

High Intensity Kaon Experiments at CERN SPS

Angela Romano, University of Birmingham

High Intensity Kaon Experiments (HIKE):

- Physics goals and sensitivity
- Experimental layouts (Phase1, Phase2, Dump)
- Detector technologies and R&D

HIKE Phase 1 & 2 proposal: 195 collaborators, 42 institutions [CERN-SPSC-2023-031; SPSC-P-368]

Ancona, Birmingham, Bratislava, Bristol, Bucharest, Cagliari, CERN, Como, Edinburgh, Fairfax, Ferrara, Florence, Frascati, Glasgow, Groningen, Kazakhstan, Lancaster, Lausanne, Liverpool, Louvain-la-Neuve, Lyon, Mainz, Manchester, Marseille, Milano, München, Naples, Oxford, Padova, Perugia, Pisa, Prague, Rome I, Rome II, San Luis Potosi, Santiago de Compostela, Syracuse, Sussex, TRIUMF, Turin, Vancouver (UBC), Warwick.

A history of Kaons at the CERN SPS

Kaons have been fundamental to the development of the Standard Model flavour sector

Fixed-target Kaon experiments at the CERN SPS

NA31	1982-1993:	First-generation experiment to measure Re ε'/ε
	2000-2002:	Next generation measurement of Re ε'/ε Rare K_S decays, e.g., $K_S \to \pi^0 \ell^+ \ell^-$ Direct CPV in $K^\pm \to \pi^+ \pi^- \pi^\pm$
NA62	2005-2015: 2016-2018:	$R_K = \Gamma(K \to e \nu)/\Gamma(K \to \mu \nu)$ with NA48 detector Design, construction, installation, commissioning $\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu}) = \left. (10^{+4.0}_{-3.4} \right _{stat} \pm 0.9_{syst}) \times 10^{-11}$ Aim at 15% precision on $\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})$

More than 40 years of precision measurements and discoveries shaping the SM

A history of Kaons at the CERN SPS

Kaons have been fundamental to the development of the Standard Model flavour sector

NA62

Present: NA62 beam line & detector in ECN3

North Area of Super Proton Synchroton (SPS)

Fixed-target Kaon experiments at the CERN SPS

NA31 1982-1993: First-generation experiment to measure Re ε'/ε

NA48 1992-2000: Next generation measurement of Re ε'/ε

NA48/1 2000-2002: Rare K_S decays, e.g., $K_S \to \pi^0 \ell^+ \ell^-$

NA48/2 2003-2007: Direct CPV in $K^{\pm} \to \pi^{+}\pi^{-}\pi^{\pm}$

2007-2008: $R_K = \Gamma(K \to ev)/\Gamma(K \to \mu v)$ with NA48 detector

2005-2015: Design, construction, installation, commissioning

2016-2018: BR $(K^+ \to \pi^+ \nu \bar{\nu}) = (10^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst}) \times 10^{-11}$

2021-LS3: Aim at 15% precision on BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$)

More than 40 years of precision measurements and discoveries shaping the SM

HIKE: a multi-purpose physics approach

HIKE is a timely, broad and long-term Particle Physics programme at the intensity frontier

HIKE will profit from a beam intensity increase by 4x wrt nominal intensity in NA62 (ECN3 upgrade)

HIKE project: high-intensity beams and kaon decay measurements at a new level of precision

https:/science.osti.gov/hep/About/Vision-for-HEP

Rare Kaon Decays

Decay	Γ_{SD}/Γ	Theory Error*	SM BR x10 ¹¹	EXP BR x 10 ¹¹	EXPERIMENT	YEAR
$K_L \rightarrow \pi^0 \nu \bar{\nu}$	>99%	2%	3.4 ± 0.6	< 200	POTO	2023
$K^+ \rightarrow \pi^+ \nu \bar{\nu}$	90%	4%	8.4 ± 1.0	$10.6^{+4.0}_{-3.6} \pm 0.9$	NA62 🐧	2021
$K_L \rightarrow \pi^0 e^+ e^-$	40%	10%	3.2 ± 1.0	<28	KTeV	2004
$K_L \rightarrow \pi^0 \mu^+ \mu^-$	30%	15%	1.5 ± 0.3	<38	KTeV	2000
$K_L \rightarrow \mu^+\mu^-$	10%	30%	79 ± 12 (SD)	684 ± 11	BNL-871	2000

(*) approximate error on LD-subtracted rate excluding parametric contributions

- > FCNC processes dominated
- by short-distance amplitude
- SM rates related to V_{CKM},
- with minimal non-parametric theory uncertainty
- BRs overconstrain CKM matrix

- FCNC processes forbidden at tree level: 1-loop contributions as leading order
- > Highest CKM suppression (BR $\sim |V_{ts}*V_{td}|^2 \sim \lambda^{10}$)
- High sensitivity to New Physics

