.7 ±2.0) %	
Γ ₃₄	$D^{\pm}X$	(12.2 ±1.7)%	
Γ ₃₅	$D^*(2010)^{\pm}X$	[d] (11.4 ±1.3)%	


None of the exclusive hadronic decays of the W boson have been observed!

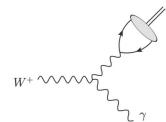
- None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed
 - Can offer novel precision studies of <u>QCD factorisation</u>
 - Amplitudes written as expansions in terms of Λ_{OCD}/E
 - bound states described by meson LCDAs
 - Existing applications have non-negligible power corrections
 - Cannot disentangle higher power effects from LCDAs uncertainties




- None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed
 - o Can offer novel precision studies of QCD factorisation
 - Amplitudes written as expansions in terms of Λ_{OCD}/E
 - bound states described by meson LCDAs
 - Existing applications have non-negligible power corrections
 - Cannot disentangle higher power effects from LCDAs uncertainties
 - Power corrections become negligible when using W→Mγ!
 - Can probe meson LCDAs in a clean way!

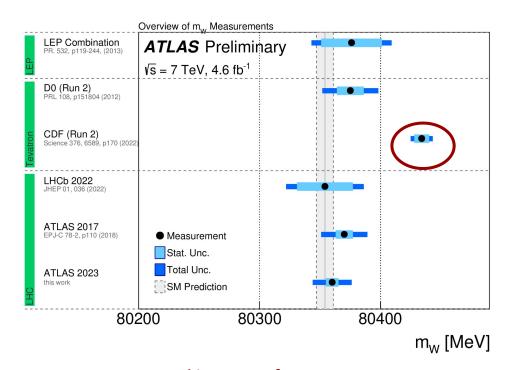
Grossman, König & Neubert

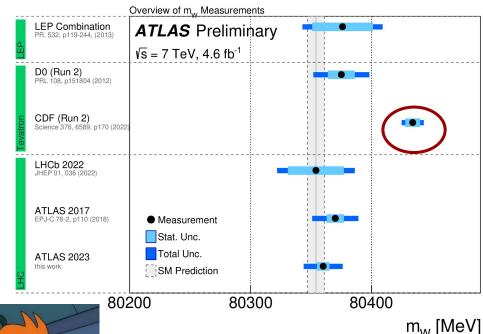
Decay Channel	SM Branching Fraction
$W^\pm o \pi^\pm \gamma$	$(4.0 \pm 0.8) \times 10^{-9}$
$W^\pm o ho^\pm \gamma$	$(8.7 \pm 1.9) \times 10^{-9}$
$W^{\pm} ightarrow K^{\pm} \gamma$	$(3.3 \pm 0.7) \times 10^{-10}$
$W^\pm o K^{*\pm}\gamma$	$(4.8 \pm 1.4) \times 10^{-10}$
$W^\pm o D_S^\pm\gamma$	$(3.7 \pm 1.6) \times 10^{-8}$
$W^\pm o D^{ ilde\pm}\gamma$	$(1.4 \pm 0.5) \times 10^{-9}$
$W^\pm o B^\pm\gamma$	$(1.6 \pm 0.8) \times 10^{-12}$


- None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed
 - o Can offer novel precision studies of QCD factorisation
 - Amplitudes written as expansions in terms of Λ_{OCD}/E
 - bound states described by meson LCDAs
 - Existing applications have non-negligible power corrections
 - Cannot disentangle higher power effects from LCDAs uncertainties
 - Power corrections become negligible when using W→Mγ!
 - Can probe meson LCDAs in a clean way!

Very rare! SM predictions ranging from O(10⁻⁸)-O(10⁻¹²)

Grossman, König & Neubert

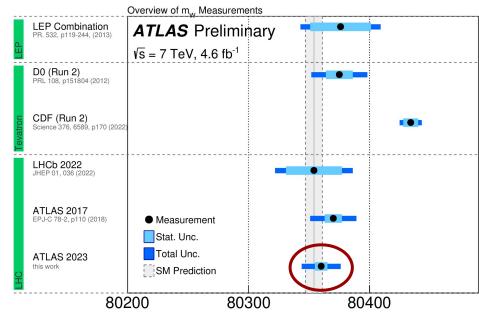

Decay Channel	SM Branching Fraction
$W^\pm o \pi^\pm \gamma$	$(4.0 \pm 0.8) \times 10^{-9}$
$W^\pm o ho^\pm \gamma$	$(8.7 \pm 1.9) \times 10^{-9}$
$W^\pm o K^\pm\gamma$	$(3.3 \pm 0.7) \times 10^{-10}$
$W^{\pm} ightarrow K^{*\pm} \gamma$	$(4.8 \pm 1.4) \times 10^{-10}$
$W^\pm o D_S^\pm\gamma$	$(3.7 \pm 1.6) \times 10^{-8}$
$W^\pm o D^{\check\pm}\gamma$	$(1.4 \pm 0.5) \times 10^{-9}$
$W^\pm o B^\pm\gamma$	$(1.6 \pm 0.8) \times 10^{-12}$


- None of the exclusive hadronic W (or Z)
 decays predicted by the Standard Model
 have been observed
 - Could enable <u>W mass measurement</u> through fully-reconstructed decays
 - Very precise SM prediction (> 0.1 per mille)! - More precise than experimental result
 - Sensitive to radiative corrections from BSM particles

- None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed
 - Could enable <u>W mass measurement</u> through fully-reconstructed decays
 - Very precise SM prediction (> 0.1 per mille)! - More precise than experimental result
 - Sensitive to radiative corrections from BSM particles

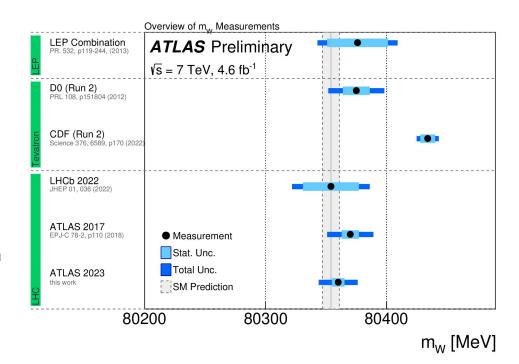
Renewed interest after CDF mass measurement

- None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed
 - Could enable <u>W mass measurement</u> <u>through fully-reconstructed decays</u>
 - Very precise SM prediction (> 0.1 per mille)! - More precise than experimental result
 - Sensitive to radiative corrections from BSM particles



Renewed interest after CDF mass measurement 7σ above expectation?!

- None of the exclusive hadronic W (or Z)
 decays predicted by the Standard Model
 have been observed
 - Could enable <u>W mass measurement</u> through fully-reconstructed decays
 - Very precise SM prediction (> 0.1 per mille)! - More precise than experimental result
 - Sensitive to radiative corrections from BSM particles



m_w [MeV]

ATLAS W boson mass reanalysis at 7 TeV 15% improvement in precision!! Closer to SM, further from CDF

- None of the exclusive hadronic W (or Z) decays predicted by the Standard Model have been observed
 - Could enable <u>W mass measurement</u>
 <u>through fully-reconstructed decays</u>
 - Very precise SM prediction (> 0.1 per mille)! - More precise than experimental result
 - Sensitive to radiative corrections from BSM particles
 - Measurements have been performed through leptonic W decays
 - Uncertainties from incomplete kinematics

- None of the exclusive hadronic W (or Z)
 decays predicted by the Standard Model
 have been observed
 - Could enable <u>W mass measurement</u>
 <u>through fully-reconstructed decays</u>
 - Very precise SM prediction (> 0.1 per mille)! - More precise than experimental result
 - Sensitive to radiative corrections from BSM particles
 - Measurements have been performed through leptonic W decays
 - Uncertainties from incomplete kinematics

Could take advantage of high mass resolution for decays to charged particles and photons

W⁺ DECAY MODES

 W^- modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)	Confider	Confidence level	
Γ ₁	$\ell^+ u$	[a] (10.86± 0.09) %	_	
Γ_2	$e^+ u$	(10.71 ± 0.16)) %		
Γ ₃	$\mu^+ u$	(10.63 ± 0.15)) %		
Γ ₃ Γ ₄	$ au^+ u$	(11.38 ± 0.21)) %		
Γ_5	hadrons	(67.41 ± 0.27)) %		
Γ ₆	$\pi^+\gamma$	< 7	$\times 10^{-6}$	95%	
Γ ₇	$D_s^+ \gamma$	< 1.3	$\times 10^{-3}$	95%	
Γ ₈	cX	(33.3 ± 2.6)) %		
Γ_9	c s	$(31 \begin{array}{cc} +13 \\ -11 \end{array}$) %		
Γ_{10}	invisible	[b] (1.4 \pm 2.9) %		
Γ_{11}	$\pi^{+}\pi^{+}\pi^{-}$	< 1.01	$\times 10^{-6}$	95%	

W⁺ DECAY MODES

 W^- modes are charge conjugates of the modes below.

