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Magnetic MomentTorque in B-field
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Muons & magnetic moments
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g determines spin precession 
frequency in a magnetic field

Magnetic MomentTorque in B-field

• For a pure Dirac spin-½ charged 
fermion, g is exactly 2

• Interactions between the muon and 
virtual particles alter the value: X & Y 
particles could be SM or new physics

B



Standard Model components of gμ
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Standard Model components of gμ
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Muon g-2 Theory Initiative
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Hadronic 
Light-by-Light

Dirac 
Equation Electroweak

Hadronic Vacuum 
Polarization

QED

• Consortium of 100+ theorists who compile the 

theoretical inputs and provide recommendations

• Last compilation in 2020:

• SM values taken from the Muon g-2 Theory Initiative

White Paper: Phys. Rept. 887 (2020) 1-166
https://doi.org/10.1016/j.physrep.2020.07.006

https://muon-gm2-theory.illinois.edu/

TI in Bern, September 2023



The muon anomalous magnetic moment
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• Define the quantity aμ : muon 
anomalous magnetic moment

• aμ arises due to higher-order 
interactions / loop 
contributions

• All SM particles contribute

• Calculate & sum all sectors of 
the SM

QED dominates 
the value

Hadronic terms 
dominate the 

uncertainty



Hadronic Vacuum Polarisation (HVP): dispersion relation
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Dispersion Relation
follows from causality

Optical Theorem
follows from unitarity 

of scattering matrix

Cross section data used in TI 2020 𝑎𝜇
𝐻𝑉𝑃 prediction
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• 1/s weight → low energies most important
• 𝜋+𝜋− contributes 73% to LO
• Need to know total hadronic cross-section σhad(s)



Hadronic Vacuum Polarisation (HVP): lattice approach
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• First principle calculation to predict aµ

• Numerical integration on finite space-time 
lattice → very computationally expensive

• Lattice results not included in TI 2020 white paper due to low 
precision

• So far, no other high-precision aµ from different group
• Ongoing cross-checks by many groups at different energies
• Preliminary agreement in ‘intermediate energy window’

First prediction 
with <1% 

uncertainty by 
BMW

Dispersive 
(TI 2020)

Exp. (FNAL 
Run-1)



FNAL Measurement: status in 2021
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• First announcement of the FNAL experiment 

using Run-1 (2018) data in April 2021

• Using the TI(2020) value for the SM 

comparison (data-driven HVP only)



FNAL Measurement: status in 2023
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• In August 2023, FNAL published updated result 

using Run-2 (2019) and Run-3 (2020) data

• >4x higher statistics than the Run-1 result

• Excellent agreement with Run-1 and BNL

• BNL, Run-1 and Run-2/3 statistics dominated

• Assume 100% correlated systematics

• World Average dominated by FNAL 



Comparison with the Standard Model
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• Tension between dispersive and lattice 

approaches to HVP 

• Lattice result needs independent confirmation

• Long-standing tension between experiment 

and dispersive result approaches 5σ

• New cross-section results from CMD-3 

makes the dispersive situation quite puzzling

• Very dynamic situation: huge effort to 

reconcile differences and tensions



The CMD-3 result

11/03/2024 17

Plot by F. IgnatovIn WP2020

2 new HVP LO results 
since WP2020

• SND2k and CMD-3 released 2 new results for 

𝑎𝜇
𝜋+𝜋− since the theory combination in 2020

• Detailed view of 𝑒+𝑒− → 𝜋+𝜋− shows CMD-3 as 
outlier, but it agrees with lattice
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The Fermilab g-2 
Experiment



• Recycler ring: 8 GeV protons

• 1012 protons / bunch ; 10k stored muons 
/ bunch

• 8 GeV protons → pion production target 

• Pions→ delivery ring → decay to μ+ and 
momentum-selected

• 3.09 GeV μ+
→ g-2 storage ring magnet

• Beam arrives in 120 ns wide bunches

• Each bunch corresponds to a “fill” → 1 ms

The FNAL Muon Campus
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The Storage Ring
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B