Rare Kaon Decays

	Decay	Γ_{SD}/Γ	Theory Error*	SM BR x10 ¹¹	EXP BR x 10 ¹¹	EXPERIMENT	YEAR
	$K_L \rightarrow \pi^0 \nu \bar{\nu}$	>99%	2%	3.4 ± 0.6	< 200	OTO	2023
	$K^+ \rightarrow \pi^+ \nu \bar{\nu}$	90%	4%	8.4 ± 1.0	$10.6^{+4.0}_{-3.6} \pm 0.9$	NA62	2021
Phase?	$K_L \rightarrow \pi^0 e^+ e^ K_L \rightarrow \pi^0 \mu^+ \mu^-$	40%	10%	3.2 ± 1.0	<28	KTeV	2004
riiasez	$K_L o \pi^0 \mu^+ \mu^-$	30%	15%	1.5 ± 0.3	<38	KTeV	2000
	$K_L \rightarrow \mu^+\mu^-$	10%	30%	$79 \pm 12 (SD)$	684 ± 11	BNL-871	2000

(*) approximate error on LD-subtracted rate excluding parametric contributions

Principal HIKE Physics goals:

Phase 1:

ightharpoonup Measure BR($K^+ \to \pi^+ \nu \bar{\nu}$) at 5% precision

Phase 2:

ightharpoonup Measure BR($K_L \to \pi^0 l^+ l^-$) at 20% precision

$K \to \pi \nu \bar{\nu}$: New Physics Scenarios

Indirect searches of New Physics with high precision studies of rare K decays

Measurement of $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$ modes can **discriminate among NP scenarios**

Correlations significantly change for different classes of NP models [EPJ C76 (2016) no.4 182]

$K^+ \to \pi^+ \nu \bar{\nu}$ at HIKE: physics reach

Measure BR($K^+ \to \pi^+ \nu \bar{\nu}$): stringent precision test of the Standard Model Model-independent standard candle constraining many BSM scenarios, present or future

From NA62 to HIKE (Phase 1): Precision on BR($K^+ \to \pi^+ \nu \bar{\nu}$) improved by a factor of 3

$K^+ \to \pi^+ \nu \bar{\nu}$ at HIKE: experimental strategy

The NA62 kaon decay-in-flight technique is well established!

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ signature:

Kaon track + Pion track + nothing else

Main kaon decay backgrounds

Process	Branching ratio
$K^+ o \mu^+ \nu_\mu(\gamma)$	63.5%
$K^+ \to \pi^+ \pi^0 (\gamma)$	20.7%

NA62/HIKE-Phase1 keystones:

- precise tracking
- \triangleright PID (in particular π/μ)
- photon veto
- precise timing

Background rejection at $\sim 10^{11}$ level: **Kinematics** (m²_{miss}), **PID**, **Hermetic Veto**

 $m_{\text{miss}}^2 = (P_K - P_\pi)^2$; m_π mass hypothesis

HIKE-Phase1 Experimental Layout

HIKE-Phase1 detector optimized for the measurement of BR($K^+ \to \pi^+ \nu \overline{\nu}$) at 5% precision

Max possible beam intensity in HIKE-Phase1 (after major beamline upgrades):

 $1.2 \times 10^{13} \text{ POT}$ / spill = 4x NA62 max beam intensity

Statistical power: 2×10^{13} Kaon decays in decay volume per year (7×10^{18} POT / year)

NA62-like design of experiment will work at high intensity

HIKE-Phase1 Experimental Layout

HIKE-Phase1 improvements wrt NA62:

- improved timing and double pulse resolution are crucial elements to withstand the beam intensity increase
- equal or better key performance at high-rate to achieve background rejection at $\sim 10^{11}$ level
- up to x2 increase in signal acceptance (improved detector performance, software trigger)
- improved suppression of background from upstream K+ decays

Challenges: 20-40 ps time resolution for key detectors, while maintaining all other NA62 specs Technology challenges aligned with HL-LHC projects and future flavour/dark matter experiments

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ at HIKE: K/ π ID

RICH PID for π with 15 .

RICH granularity increased

- + better photodetectors (x2 Quantum Efficiency, time resolution: 300→100ps)
- → Improved photon yield and time resolution

K-π matching: x4 better timing,x3 smaller pixel size in beam tracker,40% lower material budget in STRAW

HIKE:

- π ID efficiency: > 10% higher than NA62, keeping same μ/π misID probability.
- K- π efficiency: ~ 10% higher than NA62. K- π misID probability ~2%, similar to NA62.

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ at HIKE: Kinematics

NA62 MC extensively validated with data.