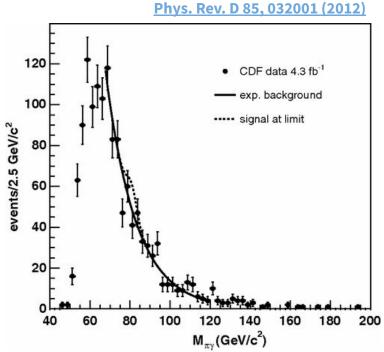
	Mode	Fraction (Γ_i/Γ)	Confidence level	
Γ ₁	$\ell^+ u$	[a] (10.86± 0.09) %		
Γ_2	$e^+ u$	$(10.71 \pm 0.16) \%$		
Γ ₃	$\mu^+ u$	$(10.63 \pm 0.15) \%$		
Γ ₁ Γ ₂ Γ ₃ Γ ₄	$ au^+ u$	$(11.38 \pm 0.21) \%$		
Γ_5	hadrons	$(67.41 \pm 0.27) \%$		
Γ_6	$\pi^+\gamma$	< 7 × 1	_{LO} -6 95%	CDE
Γ ₇	$D_s^+ \gamma$	< 1.3 × 1	10^{-3} 95%	CDF
Γ ₈	cX	(33.3 \pm 2.6) %		
Γ_9	c s	$(31 {}^{+13}_{-11}) \%$		
Γ_{10}	invisible	[b] (1.4 \pm 2.9) %		
Γ_{11}	$\pi^{+}\pi^{+}\pi^{-}$	< 1.01 × 1	10 ⁻⁶ 95%	CMS

W⁺ DECAY MODES

 W^- modes are charge conjugates of the modes below.

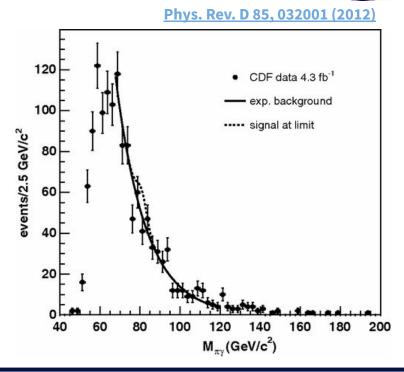
	Mode	Fraction (Γ_i/Γ)		Confidence level	
Γ_1	$\ell^+ u$	[a]	(10.86 ± 0.09) %		
Γ_2	$e^+ u$		$(10.71 \pm 0.16) \%$		
Γ_3	$\mu^+ u$		$(10.63 \pm 0.15) \%$		
Γ ₂ Γ ₃ Γ ₄	$ au^+ u$		$(11.38 \pm \ 0.21) \%$		
Γ_5	hadrons		(67.41± 0.27) %		CDE
Γ ₆	$\pi^+\gamma$		< 7 × 10	₉₅ %	CDF
Γ ₇	$D_s^+\gamma$	3	< 6.5 x 10 ⁻⁴	95%	LHCb
Γ ₈	cX		$(33.3 \pm 2.6)\%$		
Γ ₉	c s		$\begin{pmatrix} 31 & +13 \\ -11 \end{pmatrix}$) %		
Γ_{10}	invisible	[<i>b</i>]	(1.4 ± 2.9) %		
Γ ₁₁	$\pi^{+}\pi^{+}\pi^{-}$		< 1.01 × 10	o ⁻⁶ 95%	CMS

Search for $W^{\pm} \rightarrow \pi^{\pm} + \gamma$ at CDF



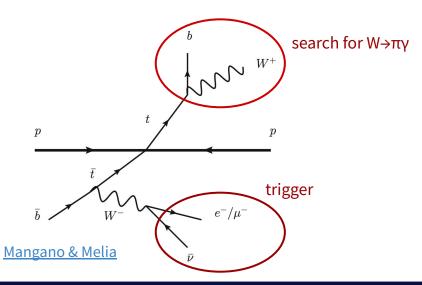
- Dataset: pp̄ collisions, 4.3 fb⁻¹, at √s = 1.96
 TeV
- **Trigger:** Photon triggers requiring $E_{\tau} > 25 \text{ GeV}$

Search for $W^{\pm} \rightarrow \pi^{\pm} + \gamma$ at CDF


- Dataset: pp̄ collisions, 4.3 fb⁻¹, at √s = 1.96
 TeV
- Trigger: Photon triggers requiring E_⊤ > 25 GeV
- Offline selection: back-to-back isolated photon (E_T > 25 GeV) and isolated track (p_T > 25 GeV)
- Background estimation: Fit to W sidebands, using exponential function
- W[±]→e[±]v used as reference, allowing cancellation of common systematics

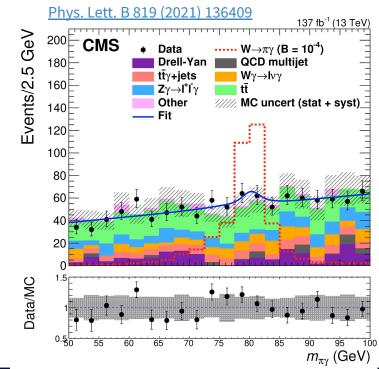
Search for $W^{\pm} \rightarrow \pi^{\pm} + \gamma$ at CDF

B(W \to πγ) < 7x10⁻⁶ at 95% CL


- Dataset: pp̄ collisions, 4.3 fb⁻¹, at √s = 1.96
 TeV
- **Trigger:** Photon triggers requiring $E_T > 25$ GeV
- Offline selection: back-to-back isolated photon (E_T > 25 GeV) and isolated track (p_T > 25 GeV)
- Background estimation: Fit to W sidebands, using exponential function
- W[±]→e[±]v used as reference, allowing cancellation of common systematics

Search for $W^{\pm} \rightarrow \pi^{\pm} + \gamma$ at CMS

- **Dataset**: pp collisions, 137 fb⁻¹, at $\sqrt{s} = 13$ TeV
- **Trigger:** Lepton triggers
- Targeting W boson production in tt events


Search for $W^{\pm} \rightarrow \pi^{\pm} + \gamma$ at CMS

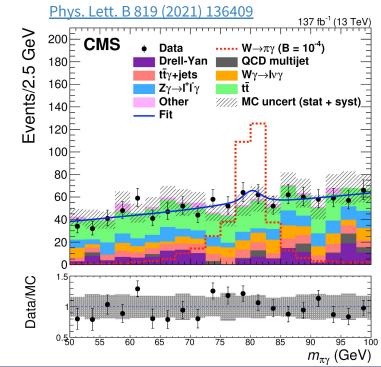
- **Dataset**: pp collisions, 137 fb⁻¹, at \sqrt{s} = 13 TeV
- **Trigger:** Lepton triggers
- Targeting W boson production in tt events

• Offline selection:

- 1 muon or electron (p_T > 25 GeV) + one track (p_T > 20 GeV) with opposite charge wrt lepton + one isolated photon (E_T > 25 GeV)
- BDT for signal/background discrimination
- Background estimation: analytic shape defined in fit to data control region (linear polynomial)

Search for $W^{\pm} \rightarrow \pi^{\pm} + \gamma$ at CMS

B(W→πγ) < 1.5x10⁻⁵ at 95% CL

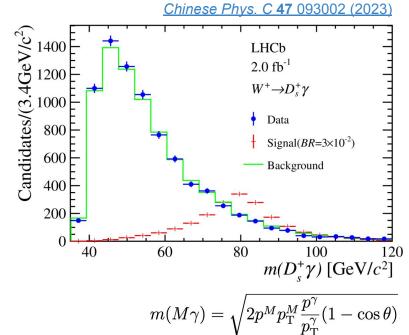

sensitivity limited by tt cross section

- **Dataset**: pp collisions, 137 fb⁻¹, at \sqrt{s} = 13 TeV
- **Trigger:** Lepton triggers
- Targeting W boson production in tt events

• Offline selection:

- 1 muon or electron (p_T > 25 GeV) + one track (p_T > 20 GeV) with opposite charge wrt lepton + one isolated photon (E_T > 25 GeV)
- BDT for signal/background discrimination
- Background estimation: analytic shape defined in fit to data control region (linear polynomial)