Cross-section slice of magnet
1.45 T vertical B field in muon region

𝜇+

14m



Injecting and storing the beam
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Beam injected through 
inflector magnet → cancel 

main magnetic field
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Kicker magnet applies fast radial 
magnetic field on first turn

Beam injected through 
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main magnetic field
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Kicker magnet applies fast radial 
magnetic field on first turn

Quads pulse throughout muon fill →
vertical focusing

Beam injected through 
inflector magnet → cancel 

main magnetic field



Injecting and storing the beam
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Kicker magnet applies fast radial 
magnetic field on first turn

Quads pulse throughout muon fill →
vertical focusing

Beam injected through 
inflector magnet → cancel 

main magnetic field

Magnetic field map measured 
every 3 days, changes 

monitored continuously



Injecting and storing the beam
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Straw trackers measure beam 
profile at 180o and 270o

Kicker magnet applies fast radial 
magnetic field on first turn

Quads pulse throughout muon fill →
vertical focusing

Beam injected through 
inflector magnet → cancel 

main magnetic field

Magnetic field map measured 
every 3 days, changes 

monitored continuously



Calorimeter detectors

• Positive muons, 3.09 GeV/c, injected into Storage Ring in 125 ns bunches

• Muons orbit inside storage ring, spin precesses about vertical B field

• Decay to positrons → lower momentum → spiral into centre of storage ring
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𝑒+

𝜇+

Calorimeters

𝜇+

• Each calo is a 6x9 array of PbF2

crystals
• 2.5 cm x 2.5 cm x 14 cm (15X0)

• Readout by SiPMs to 800 MHz 
WFDs (1296 channels in total)



Spin Precession in the Storage Ring
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• Muons orbit the ring with cyclotron frequency ωc

• Spin precesses with frequency ωs

• Both spin and cyclotron frequencies are proportional to B
• Spin rotates ahead of momentum as the muon orbits the ring
• Difference frequency ωa is proportional to aμ and B

Measure

Extract

• If g were exactly 2, ωs = ωc and ωa = 0

149 ns138 ns



Spin Precession in the Storage Ring
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Measure

Extract

• Muons orbit the ring with cyclotron frequency ωc

• Spin precesses with frequency ωs

• Both spin and cyclotron frequencies are proportional to B
• Spin rotates ahead of momentum as the muon orbits the ring
• Difference frequency ωa is proportional to aμ and B

• If g were exactly 2, ωs = ωc and ωa = 0

149 ns138 ns



Measuring ωa
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• Highest energy e+ preferentially emitted in direction of 
muon spin

• Oscillation in number of emitted decay e+ vs time 
directly proportional to decay asymmetry

• Count N(t) = number of e+ above an energy threshold 
over time. 

• Higher fraction detected above threshold when e+ 

emitted parallel to muon spin

• N(t) depends on anomalous precession frequency ωa

Frequency of oscillation = ωa



Measuring muon spin precession

• Number of high energy positrons oscillates as a function of time as muon spin points 
towards/away from detector

• Count positrons above an energy threshold

• Counts oscillate at frequency ωa → extract from time spectrum

3011/03/2024

Threshold Energy

Time SpectrumEnergy Spectrum
Real Data 

(Run-3a)



Extracting ωa: 5-parameter fit function

31

𝑁 𝑡 = 𝑁0𝑒
−𝑡/𝜏[1 − 𝐴 cos(𝜔𝑎𝑡 + 𝜙) ]

Time-dilated 
muon lifetime

Asymmetry

Precession 
frequency

Average spin 
phase at injection

Number of e+ 

vs time

Five-parameter fit function

11/03/2024
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Calorimeter PerformanceFitting the wiggle

• Simplest 5-parameter fit function captures 
exponential decay and the g-2 oscillation only