Main kaon decay modes enter the signal regions via resolution tails in the reconstructed value of m²_{miss}

- Signal regions determined by resolution
- Slightly better m²_{miss} resolution at HIKE wrt NA62 (40% less material budget in STRAW spectrometer)
- Missing mass with RICH much improved

HIKE signal regions can be optimised: signal acceptance 10% higher than NA62, keeping same level of kinematic rejection

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ at HIKE: K/π ID

ity dependence: $\chi_{0.25}^{0.25}$ at HIKE Recovery of K- π associated

Signal intensity dependence:

Dead-time-equivalent paralyzable model accounting for intensity dependence of the trigger, DAQ, and all selection criteria (except Random Veto)

Polynomial description of the random veto efficiency

Recovery of LTU dead-time, $K-\pi$ association, improved RICH, better kinematic resolution

Improved timing, software trigger and new DAO

Background from K decays to remain the same fraction of signal

Improved coverage and design of upstream background veto → Upstream background reduced to same level as K background

Maintain or improve the same random-veto efficiency

→ time resolution for veto detectors improved by at least x4

Number of spills	2.4×10^{6}
Protons on target	2.4×10^6 3.2×10^{19}
K^+ decays in FV	8.0×10^{13}
Expected SM $K^+ \to \pi^+ \nu \bar{\nu}$	480
Background from K^+ decays	115
Upstream/accidental background	85-240
Expected statistical precision $\sigma(\mathcal{B})/\mathcal{B}$	5.4%-6.1%

With background contamination and systematic uncertainty under control, measurement of BR(K⁺ $\rightarrow \pi^+ v \bar{v}$) at O(5%) precision in 4 years of data-taking

Feebly-Interacting Particles (FIPs) at HIKE

HIKE fixed-target configuration, long decay volume: suitable to **search for FIPs, in kaon and beam-dump.** Exploring regions below 1 GeV, with unprecedented sensitivity. Detector low rate allows for high beam intensity.

Search for FIP production in **kaon mode**: $K^+ \rightarrow l^+N$, $K^+ \rightarrow \pi^+X$, ...

Dump mode: most sensitive to forward processes, complementary to off-axis experiment SHADOWS. An ad-hoc setting of the dipoles allows a substantial reduction of the rate of muons emitted by pion decays in the proton-induced hadronic showers in the TAX.

Expected background in HIKE-dump (5×10¹⁹ POT)

based on extrapolation from 1.4×10^{17} POT collected by NA62 in 2021 in beam-dump mode

Final state	Expected background
$\mu^+\mu^-$	< 0.02
e^+e^-	< 0.9
$\pi^+\pi^-(\gamma)$	< 0.09
$\mu^{\pm}\pi^{\mp}, e^{\pm}\pi^{\mp}$	< 0.1
$\gamma\gamma$	work in progress

HIKE-Dump Experimental Layout

- Target can be moved out of beam
- Proton beam impinges on TAXes, which act as a beam "dump"
- New TAX complex to withstand much higher proton intensity and comply with modern radiation facility standards
- Additional heavy shielding around TAX due to higher radiation (under study within the NA consolidation project)
- Production of HNL, DP, DS and ALP from charm, beauty and γ produced in proton interaction with the dump

HIKE Phase 1: FIPs Sensitivity

Assume 5 x 10¹⁹ POT taken in 4 years concurrently with SHADOWS operation

HIKE sensitive to Physics Beyond Collider benchmark scenarios.

PBC BC classification from arXiv:1901.09966

Vooton	Dontol
vector	Portai

- 9.1.1 Minimal Dark Photon model (BC1)
- 9.1.2 Dark Photon decaying to invisible final states (BC2)
- 9.1.3 Milli-charged particles (BC3)

Scalar Portal

- 9.2.1 Dark scalar mixing with the Higgs (BC4 and BC5)
- Neutrino Portal
- 9.3.1 Neutrino portal with electron-flavor dominance (BC6)
- 9.3.2 Neutrino portal with muon-flavor dominance (BC7)
- 9.3.3 Neutrino portal with tau-flavor dominance (BC8)

Axion Portal

- 9.4.1 Axion portal with photon-coupling (BC9)
- 0.4.2 Axion portal with fermion-coupling (BC10)
- 9.4.3 Axion portal with gluon-coupling (BC11)

HIKE-Phase2 Experimental Layout

HIKE-Phase2 detector optimized for the measurement of BR($K_L o \pi^0 l^+ l^-$) at 20% precision

Max possible intensity in HIKE-Phase2 (upgraded NA48 neutral beamline): 2×10^{13} POT / spill Statistical power: 3.8×10^{13} Kaon decays in decay volume per year (1.2×10^{19} POT / year)

NA48 neutral beam-like design of experiment will work at high intensity

HIKE-Phase2 Experimental Layout

A 120 m long neutral (NA48-like) beam line:

- Secondary beam opening angle = 0.4 mrad; 2.4 mrad production angle
- \triangleright Mean momentum of decaying K_L mesons = 46 GeV/c

Reconfigured HIKE-Phase1 detector:

- Kaon tagger, beam spectrometer, RICH removed
- STRAW spectrometer shortened and chambers realigned Hadronic Main Calorimeter Electromagnetic **TAXes** Defining Muon Veto Calorimeter Cleaning (FIRST Collimator **Large Angle Vetos** Collimator Detector Collimator (MEC) & Beam Dump) Collimator Vacuum **Target Tank** ANTI-0 Horizontal Bend Intermediate Ring Downstream Spectrometer Timing Electromagnetic Calorimeter ~90 m Magnets with STRAW Trackers **Fiducial Volume** Detector 0 5 10 50 100 150 200 250 Z [m]