Search for W[±] \rightarrow D[±]_s + γ at LHCb



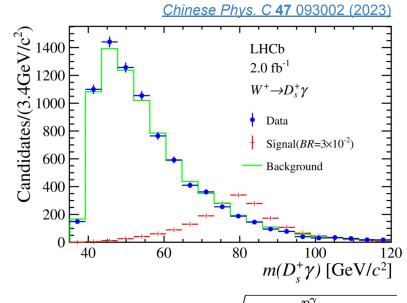
- **Dataset**: pp collisions, 2 fb⁻¹, at \sqrt{s} = 13 TeV
- Targeting W \rightarrow **D**_s(\rightarrow KK π) + γ events (5% BF)
- Trigger: Dedicated triggers targeting 3
 displaced tracks consistent with D_s + photon

Search for $W^{\pm} \rightarrow D^{\pm}_{\epsilon} + \gamma$ at LHCb

- **Dataset**: pp collisions, 2 fb⁻¹, at \sqrt{s} = 13 TeV
- Targeting W \rightarrow **D**_s(\rightarrow KK π) + γ events (5% BF)
- **Trigger:** Dedicated triggers targeting 3 displaced tracks consistent with D_s + photon
- **Offline selection:** photon ($E_{\tau} > 15 \text{ GeV}$) + D candidate ($p_T > 20 \text{ GeV } \&\& 1.92 < m < 2.02 \text{ GeV}$)
- **Background estimation:** Non-parametric data-driven background model
- Fit to W pseudomass and p_T
- $W^{\pm} \rightarrow \mu^{\pm} v$ used as normalisation channel

$$m(M\gamma) = \sqrt{2p^M p_{
m T}^M rac{p^\gamma}{p_{
m T}^\gamma} (1-\cos heta)}$$

 θ - opening angle between meson and photon



Search for W[±] \rightarrow D[±]_s + γ at LHCb

- **Dataset**: pp collisions, 2 fb⁻¹, at \sqrt{s} = 13 TeV
- Targeting W \rightarrow **D**_s(\rightarrow KK π) + γ events (5% BF)
- Trigger: Dedicated triggers targeting 3 displaced tracks consistent with D_s + photon
- Offline selection: photon (E_T > 15 GeV) + D_s candidate (p_T > 20 GeV && 1.92 < m < 2.02 GeV)
- Background estimation: <u>Non-parametric</u> <u>data-driven background model</u>
- Fit to W pseudomass and p_T
- W[±]→μ[±]ν used as normalisation channel

 $B(W \rightarrow D_s \gamma) < 6.5 \times 10^{-4} \text{ at } 95\% \text{ CL}$

$$m(M\gamma) = \sqrt{2p^Mp_{
m T}^Mrac{p^\gamma}{p_{
m T}^\gamma}(1-\cos heta)}$$

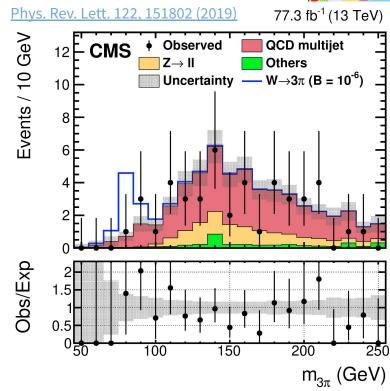
θ - opening angle between meson and photon

Search for W[±] $\rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp}$ at CMS

- **Dataset**: pp collisions, 77.3 fb⁻¹, at \sqrt{s} = 13 TeV
- **Trigger:** Di-tau triggers ($p_T > 35/40 \text{ GeV}$)

No precise theoretical calculation for this BF, but expected to be $O(10^{-7})$ - $O(10^{-9})$

Search for W[±] $\rightarrow \pi^{\pm}\pi^{\pm}$ at CMS


- **Dataset**: pp collisions, 77.3 fb⁻¹, at \sqrt{s} = 13 TeV
- **Trigger:** Di-tau triggers ($p_T > 35/40 \text{ GeV}$)

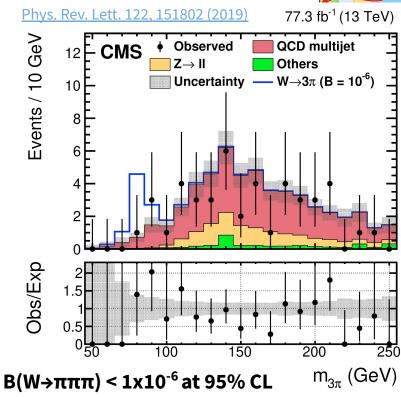
• Offline selection:

- 3 isolated charged pion candidates reconstructed as 1-prong taus (2 matched to trigger object)
- Hadronic tau discrimination algorithms are leveraged
- \circ p_{τ}(W) > 40 GeV

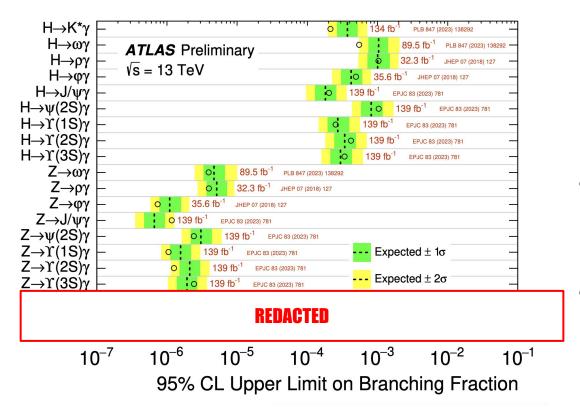
• Background estimation:

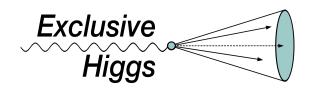
 Template derived using anti-isolated, and p_⊤(W) < 40 GeV data CRs

Search for W[±] $\rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp}$ at CMS


- **Dataset**: pp collisions, 77.3 fb⁻¹, at \sqrt{s} = 13 TeV
- **Trigger:** Di-tau triggers ($p_{\tau} > 35/40 \text{ GeV}$)

• Offline selection:


- 3 isolated charged pion candidates reconstructed as 1-prong taus (2 matched to trigger object)
- Hadronic tau discrimination algorithms are leveraged
- \circ p_{τ}(W) > 40 GeV


• Background estimation:

 Template derived using anti-isolated, and p_⊤(W) < 40 GeV data CRs

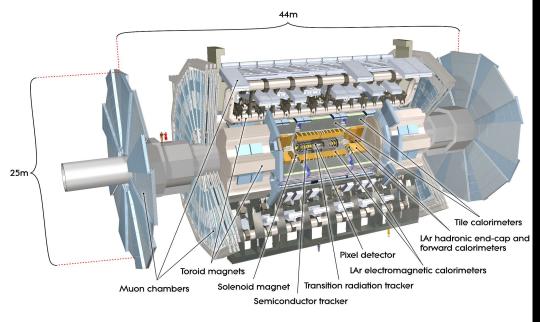
Searches for H/Z→Mγ at ATLAS

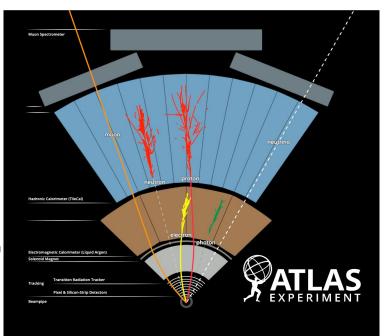
- Several ATLAS publications on exclusive Higgs/Z decays
 - Potential to probes light quark
 Yukawa couplings
- Many of the same techniques are used in the searches being discussed

Searches for W→Mγ decays at ATLAS

W⁺ DECAY MODES

 W^- modes are charge conjugates of the modes below.