• Not sufficient → large spikes in residuals FFT

• Need to measure and account for additional 
terms in the fit

𝜒2/ndf = 51530/4150
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Calorimeter PerformanceTracking detectors: measuring the muon beam 

› Straw trackers: two stations located at 180⁰ and 270⁰

› One station = 8 modules

› One module = 128 Argon-Ethane gas-filled straws

› Fit tracks and extrapolate to muon decay point

Tracker Module

10 cm
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Calorimeter PerformanceTracker measurement of the muon beam

• The mean and width of the muon beam distribution varies as a function of time 

• Average radial and vertical position vary around the ring →measure at two locations

• Frequency of beam oscillations must be measured → affects ωa measurement
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Calorimeter PerformanceFitting the wiggle

• Accounting fully for all the beam oscillations shifts 
ωa by 1.6 ppm

• Final fit function has 27 fit parameters

• 8 different analysis teams, 19 separate analyses

𝜒2/ndf = 4086/4138

Run 3a

Simple Fit Function
Full Fit Function
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Extracting aμ



Relativistic expression for ωa
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Non-relativistic 
limit

Motion non-
perpendicular to B-field

Cyclotron motion 
assumes motion 

perpendicular to B-field

Relativistic motional magnetic field

Proportional to electric field

Disappears for “magic” γ = 29.3 
→magic momentum 3.09 GeV / c

Not all muons are at the ‘magic’ momentum of 3.1 GeV 

Vertical momentum component aligned with B field 

E-field 
correction

Pitch 
correction



“Never measure anything but frequency…”
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Phys. Rev. A 83, 052122 (2011)

Metrologia 13, 179 (1977)

Rev. Mod. Phys. 88 035009 (2016)

Phys. Rev. Lett. 82, 711 (1999)

• We measure the ratio of two frequencies: ωa and ωp

• ωa : anomalous spin precession frequency

• ωp : muon-weighted magnetic field expressed in terms of 
Larmor frequency of free proton



“… and corrections”
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Clock blinding 
frequency

Anomalous 
precession 
frequency

Beam dynamics 
corrections

Transient 
magnetic field 

corrections

Muon beam 
distribution

Magnetic field 
map

Absolute 
calibration 
frequency



“… and corrections”
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Transient 
magnetic field 

corrections

Muon beam 
distribution

Magnetic field 
map

Absolute 
calibration 
frequency
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Measuring the 
magnetic field



• Dipole field has ppm-level uniformity (<20 ppm RMS 
across the full azimuth)

• Shimming devices (active and passive) minimise 
gradients and keep field uniform

B

The g–2 Storage Ring magnet

11/03/2024 42

Field in muon storage region

Weight measured field by the 
muon beam distribution



Measuring the magnetic field
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• Trolley containing 17 NMR probes maps full azimuth 
every few days (muons not present)

• 378 fixed probes monitor between trolley runs 
(during muon data collection)

• Field map is interpolated between trolley runs using 
fixed probe information

• Fold with muon beam distribution

Sequence 2D field slices as 
trolley movesNMR 

probe



• Trolley and fixed NMR probes use petroleum jelly as the proton sample – low volatility
• Need to measure protons in H20 (measurement standard) → calibration
• Trolley and cylindrical H20 calibration probe switch places to repeatedly measure the same field 

in the same place. Calibration performed ~once per year.