Challenges: 90m long instrumented decay volume, 100ps time resolution for π^0 of few GeV energies R&Ds on Calorimetry (innovative scintillator materials, longitudinal segmentation techniques, oriented crystals)

HIKE Phase-2: Signal & Background

m_{yyuu} [MeV/c²]

Main background: $K_L \rightarrow \gamma \gamma l^+ l^-$ [Greenlee, PDR42(1990)]

Mode	Phase space region	Branching ratio
$K_L \rightarrow \gamma \gamma e^+ e^-$	$x = (m_{ee}/m_K)^2 > 0.05,$	$(1.55 \pm 0.05) \times 10^{-7}$
	$x_{\gamma} = (m_{\gamma\gamma}/m_K)^2 > 0.01$	
$K_L \rightarrow \gamma \gamma \mu^+ \mu^-$	$x_{\gamma} = (m_{\gamma\gamma}/m_K)^2 > 0.01$	$(1.49 \pm 0.28) \times 10^{-9}$

 $K_L \to \pi^+ \pi^- \pi^0$ decay with π^{\pm} decaying in flight is sub-dominant

Suppression of the $K_L \rightarrow \gamma \gamma l^+ l^-$ background: rely on excellent photon energy resolution provided by the HIKE EM calorimeter.

m_{γγμμ} [MeV/c²]

HIKE Phase-2: Background Estimate

The kinematic selection is based on two reconstructed variables:

$$\Rightarrow y_{\gamma} = \frac{2P \cdot (k_1 - k_2)}{m_K^2 \cdot \lambda^{1/2}(1, x, x_{\gamma})}$$

P = kaon four-momentum $x = (m_{ee}/m_K)^2$ k = photon four-momenta $x_{\gamma} = (m_{\gamma\gamma}/m_K)^2$

$$\lambda(a, b, c) = a^2 + b^2 + c^2 - 2(ab + bc + ac)$$

 $\rightarrow \theta_{l\gamma}^{min}$ = smallest angle between any of the photons and any of the leptons in the kaon frame

HIKE Phase-2: Physics Sensitivity

Expected SM signal and background events collected in 5 years of HIKE operation:

Number of spills		3	$\times 10^6$		
Protons on target		6	$\times 10^{19}$		
K_L decays in FV		1.9	9×10^{14}		
Mode	N_S	N_B	$N_S/\sqrt{N_S+N_B}$	$\delta \mathcal{B}/\mathcal{B}$	
$K_L \rightarrow \pi^0 e^+ e^-$	70	83	5.7	18%	
$K_L o \pi^0 \mu^+ \mu^-$	100	53	8.1	12%	

HIKE will make the first observation at >5σ significance and measurement of both ultra-rare decay modes

$$\mathcal{B}_{SM}(K_L \to \pi^0 e^+ e^-) = \left(15.7|a_S|^2 \pm 6.2|a_S| \left(\frac{\text{Im } \lambda_t}{10^{-4}}\right) + 2.4 \left(\frac{\text{Im } \lambda_t}{10^{-4}}\right)^2\right) \times 10^{-12}$$

$$\mathcal{B}_{SM}(K_L \to \pi^0 \mu^+ \mu^-) = \left(3.7|a_S|^2 \pm 1.6|a_S| \left(\frac{\text{Im } \lambda_t}{10^{-4}}\right) + 1.0 \left(\frac{\text{Im } \lambda_t}{10^{-4}}\right)^2 + 5.2\right) \times 10^{-12}$$

LHCb Phase-I upgrade expected to measure $|a_S|$ to 5% relative precision from the $K_S \to \pi^0 \, \mu^+ \mu^-$ decay

Assuming constructive interference, determine the CKM parameter $\lambda_t = V_{ts}^* V_{td}$:

$$\frac{\delta(\operatorname{Im}\lambda_t)}{\operatorname{Im}\lambda_t}\bigg|_{K_L\to\pi^0e^+e^-} = 0.33 \qquad \frac{\delta(\operatorname{Im}\lambda_t)}{\operatorname{Im}\lambda_t}\bigg|_{K_L\to\pi^0u^+u^-} = 0.28 \qquad \blacksquare$$

20% precision on CKM parameter λ_t

HIKE: Kaon Global Fit

SM

Global fits to set of kaon measurements, in the framework of lepton universality. Effect on Wilson coefficients for NP scenarios with only left-handed quark currents.