	Mode	_		Confidence			
8.	Mode	F	raction (Γ_i/Γ)	Confidence	Dec	ay Channel	SM Branching Fraction
Γ_1	$\ell^+ u$	[a]	$(10.86 \pm \ 0.09) \%$		\overline{W}	$T^{\pm} ightarrow \pi^{\pm} \gamma$	$(4.0 \pm 0.8) \times 10^{-9}$
Γ_2	$e^+ u$		$(10.71 \pm 0.16) \%$		И	$\gamma^\pm o ho^\pm \gamma$	$(8.7 \pm 1.9) \times 10^{-9}$
Γ ₃	$\mu^+ u$		$(10.63 \pm 0.15) \%$		W	$K^{\pm} ightarrow K^{\pm} \gamma$	$(3.3 \pm 0.7) \times 10^{-10}$
Γ_4	$ au^+ u$		$(11.38 \pm 0.21) \%$	•		,	
Γ_5	hadrons		$(67.41 \pm 0.27) \%$			Cooke	has for W± > =±v
Γ_6	$\pi^+\gamma$	<	< 7 × 10	ე—6	95%		hes for W [±] → π [±] γ,
Γ ₇	$D_s^+ \gamma$		< 6.5 x 10 ⁻⁴		95%	-	±γ and W±→ K±γ,
Γ ₈	cX		(33.3 \pm 2.6) %			using A	TLAS Run-2 data
Γ_9	C \overline{s}		$(31 {}^{+13}_{-11}) \%$				
Γ_{10}	invisible	[<i>b</i>]	(1.4 ± 2.9) %				
Γ ₁₁	$\pi^+\pi^+\pi^-$	<	< 1.01 × 10	₀ –6	95%		


Introducing 2 decays to this list!

The ATLAS Experiment (in Run 2)

- Inner Detector: Silicon pixels and strips (SCT) with Transition Radiation Tracker (TRT)
- LAr EM calorimeter: high granularity + longitudinally segmented
- **Two level trigger:** L1 Hardwarwe Trigger (40 MHz → 100 kHz) + HLT Software Trigger (100 kHz → 1 kHz)

Analysis Final States

- $W^{\pm} \rightarrow \pi^{\pm}/K^{\pm} + \gamma$: Isolated high p_{τ} track recoiling against isolated high p_{τ} photon
- $W^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^{\pm} + \pi^{0}) + \gamma$: extra electromagnetic energy deposition coming from π^{0}

Analysis Final States

- $W^{\pm} \rightarrow \pi^{\pm}/K^{\pm} + \gamma$: Isolated high p₊ track recoiling against isolated high p₊ photon
- $W^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^{\pm} + \pi^{0}) + \gamma$: extra electromagnetic energy deposition coming from π^{0}
- Analysis performed through track + photon and the tau+photon final states:
 - Different strategies employed

track + photon

- Sensitive to $W^{\pm} \rightarrow \pi^{\pm}/K^{\pm}/\rho^{\pm} + \gamma$ decays
- No attempt to reconstruct π^0
- **Dedicated triggers**: track ($p_T > 30 \text{ GeV}$) + photon ($p_T > 25 \text{ GeV}$)

tau + photon

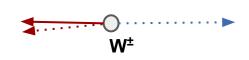
- Sensitive to $W^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^{\pm} \pi^{0}) \gamma$ decay
- ρ-candidate reconstructed as 1-prong τ-lepton
- No dedicated triggers, using **di-photon triggers**

Trigger Strategy

- Dedicated triggers allow us to identify specific event topologies
 - Using modified tau-lepton trigger algorithms
- Collected 137 fb⁻¹ from 2016 to 2018
 - With **58% signal efficiency** wrt offline selection (for $W^{\pm} \rightarrow \pi^{\pm} \gamma$ signal)

Requirements:

- single track (p_⊤ > 30 GeV)
- **single photon** $(p_T > 25/35 \text{ GeV})$
- m(trk+y) > 50 GeV
- $0.4 < E_T/p_T(trk) < 0.85$

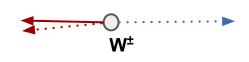

- Dedicated triggers allow us to identify specific event topologies
 - Using modified tau-lepton trigger algorithms
- Collected 137 fb⁻¹ from 2016 to 2018
 - With **58% signal efficiency** wrt offline selection (for $W^{\pm} \rightarrow \pi^{\pm} \gamma$ signal)

Requirements:

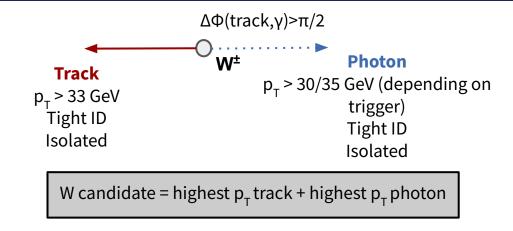
- single track $(p_{\tau} > 30 \text{ GeV})$
- single photon (p_T > 25/35 GeV)
- m(trk+y) > 50 GeV
- $0.4 < E_T/p_T(trk) < 0.85$

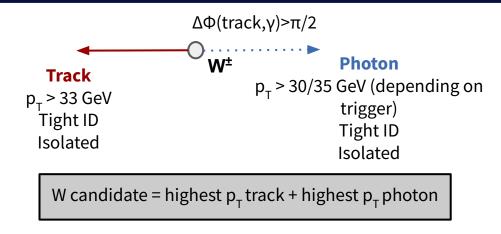
- Lower acceptance for this final state from dedicated W→ πγ triggers:
 - \circ Mostly due to 0.4 < E_T/p_T < 0.85 requirement
- **Diphoton** triggers are used instead
 - taking advantage of π⁰→ γγ decays
 - \circ p_T > 35 GeV, p_T>25 GeV
 - with **43% efficiency** wrt offline SR selection

- Dedicated triggers allow us to identify specific event topologies
 - Using modified tau-lepton trigger algorithms
- Collected 137 fb⁻¹ from 2016 to 2018
 - With 58% signal efficiency wrt offline selection (for W[±]→ π[±]γ signal)

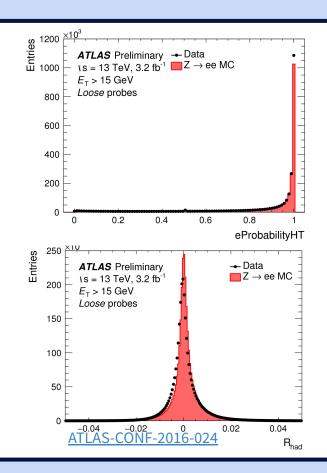

Requirements:

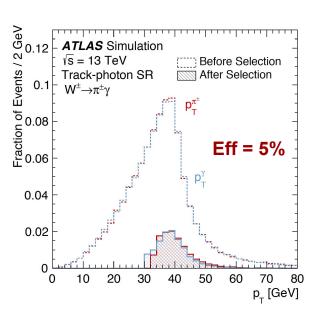
- single track $(p_{\tau} > 30 \text{ GeV})$
- single photon ($p_{\tau} > 25/35 \text{ GeV}$)
- m(trk+y) > 50 GeV
- $0.4 < E_T/p_T(trk) < 0.85$

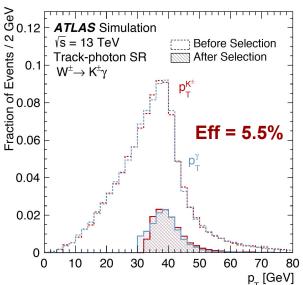

- Lower acceptance for this final state from dedicated W→ πγ triggers:
 - \circ Mostly due to 0.4 < E_T/p_T < 0.85 requirement
- Diphoton triggers are used instead
 - taking advantage of π⁰→ γγ decays
 - \circ p_T > 35 GeV, p_T>25 GeV
 - with **43% efficiency** wrt offline SR selection

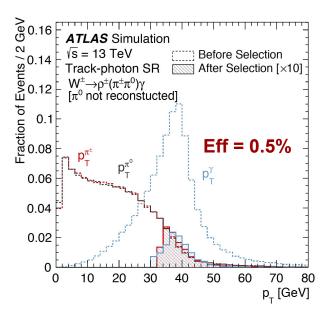

Dedicated triggers and diphoton triggers are orthogonal

Can combine two final states in a simultaneous fit


track + photon




Z → ee rejection


- Resonant background arising from Z → ee events
 - not modelled by inclusive background modelling method - modelled with MC in final fit
- Exploit differences between electrons and charged hadrons:
 - o hadronic leakage and transition radiation
- Reject if Rhad(e) < 0.03 and eProbabilityHT(trk) > 0.1

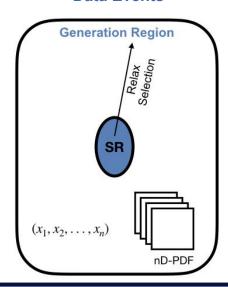
- Signal efficiencies mainly driven by trigger p_⊤ thresholds
- ~10% efficiency difference between $W^{\pm} \rightarrow \pi^{\pm} \gamma$ and $W^{\pm} \rightarrow K^{\pm} \gamma$
 - originating from differences between $E_T/p_T(trk)$ and $Z \rightarrow ee$ rejection variables

- Main background arising from dijet and jet + photon processes
 - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead

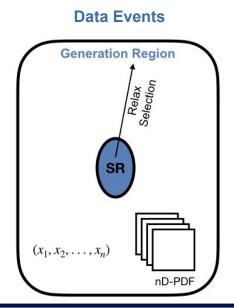
- Main background arising from dijet and jet + photon processes
 - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead

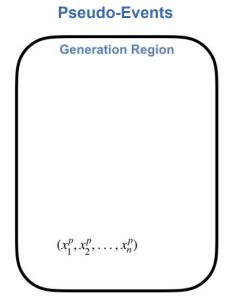
- Main background arising from dijet and jet + photon processes
 - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead
- 1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region)

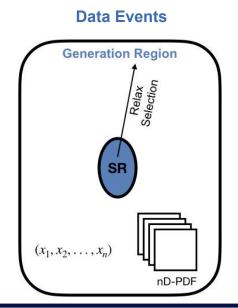
Generation Region Selection SR

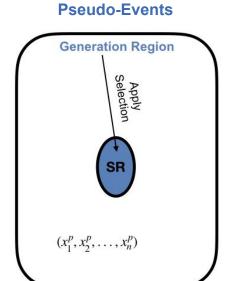

Data Events

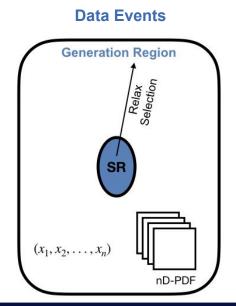
- Main background arising from **dijet** and **jet + photon** processes
 - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead
- 1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region)
- 2. Obtain conditional PDF of relevant **kinematic** and **isolation** variables 1D, 2D, 3D histograms describing most important correlations

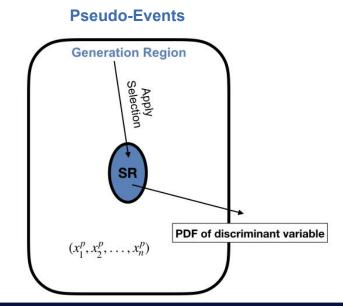

Data Events

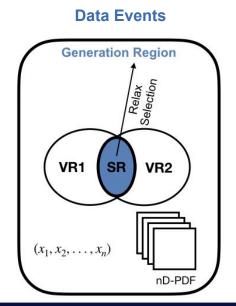


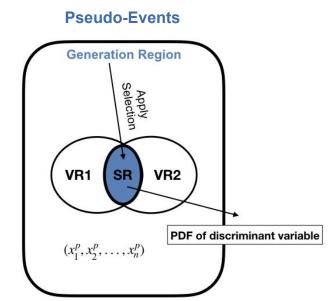

- Main background arising from dijet and jet + photon processes
 - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead
- 1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region)
- 2. Obtain conditional PDF of relevant **kinematic** and **isolation** variables 1D, 2D, 3D histograms describing most important correlations
- 3. Generate sample of pseudo-candidates through **sequential sampling**

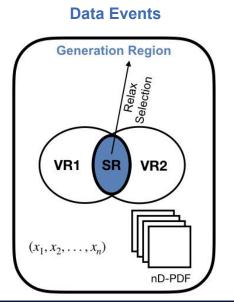


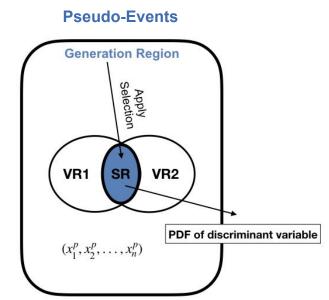

- Main background arising from **dijet** and **jet + photon** processes
 - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead
- 1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region)
- 2. Obtain conditional PDF of relevant **kinematic** and **isolation** variables 1D, 2D, 3D histograms describing most important correlations
- 3. Generate sample of pseudo-candidates through **sequential sampling**
- 4. Apply **Signal Region** requirements to pseudo-candidates sample



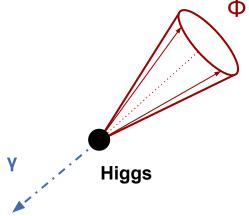

- Main background arising from **dijet** and **jet + photon** processes
 - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead
- 1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region)
- 2. Obtain conditional PDF of relevant **kinematic** and **isolation** variables 1D, 2D, 3D histograms describing most important correlations
- 3. Generate sample of pseudo-candidates through **sequential sampling**
- Apply Signal Region requirements to pseudo-candidates sample - obtain PDF of W invariant mass for statistical analysis




- Main background arising from **dijet** and **jet + photon** processes
 - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead
- 1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region)
- 2. Obtain conditional PDF of relevant **kinematic** and **isolation** variables 1D, 2D, 3D histograms describing most important correlations
- 3. Generate sample of pseudo-candidates through **sequential sampling**
- Apply Signal Region requirements to pseudo-candidates sample - obtain PDF of W invariant mass for statistical analysis
 - Intermediate Validation Regions to check method



- Main background arising from **dijet** and **jet + photon** processes
 - o neither shape or normalisation reliably modelled by MC use **data-driven** method instead
- 1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region)
- 2. Obtain conditional PDF of relevant **kinematic** and **isolation** variables 1D, 2D, 3D histograms describing most important correlations
- Generate sample of pseudo-candidates through sequential sampling
- Apply Signal Region requirements to pseudo-candidates sample - obtain PDF of W invariant mass for statistical analysis
 - Intermediate Validation Regions to check method
- Method described in <u>JHEP10 (2022) 001</u>

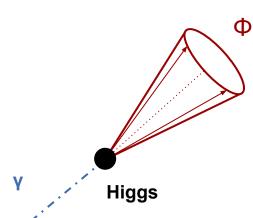


Let's take a H→φ(K⁺K⁻)γ case study

 Similar signature: pair of collimated high-p_T isolated tracks recoiling against isolated photon

- Main background : photon + jet and dijet
- photon + jet MC sample as data

H→φ(K⁺K⁻)γ case study for background model


JHEP10 (2022) 001

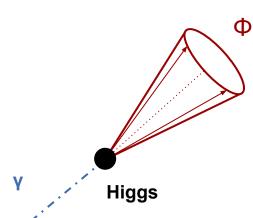
- Let's take a H→φ(K⁺K⁻)γ case study
 - Similar signature: pair of collimated high-p_T isolated tracks recoiling against isolated photon
 - Main background: photon + jet and dijet
 - photon + jet MC sample as data

Which variables do we need to include in the model?

φ and γ 4-momentum vectors to ultimately obtain **m(φγ)** + extra variables which define Signal Region

 $pT(\Phi)$, $pT(\gamma)$, $\Delta\Phi(\Phi,\gamma)$, $\Delta\eta(\Phi,\gamma)$, $Iso(\Phi)$

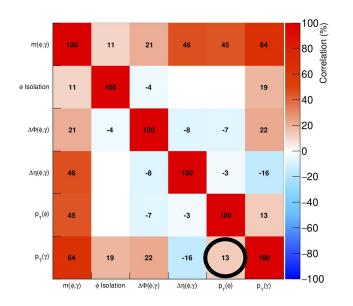
H→φ(K⁺K⁻)γ case study for background model

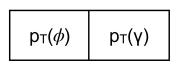

JHEP10 (2022) 001

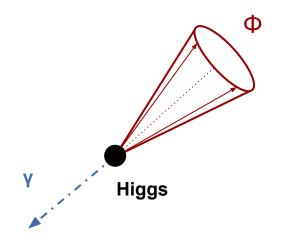
- Let's take a H→φ(K⁺K⁻)γ case study
 - Similar signature: pair of collimated high-p_T isolated tracks recoiling against isolated photon
 - Main background: photon + jet and dijet
 - photon + jet MC sample as data

Which variables do we need to include in the model?