Absolute Calibration
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Cylindrical H20 probe

Trolley probes

Uncertainty
17 ppb 

Calibration region

Spherical H20 Spherical 3He

Cross-check with spherical probes
Uncertainty: 9 ppb

Liv.INNO Seminar



Grey regions = 
muon storage 

times

Transient fields from pulsed systems: Quads
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Locations mapped in Run-1

Q1 Q2 Q4Q3

• Electrostatic quadrupoles pulse during muon storage 
• No pulsing during trolley runs
• Quad plates vibrate → induces a field
• Muons experience a field change which the fixed 

probes do not see (shielded by Al)
• Must be measured using dedicated apparatus



Transient fields from pulsed systems: Quads
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Locations mapped in Run-1Locations mapped in Run-2 Run-1: -17 (90) ppb
Run-2/3: -21 (20) ppb

• Electrostatic quadrupoles pulse during muon storage 
• No pulsing during trolley runs
• Quad plates vibrate → induces a field
• Muons experience a field change which the fixed 

probes do not see (shielded by Al)
• Must be measured using dedicated apparatus

Q1 Q2 Q4Q3

Grey regions = 
muon storage 

times



• Kicker pulse of 22 mT for 150 ns just after muon injection

• Field change caused by residual field (eddy currents) after kicker pulse

• Muons present from 30μs to 700μs after the kick (fit region)

• Measure eddy current using Faraday magnetometer

• Run-2/3: improved hardware setup reduced vibrations

Transient fields from pulsed systems: Kicker
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Correction
Run-1: -27 (37) ppb

Run-2/3: -21 (13) ppb

Liv.INNO Seminar



• Main reduction in uncertainty comes 
from better understanding of transient 
field effects

• Interpolation uncertainty has also 
reduced with number of trolley runs

• Uncertainty already at TDR goal

Magnetic field systematics in Run-2/3
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Improvements 
between Run-1 and 

Run-2/3



Damaged resistors
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• In Run-1, 2 out of 32 resistors damaged in quad plates 
→ unstable beam storage

• Redesigned and replaced before Run-2
• Reduces phase acceptance (Cpa) uncertainties 75ppb → 13 ppb
• Beam oscillation frequencies also become more stable

ωa phase changeVertical beam 
width change



Kicker strength upgrade
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Fractional Momentum Shift: dp/p0 [%]

Run 1 beam

Late Run 3 beam

• Upgraded kicker cables while Run-3 
so kicker can run at nominal strength

• Muon distribution more centered
• All systematics related to 

asymmetric beam shape reduced

• Muon momentum distribution better 
centered on magic momentum 
• E field correction reduced 

• Phase space matching improved
• Smaller beam oscillations



Statistical improvement: Run-2/3 vs Run-1
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Dataset Statistical Error [ppb]

Run-1 434

Run-2/3 201

Run-1 + Run-2/3 185



Total uncertainty
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Total uncertainty: 462 ppb 

434 ppb

Total uncertainty: 215 ppb 

Run-2/3

201 ppb

Run-1

70 ppb

157 ppb

Radius: uncertainty
Area: variance 

• Uncertainty reduced 
by factor >2

• Statistic and systematic 
uncertainty reduced by 
similar amount

• Systematic uncertainty 
below TDR goal

• Still statistics dominated



Unblinded result & cross-checks

5411/03/2024

aμ(Run-1) = 0.00 116 592 040(54) [463 ppb]
aμ(Run-2/3) = 0.00 116 592 057(25) [215 ppb]
aμ(FNAL) = 0.00 116 592 055(24) [203 ppb]
aμ(Exp) = 0.00 116 592 059(22) [190 ppb]

• Different runs performed at different magnet set-
points – a useful consistency check

• Also divide datasets by other variables to check 
consistency (e.g. day/night, temperature, etc)



Beyond Run-2/3 : Total statistics
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MAY 2018 JULY 2023

x3 Run-1/2/3
statistics

Surpassed proposal goal!



Conclusions
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• High precision measurements of Muon g-2 stringent 
test on SM theory

• Run-2/3 data consistent with Run-1 and BNL

• Factor >2 in statistical and systematic uncertainty

• Surpassed TDR goals in statistics and systematics

• First time a three-way comparison of aµ  is possible 
(dispersive-approach, lattice approach, experiment)

• Another reduction by factor of 2 in statistical 
uncertainty from Run-4/5/6

• Expect final result in 2025
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Thank you!
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