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \lambda_t^{sd} \frac{\alpha_e}{4\pi} \sum_k C_k^{\ell} O_k^{\ell}$$

$$C_k^{\ell} = C_{k,\text{SM}}^{\ell} + \delta C_k^{\ell}$$

$$O_L^{\ell} = (\bar{s}\gamma_{\mu}P_L d) (\bar{\nu}_{\ell}\gamma^{\mu}(1 - \gamma_5)\nu_{\ell})$$

$$\delta C_L^\ell \equiv \delta C_9^\ell = -\delta C_{10}^\ell$$

Bounds from individual observables. Colored regions are 68% CL measurements Dashed lines are 90% CL upper limits **A:** central value for existing measurements kept the same + SM expectation used for measurement with upper bounds **B:** central value of all observables is projected to the best-fit points obtained from fits to existing data

HIKE Kaon Physics Programme

HIKE: measurements of rare K^+ and K_L decays to an unprecedented level of precision

$K^+ \to \pi^+ \nu \bar{\nu}$	$\sigma_{\mathcal{B}}/\mathcal{B} \sim 5\%$	BSM physics, LFUV
$K^+ o \pi^+ \ell^+ \ell^-$	Sub-% precision on form-factors	LFUV
$K^+ \rightarrow \pi^- \ell^+ \ell^+, K^+ \rightarrow \pi \mu e$	Sensitivity $O(10^{-13})$	LFV / LNV
Semileptonic K^+ decays	$\sigma_{\mathcal{B}}/\mathcal{B} \sim 0.1\%$	V_{us} , CKM unitarity
$R_K = \mathcal{B}(K^+ \to e^+ \nu) / \mathcal{B}(K^+ \to \mu^+ \nu)$	$\sigma(R_K)/R_K \sim \mathcal{O}(0.1\%)$	LFUV
Ancillary K^+ decays	% - %	Chiral parameters (LECs)
(e.g. $K^+ \to \pi^+ \gamma \gamma, K^+ \to \pi^+ \pi^0 e^+ e^-$)		
$K_L \to \pi^0 \ell^+ \ell^-$	$\sigma_{\mathcal{B}}/\mathcal{B} < 20\%$	$\text{Im}\lambda_t$ to 20% precision,
		BSM physics, LFUV
$K_L \to \mu^+ \mu^-$	$\sigma_{\mathcal{B}}/\mathcal{B} \sim 1\%$	Ancillary for $K \to \mu\mu$ physics
$K_L o \pi^0(\pi^0) \mu^{\pm} e^{\mp}$	Sensitivity $O(10^{-12})$	LFV
Semileptonic K_L decays	$\sigma_{\mathcal{B}}/\mathcal{B} \sim 0.1\%$	V_{us} , CKM unitarity
Ancillary K_L decays	% - %	Chiral parameters (LECs),
(e.g. $K_L \to \gamma \gamma, K_L \to \pi^0 \gamma \gamma$)		SM $K_L \to \mu\mu$, $K_L \to \pi^0 \ell^+ \ell^-$ rates

The HIKE Detectors

Detector	Phase 1	Phase 2	Comment			Preliminary g	roup interests	
Cherenkov K⁺ tagger	upgraded	removed	faster photo-detectors			UK		
Beam tracker	replaced	removed	3D-trenched	silicon sensor		Italy,CERN,UK	,Belgium,Cana	da,France
Upstream veto detectors	replaced	kept	SciFi			Switzerland		
Large-angle vetos	replaced	kept	lead/scintilla	ator tiles		UK		
Downstream spectrometer	replaced	kept	STRAW (ultr	a-thin straws)		CERN, Kazakhstan, Slovakia, Czech Republic		
Pion identification (RICH)	upgraded	removed	faster photo-	-detectors		Italy, Mexico		
Main EM calorimeter	replaced	kept	fine-sampling shashlyk		Italy			
Timing detector	upgraded	kept	higher granularity		Belgium			
Hadronic calorimeter	replaced	kept	high-granularity sampling		Germany			
Muon detector	upgraded	kept	higher granu	larity		Germany		
Small-angle calorimeters	replaced	kept	oriented high	n-Z crystals		Italy		
HASC	upgraded	kept	larger covera	age		Romania		
		2024	2025	2026	2027	2028	2029	2030
1) Detector studies								
2) Technical Design Report								
3) Detector prototyping								
4) Detector production								
5) Installation and commissioning								
6) Start physics data-taking								

New Beam Tracker for HIKE

NA62 GigaTracker design:

- \triangleright Material budget: 0.5% X_0 per layer
- Use minimum number of planes, time mmts to constrain event reconstruction
- > 200 µm planar silicon sensors
- > TDCPix readout chips
- Cooled with silicon microchannel plates

for	4 x	intensity	
			_

	NA62 GigaTracker	New beam tracker
Single hit time resolution	< 200 ps	< 50 ps
Track time resolution	< 100 ps	< 25 ps
Peak hit rate	2 MHz/mm ²	8 MHz/mm ²
Pixel efficiency	> 99%	> 99%
Peak fluence / 1 year $[10^{14} 1 \text{ MeV } n_{eq}/\text{cm}^2]$	4	16

NA62 GigaTracker performance:

- √ track time resolution of O(100 ps)
- √ angular resolution ~16 µrad
- ✓ momentum resolution ~0.2%

Requirements for next generation of upgrades

(LHCb Run5, CMS-PPS & ATLAS-AFP Run4 FCC-hh)