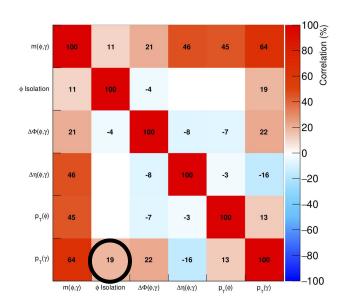
φ and γ 4-momentum vectors to ultimately obtain **m(φγ)** + extra variables which define Signal Region

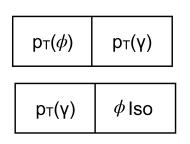

 $pT(\Phi)$, $pT(\gamma)$, $\Delta\Phi(\Phi,\gamma)$, $\Delta\eta(\Phi,\gamma)$, $Iso(\Phi)$

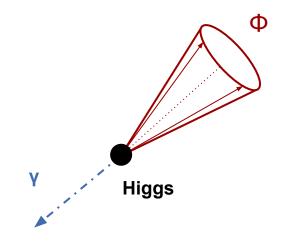



H→φ(K⁺K⁻)γ case study for background model

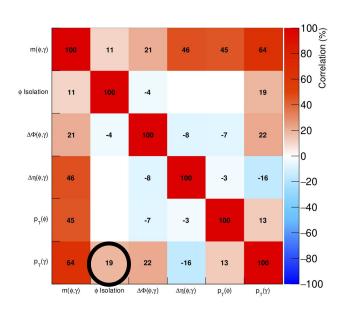
- Build PDFs of relevant variables following most important correlations in Generation Region
 - o 1D, 2D and 3D histograms to be sampled from in generation step

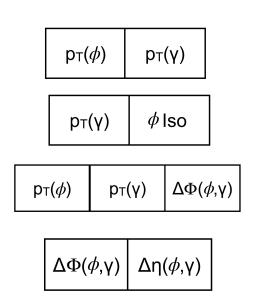


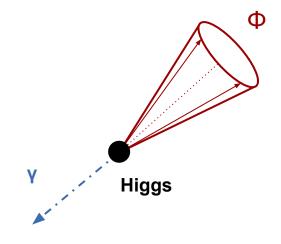



H→φ(K⁺K⁻)γ
case study for background model

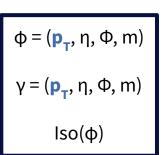
- Build PDFs of relevant variables following most important correlations in Generation Region
 - o 1D, 2D and 3D histograms to be sampled from in generation step

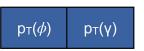




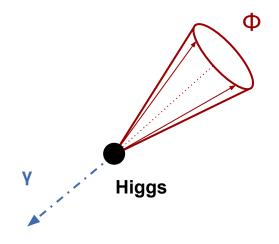

H→φ(K⁺K⁻)γ case study for background model

- Build PDFs of relevant variables following most important correlations in Generation Region
 - o 1D, 2D and 3D histograms to be sampled from in generation step





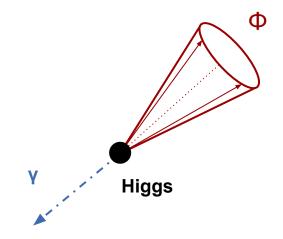
H→φ(K⁺K⁻)γ case study for background model



- Sample from PDFs and construct pseudo-candidates
 - each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an associated Φ isolation variable

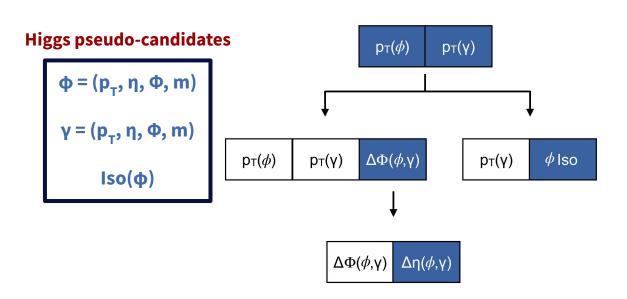
H→φ(K⁺K⁻)γ case study for background model

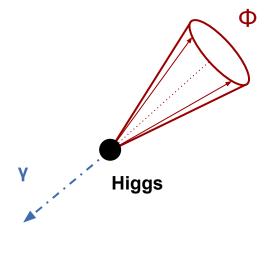
- Sample from PDFs and construct pseudo-candidates
 - each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an associated Φ isolation variable


$$φ = (\mathbf{p_T}, η, Φ, m)$$

$$γ = (\mathbf{p_T}, η, Φ, m)$$

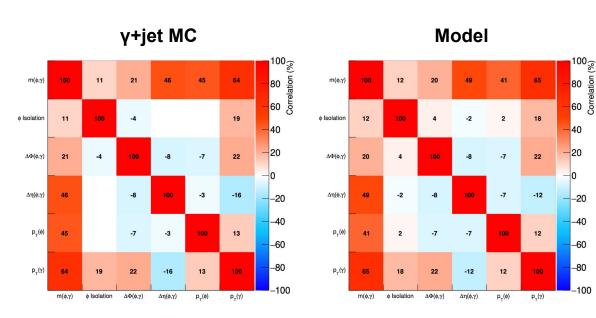
$$Iso(φ)$$

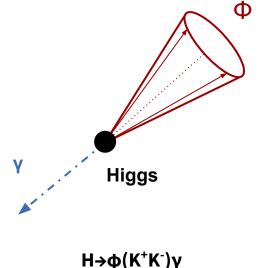




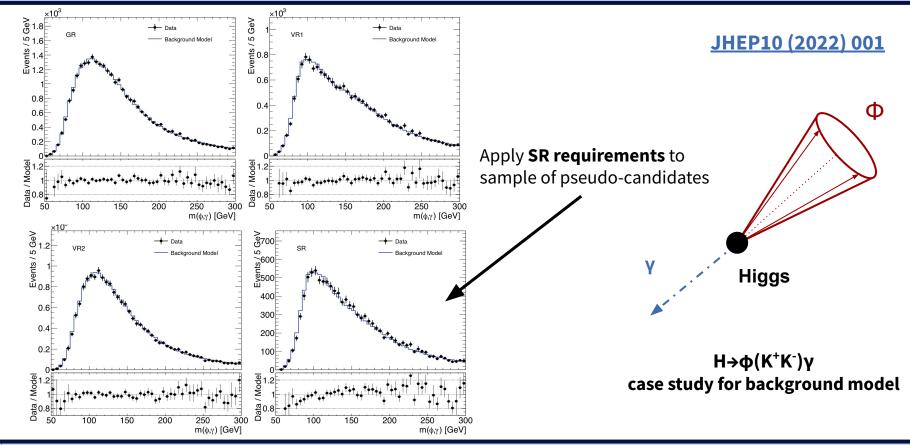
H→φ(K⁺K⁻)γ case study for background model

- **Sample** from PDFs and construct pseudo-candidates
 - each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an associated Φ isolation variable

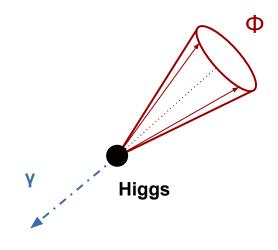




H→Φ(K⁺K⁻)γ case study for background model

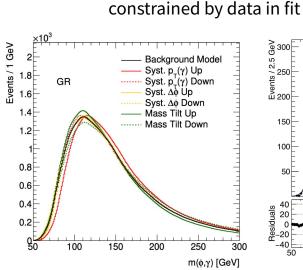

- **Sample** from PDFs and construct pseudo-candidates
 - \circ each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an associated Φ isolation variable

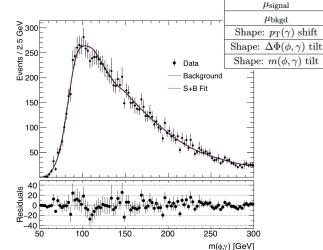
H→φ(K⁺K⁻)γ case study for background model

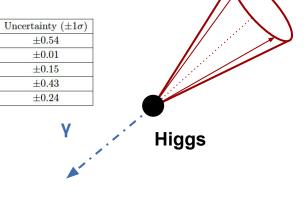


- Systematic uncertainties provided through variations of the nominal PDFs
 - selected to capture different modes of potential deformations of the background shape

H→φ(K⁺K⁻)γ case study for background model




 Systematic uncertainties provided through variations of the nominal PDFs


JHEP10 (2022) 001

 selected to capture different modes of potential deformations of the background shape

o each variation controlled by a nuisance parameter - directly

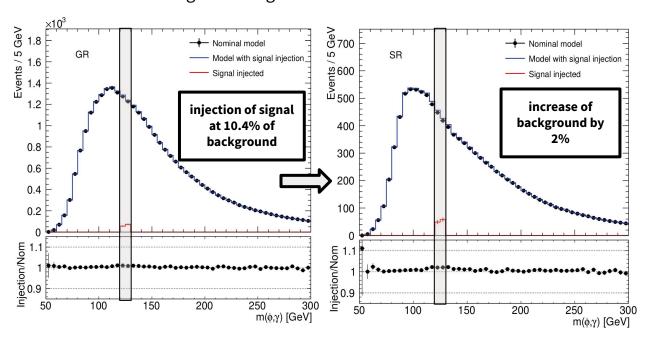
H→φ(K⁺K⁻)γ
case study for background model