- > $\sigma_s \approx 10 \mu m$ (\rightarrow pixel pitch $\approx 40-60 \mu m$)
- $\sigma_t \leq 50$ ps on full chain ($\sigma_t = \sigma_{sensor} \oplus \sigma_{FE} \oplus \sigma_{TDC}$)
- Radiation hardness to $\Phi = 10^{16} \div 10^{17} \, 1 \, \text{MeV n}_{eq}/\text{cm}^2$
- Detection efficiency >99% per layer
- Material budget $< 1 \div 0.5\% X_0$ per layer

Silicon detectors with fast timing information capable to operate in a high-radiation environment \rightarrow shared interest with HL-LHC experiments

The trench-type TimeSPOT 3D pixels

A strong option that can satisfy all requirements for the HIKE beam tracker

Trench geometry improves charge collection time uniformity

Hybrid 3D-trenched technology:

- ✓ electrode geometry optimised for timing performance
- ✓ able to withstand very large irradiation
- ✓ excellent detection efficiency
- ✓ Spatial resolution O(10µm)
- ✓ Data throughput > 1 TB/s

Associated 28nm ASIC: first prototype

Sensor size 2×2 cm² can be produced and technical solution like stitching are being explored to produce larger devices

F. Borgato et al. Frontiers in Physics 11 (2023) 1117575

The trench-type TimeSPOT 3D pixels

Detection Efficiency ~99.1% tilting the sensor around the trench axis at angles of 20° Irradiated sensor shows same efficiency as unirradiated sensor

Time performance ~ 10 ps up to a fluence of $2.5 \times 10^{16} \text{MeV n}_{eq}/\text{cm}^2$ Exceeding a bias of 100 V irradiated pixel has the same time resolution of an unirradiated pixel Tilted sensor \rightarrow excellent time performance (same as for non-tilted sensor)

TimeSPOT collaboration planning to extend tests up to fluences of 1 \times 10¹⁷ 1 MeV n_{eq}/cm^2

To be compared with 11 ps @ 100 V of the not-irradiated case

Kaon Identification System

Goal: excellent PID performances, crucial for HIKE-Phase1 physics exploitation

 K^+ ID requirements: tagging efficiency >95% and time resolution $\sigma_t(K)$ = 15-20 ps

HIKE working conditions: high-intensity hadron beam ~3GHz, K+ rate ~200 MHz

HIKE Kaon tagging detector concept (KTAG):

- Cherenkov detector from NA62, refurbished readout
- > >20 detected photons per Kaon: hit rate ~8 MHz/cm²
- Photo-detector (PD) with high granularity
- High radiation tolerance
- Single-photon detection capability and $\sigma_t(\gamma) \sim 50 \text{ ps}$

KTAG photo-detector R&D (to be started in Birmingham):

- > ultra-fast timing single-photon detection capability with extended lifetime
- unexplored cutting-edge application of existing PD technology
- > synergy with requirements of next-generation experiments at HL-LHC

MCP-PMT Prototype for KTAG

Photonis Planacon XP85112-S-BA MCP-PMT with specs similar to the model in production for PANDA DIRC. 2-ALD coating to maximise PC lifetime and low MCP resistance ($\sim 10 M\Omega$) to improve rate capability. Prototype will be characterised in lab (QE, Gain, Lifetime, Time resolution)

<u>Configuration</u>	Table of Planacon MCP-PMT specs	
Input window	Al ₂ O ₃ (Sapphire)	
Photocathode type	Bi-alkali Bi-alkali	
MCP	double, chevron, 10μm pore size, 60:1 L:D, Hi-CE, Long life Time	
Anode	multi anode structure, 8x8 array, 5.9 / 6.5 mm (size / pitch)	

Time Capability	MIN	MAX	
Timing precision RMS	120		ps
TTS, sigma	30	50	ps

Planacon MCP-PMT and HV divider

Typical Spectral Response - Bialkali on Sapphire

KTAG Photon Detector Design for HIKE

Replacement of existing PMTs and light guides

- □ Instrumented KTAG area/octant ~ 10cm*15cm
- Use a matrix of 4 MCP-PMTs/octant
- □ Expected MCP-PMT pixel/anode rate ~2-3MHz
- □ Total number of channels: 2048

Simulations with filling factor ~75% and collection efficiency ~60% show that K+ tagging efficiency >95% and time resolution of 15-20ps are achievable

<u>Simulations developed in Birmingham:</u>

KTAG with PMTs for NA62

KTAG with MCP-PMTs for HIKE

The NA62 STRAW Spectrometer in ECN3

NA62 has developed techniques for making **state-of-the-art straws by ultrasonic welding**High-precision measurements of track parameters with **36 straws per track**

The HIKE STRAW Spectrometer

Same detector configuration as NA62 STRAW: 4 chambers + dipole magnet + operation in vacuum

New STRAW design for HIKE @ 4x intensity:

- Increased rate capability (reduced straw diameter, use fast shaping)
- Improved momentum resolution (reduced material budget, improve position resolution)
- ✓ **straw diameter reduced to \sim5mm** \rightarrow leading to shorter drift time and better trailing edge time resolution

for 4x intensity

- ✓ geometric rearrangement of 8 layers per view → recover acceptance
- ✓ Mylar thickness reduced to ~12-19um → minimise material budget