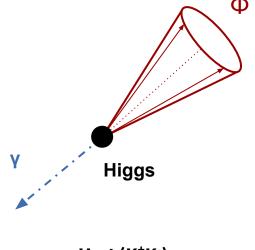
Value

-0.07

1.01

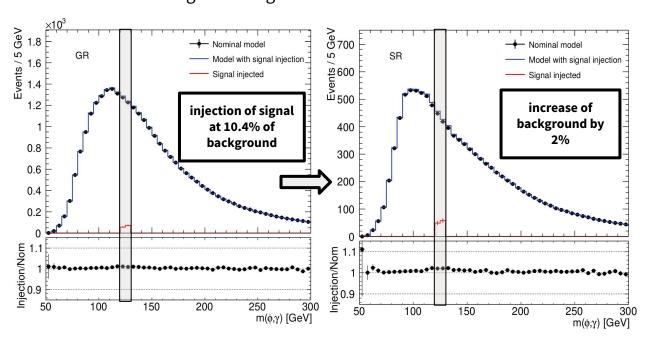
0.26

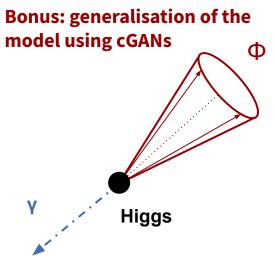

0.30


0.10

Parameter

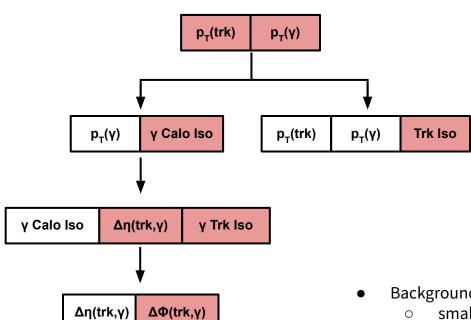
- Model is robust under signal contamination:
 - Features of resonant contributions are diluted in the process of factorising the background PDF





H→φ(K⁺K⁻)γ
case study for background model

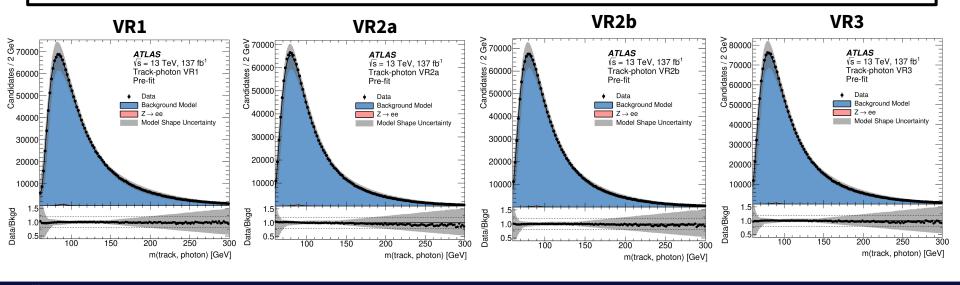
- Model is robust under signal contamination:
 - Features of resonant contributions are diluted in the process of factorising the background PDF



H→φ(K⁺K⁻)γ case study for background model

Sampling sequence for track + photon final state

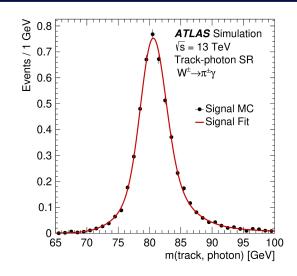
Validation Regions


Region	Selection
VR1	GR + $p_{T}(\pi) > 33 \text{ GeV}$
VR2a	GR + Photon Calo Iso
VR2b	GR + Photon Track Iso
VR3	GR + Track Isolation
SR	GR + all of the above

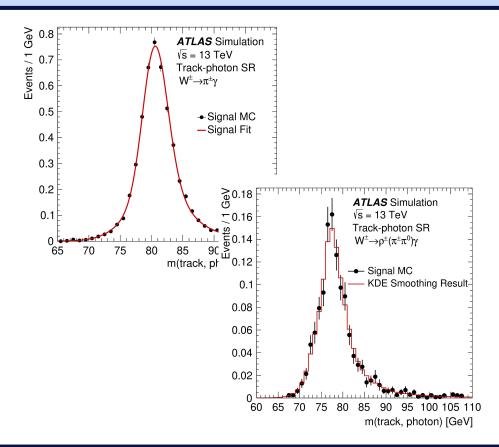
- Background modelling method **does not model resonant processes**:
 - small remaining contribution from Z → ee background modelled through MC

Background Shape Systematics

- Alternative pairs of m(track,γ) shapes are derived and implemented in the fit using **interpolation technique**
 - \circ $p_{\tau}(\gamma)$ shifted
 - o distortions to $\Delta\Phi(trk, \gamma)$
 - linear re-weighting of m(trk, γ)

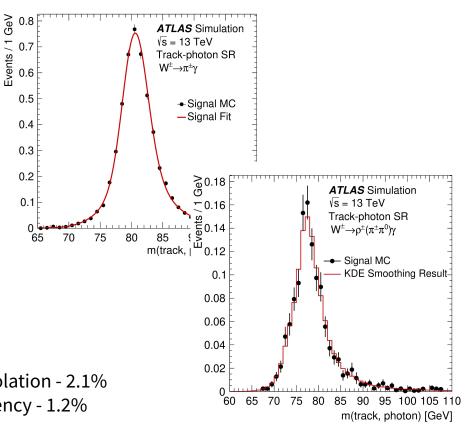


Signal Modelling


- Signals simulated using Powheg + Pythia
 - decays simulated isotropically and re-weighted to theoretical polarisation
- Modelled in fit using:
 - W[±]→ π[±]/K[±] γ: double voigtian x efficiency function (parameters fixed to MC)

Signal Modelling

- Signals simulated using Powheg + Pythia
 - decays simulated isotropically and re-weighted to theoretical polarisation
- Modelled in fit using:
 - W[±]→ π[±]/K[±] γ: double voigtian x efficiency function (parameters fixed to MC)
 - W[±]→ ρ[±]γ: MC distribution smoothed through KDE


Signal Modelling

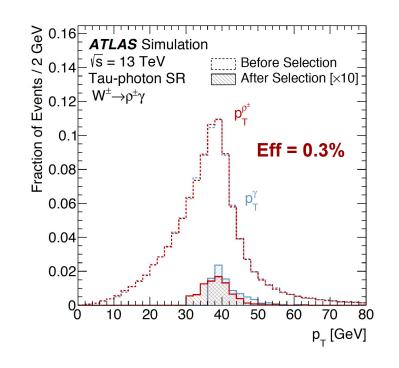
- Signals simulated using Powheg + Pythia
 - decays simulated isotropically and re-weighted to theoretical polarisation
- Modelled in fit using:
 - W[±]→ π[±]/K[±] γ: double voigtian x efficiency function (parameters fixed to MC)
 - W[±]→ ρ[±]γ: MC distribution smoothed through KDE

Signal Uncertainties (1% effect on upper limit)

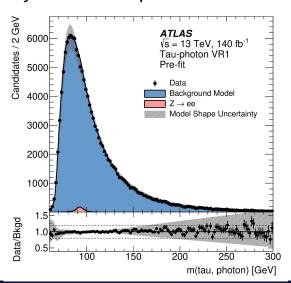
- Theory scale variations 6.2%
- Trigger Efficiency 3.6%
- Cross Section 3.3 %
- Luminosity 0.83%

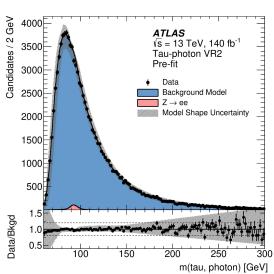
- Pileup 2.2%
- Photon ID & Isolation 2.1%
- Tracking Efficiency 1.2%

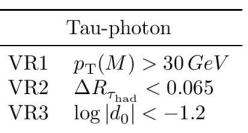
tau + photon

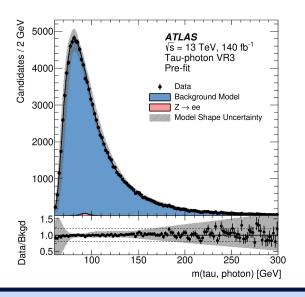


- SR defined by simultaneous cut optimisation on $\mathbf{p}_{\tau}(\tau)$, $\Delta \mathbf{R}_{\tau}^{\text{max}}$ and τ impact parameter \mathbf{d}_{0}
- Signal efficiency is ~½ of track-photon SR, but with higher background rejection

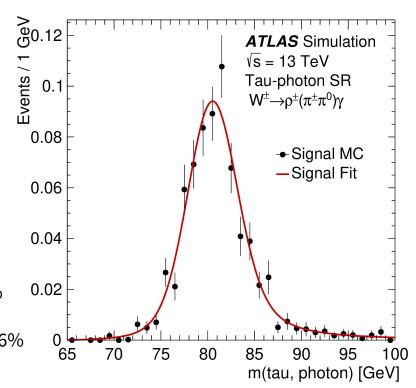

Tau-photon				
VR1	$p_{\mathrm{T}}(M) > 30GeV$			
VR2	$\Delta R_{\tau_{\rm had}} < 0.065$ $\log d_0 < -1.2$			
VR3	$\log d_0 < -1.2$			


ρ meson reconstructed as tau with exactly one associated charged hadron





- Main background arising from dijet and jet + photon processes
- The same non-parametric data-driven background modelling method used
 - \circ γ and τ variables used in the modelling
- Background shape systematics derived and implemented in the same way as for track+photon


Signal Modelling

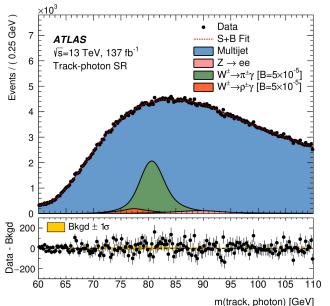
- $W^{\pm} \rightarrow \rho^{\pm} \gamma$ signal simulated using **Powheg + Pythia**
 - decays simulated isotropically and re-weighted to theoretical polarisation
- Modelled in fit using voigtian x efficiency function (parameters fixed to MC)

Signal Systematics (very small effect on upper limit - 1%)

- Theory scale variations 6.5%
- Trigger Efficiency 10 %
- Cross Section 3.3 %
- Luminosity 0.83%
- Pileup 5.5%

- EG Scale 3.0%
- EG Resolution 4.9%
- Photon ID 1.1%
- Photon Isolation 1.6%
- Tau Efficiency 13%

Results

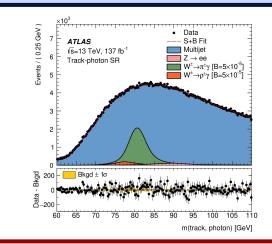


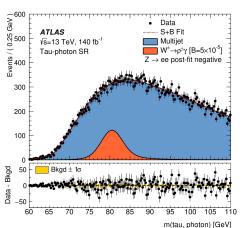
- Maximum Likelihood Fit in track + photon and tau + photon mass
 - single fit in two categories, with correlated μ(W→ ργ)
 - systematic uncertainties are treated in an uncorrelated matter, except x-section and luminosity

systematics

Track+photon

Tau+photon




No significant excess with respect to the background prediction is found in data

Results

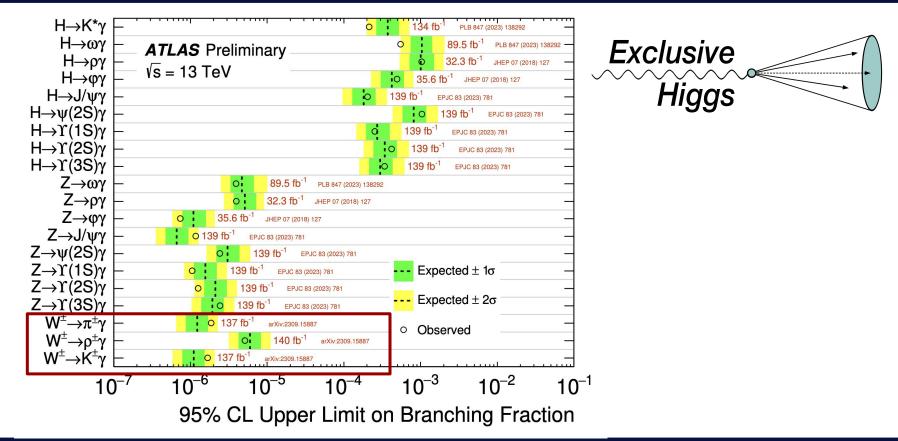
- Asymptotic CL_s with profile likelihood as test statistic
 - Cannot disentangle W→π+γ
 and W→K+γ only one
 considered at a time (other
 signal assumed to be 0)
 - W→π/K+γ and W→ρ+γ have distinct shapes - other signal is profiled
 - B(W→ργ) expected upper limit improves by 7% wrt fit in tau+photon final state
 - 18% improvement observed

	Expected branching fraction $\times 10^{-6}$	Observed branching fraction $\times 10^{-6}$
$W^{\pm} ightarrow \pi^{\pm} \gamma$	$1.2^{+0.5}_{-0.3}$	1.9
$W^{\pm} \to K^{\pm} \gamma$	$1.1^{+0.4}_{-0.3}$	1.7
$W^{\pm} ightarrow ho^{\pm} \gamma$	$6.0^{+2.3}_{-1.7}$	5.2

Results

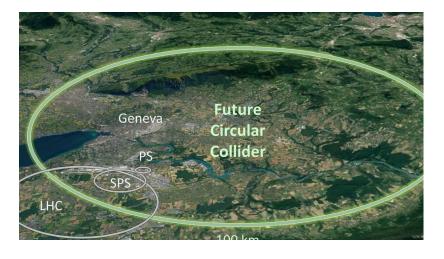
- Asymptotic CL_s with profile likelihood as test statistic
 - Cannot disentangle W→π+γ
 and W→K+γ only one
 considered at a time (other
 signal assumed to be 0)
 - W→π/K+γ and W→ρ+γ have distinct shapes - other signal is profiled
 - B(W→ργ) expected upper limit improves by 7% wrt fit in tau+photon final state
 - **18%** improvement observed

arXiv:2309.15887


-

Search for the exclusive W boson hadronic decays $W^{\pm} \to \pi^{\pm} \gamma$, $W^{\pm} \to K^{\pm} \gamma$ and $W^{\pm} \to \rho^{\pm} \gamma$ with the ATLAS detector

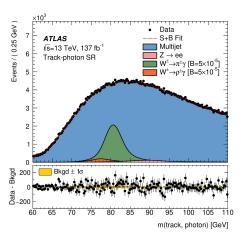
	Expected branching fraction $\times 10^{-6}$	Observed branching fraction $\times 10^{-6}$
$W^{\pm} o \pi^{\pm} \gamma$	$1.2^{+0.5}_{-0.3}$	1.9
$W^{\pm} \to K^{\pm} \gamma$	$1.1^{+0.4}_{-0.3}$	1.7
$W^{\pm} \to \rho^{\pm} \gamma$	$6.0^{+2.3}_{-1.7}$	5.2

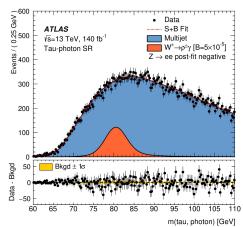

Searches for H/Z→Mγ at ATLAS

What does the future hold?

- 3000 fb⁻¹ HL-LHC:
 - could be just enough to observe W→πππ
 - o would require further analysis improvements to observe W→Mγ
- Future collider facilities currently being designed
 - FCC-ee projected to produce clean sample of O(10⁸) W⁺W⁻ events
 - Enough to observe W→D_sγ and W→πππ according to current expectations
 - FCC-hh projected to deliver O(10¹²) W bosons from inclusive production
 - $O(10^3)$ W $\rightarrow \pi \gamma$ and W $\rightarrow \rho \gamma$

Long road ahead, but these analyses and the developed techniques are fundamental first steps towards observation of these decays


Summary



- To date none of the exclusive hadronic decays of the W boson have been observed
 - Weak or no experimental constraints available
- Searches for these decays enabled by:
 - Dedicated meson + photon triggers
 - Data-driven non-parametric background modelling method
 - "Inverse" analysis techniques:
 - photon trigger for $W^{\pm} \rightarrow \rho^{\pm} \gamma$
 - taus to target ρ[±]→π[±] + π⁰ decay

Best UL on B(W[±] $\rightarrow \pi^{\pm} \gamma$)

First limits on B(W[±] $\rightarrow \rho^{\pm}\gamma$) and B(W[±] \rightarrow K[±] γ)

	Expected branching fraction $\times 10^{-6}$	Observed branching fraction ×10 ⁻⁶
$W^{\pm} o \pi^{\pm} \gamma$	$1.2^{+0.5}_{-0.3}$	1.9
$W^{\pm} \to K^{\pm} \gamma$	$1.1^{+0.4}_{-0.3}$	1.7
$W^\pm o ho^\pm \gamma$	$6.0^{+2.3}_{-1.7}$	5.2

arXiv:2309.15887

THANK YOU FOR LISTENING!