TOT 4X III.Cells		
	Current NA62 spectrometer	New straw spectrometer
Straw diameter	9.82 mm	4.82 mm
Straw length	2100 mm	2100 mm
Planes per view	4	8
Straws per plane	112	~160
Straws per chamber	1792	~5200
Mylar thickness	36 μm	(12 or 19) μm
Anode wire diameter	30 μm	(20 or 30) μm
Total material budget	$1.7\% X_0$	$(1.0-1.5)\% X_0$
Maximum drift time	~150 ns	~80 ns
Hit leading time resolution	(3-4) ns	(1-4) ns
Hit trailing time resolution	~30 ns	~6 ns
Average number of hits hits per view	2.2	3.1

Optimised layout of straw tubes with 4.82 mm diameter in a single view

The HIKE STRAW Spectrometer

Geant4 visualization of the new STRAW spectrometer

Same assumptions as in current NA62 layout:

- ✓ dimensions and positions of STRAW chambers
- ✓ number and orientation of views per chamber
- ✓ gas composition (Ar + CO_2 with 70:30 ratio)
- ✓ properties of dipole magnets

New straw chamber: (left) front view; (right) tilted back view

Improved resolution for reconstructed track angles and momenta by 10–20% wrt NA62 spectrometer while maintaining the high track reconstruction efficiency

The NA62 RICH in ECN3

Pion identification with time resolution < 100 psMuon contamination < 1% in pion sample 15Trigger signal for charged particles

Pion Identification with RICH

Remain the same as NA62 RICH detector:

- ✓ Radiator: neon at atmospheric pressure as the radiator
- ✓ Mechanical structure (vessel, mirror support, end-caps)

Changes for HIKE:

- ✓ Cherenkov light sensors and flanges hosting them
- → Improvement of geometrical acceptance for negative particles also considered

Sensor type	Layout	Sensor size	N _{Channels}	σ_{Hit}	σ_{Radius}
Hamamatsu R7400U-03 (NA62 RICH)		R _{Winston} =18 mm R _{PMT} =7.5 mm	1952	4.7 mm	1.5 mm
		3x3 mm ²	62K	2.3 mm	0.66 mm
SiPM		6x6 mm ²	16K	2.8 mm	0.78 mm
		9x9 mm²	7K	3.4 mm	0.95 mm

Region to be instrumented with new photo-sensors

9 × 9 mm² SiPM satisfies HIKE requirements and provides reasonable number of channels

for 4x intensity

	NA62 RICH	HIKE RICH
Sensor type	PMT	SiPM
Sensor time resolution	240 ps	100 ps
Sensor quantum efficiency	20%	40%
Number of hit for π^+ at 15 GeV/c	7	14
Number of hit for π^+ at 45 GeV/c	12	24
Time resolution for π^+ at 15 GeV/c	90 ps	27 ps
Time resolution for π^+ at 45 GeV/c	70 ps	20 ps

The HIKE Electromagnetic Calorimeter

Principal photon veto for $K^+ o \pi^+ \nu \overline{\nu}$ (Phase1); π^0 reconstruction, PID, extra photon veto for $K_L o \pi^0 l^+ l^-$ (Phase2)

Technical challenge: fast (\sim 100ps) ECAL with excellent energy resolution and detection efficiency

NA62 Liquid Krypton calorimeter (from NA48):

quasi-homogeneous ionization calorimeter, 27X₀ of LKr

$$\frac{\sigma_E}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.42\% \qquad \sigma_t = \frac{2.5 \text{ ns}}{\sqrt{E}}$$

Photon detection efficiency: $1-\varepsilon < 10^{-5}$ for $E_{\gamma} > 10$ GeV Time resolution $\sigma_t \sim 500$ ps for π^0 with $E_{\gamma\gamma} > 20$ GeV

HIKE @ 4x intensity (Phase1, Phase2):

- LKr energy resolution and detection efficiency could work
- Time & double pulse resolution needs improvement
- ✓ LKr infrastructure needs consolidation

NA62 LKr efficiency/energy resolution meet HIKE requirements, time/double pulse resolution needs to be 4x better

LKr cold bore r=80 mm and start of sensitive volume r=120 mm limits beam solid angle to $\Delta\theta < 0.3$ mrad $\rightarrow 40\%$ less K_L flux (Phase2)

Baseline design calls for LKr to be replaced by new ECAL

The Main Electromagnetic Calorimeter (MEC)

Baseline option: Fine-sampling shashlyk based on PANDA forward EM calorimeter

Sampling: 0.275 mm Pb + 1.5 mm scintillator. Transverse module size: $55 \times 55 \text{ mm}^2$

Composition: Moliere radius \sim 59mm, $X_0 \sim$ 3.80 cm, sampling fraction \sim 39%

PANDA/KOPIO (16 X₀) prototypes:

- $\sigma_E/\sqrt{E} \sim 3\% / \sqrt{E}$ (GeV)
- $\sigma_t \sim 72 \text{ ps } / \sqrt{E} \text{ (GeV)}$
- σ_x ~ 13 mm / \sqrt{E} (GeV)

HIKE: design and construct full-depth prototype (\sim 25 X_0) for test beam in 2024

New for Phase2: Longitudinal shower information from spy tiles

- PID additional info for γ/n separation
- 5-10x improvement in neutron rejection
- Overall neutron rejection at level of 10³

Same energy resolution as LKr, meet time resolution requirements for HIKE

HIKE R&D on innovative scintillators

Shashlyk prototypes

Use of **nanocomposite scintillators** under investigation in collaboration with AIDAinnova project **NanoCal**

Semiconductor nanostructures used as sensitizers/emitters for ultrafast, robust scintillators:

- Perovskite (typically CsPb X_{3} , X = Br, Cl...) nanocrystals cast into polymer matrix
- Decay components << 1 ns
- Radiation hard to O(1 MGy)

Excellent candidates for HIKE shashlyk!
Potential applications for LAVs, timing planes

Additionally exploring:

- New dyes for optimized molecular scintillators
- Fast, bright **green scintillators** for additional radiation hardness

2022-23: Tests of scintillators/fibers/SiPMs with beams and cosmic rays

2024-25: Construction of full-scale prototype if promising candidate found

The HIKE Small Angle Calorimeter (SAC)

Veto of photons emitted at polar angle down to zero. Sensitive to photons escaping the detector through the downstream beam pipe. Hermetic small-angle photon veto for $K^+ \to \pi^+ \nu \overline{\nu}$ (Phase1)

Technical challenge with HIKE neutral beam: particularly relevant for future phase with $K_L \to \pi^0 \nu \overline{\nu}$

- ightharpoonup Must reject high-energy photons from $K_L o \pi^0 \pi^0$ escaping through beam hole
- ➤ Must be insensitive as possible to 430 MHz of beam neutrons

HIKE neutral beam with production angle of 8mrad

Beam component	Rate (MHz)	Required 1 – ε
γ, E > 5 GeV	50	10-2
γ, E > 30 GeV	2.5	10 ⁻⁴
n	430	_

Requirements for HIKE SAC detector:

- \checkmark nuclear interaction length much greater than radiation length ($\lambda_{int} >> X_0$)
- ✓ good transverse segmentation to provide γ/n discrimination
- ✓ additional information for offline γ/n (longitudinal segmentation, pulse-shape analysis,..)
- √ time resolution ~100 ps or less
- ✓ double-pulse resolution capability at the level of a few ns
- ✓ radiation tolerant (exp. exposure in 5 years of operation: 10^{14} 1MeV n_{eq} /cm² + 10^{5} 10^{6} Gy from photons)

Small Angle Calorimeter with crystals

Proposed solution:

Ultra-fast, high-Z crystal calorimeter

- > Cerenkov radiator like PbF₂ or ultra-fast scintillator such as **PWO-UF**
- \triangleright Transverse and longitudinal segmentation for γ/n discrimination
- > Exploit coherent interactions in crystals to reduce thickness

PWO-UF (ultra-fast): Dominant emission with τ < 0.7 ns

M. Korzhik et al., NIMA 1034 (2022) 166781

Tests with 60 Co γ at Calliope (ENEA Casaccia)

2 cm .

PWO-UF undamaged to 2106 kGy!

20 cm

SAC R&D with CRILIN Prototype

Collaboration with CRILIN to study:

- Materials: PbF₂ vs PWO-UF
- Radiation resistance of crystals
- Photosensors: SiPMs, front-end
- Light collection in small crystals
- Longitudinal segmentation
- Mechanics, cooling, integration

For single crystals of PWO-UF: $\sigma_t < 20 \text{ ps}$ for $E_{\text{dep}} > 5 \text{ GeV}!$

SAC R&D with aligned crystals

Exploit effects of coherent interactions in crystals to develop a highly compact calorimeter

- Excellent response to photons (enhance probability for γ conversion)
- High transparency to neutrons for future phase with $K_L \to \pi^0 \nu \bar{\nu}$

0.004

0.002

.03
.02
.01 STORM collab.

 $E_{\rm CAL} \, [{\rm GeV}]$

OREO project for SAC R&D with aligned PWO-UF crystals:

- Develop techniques for crystal characterization, shaping, alignment and assembly
- Alignment of 1-dim and 2-dim matrices to < 0.5 mrad obtained

HIKE SAC design: combine elements of CRILIN and OREO prototypes, readout with compact PMTs

Summary - HIKE

- HIKE propose a timely, broad and long-term HEP programme at the intensity frontier
- HIKE Phase1 & 2: multi-observables of Flavour Physics at a new level of precision
 - Main physics goals:
 - □ Measure BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) at 5% precision
 - □ Measure BR($K_L \rightarrow \pi^0 l^+ l^-$) at 20% precision
- HIKE Phase1 & 2: 4x intensity increase wrt NA62 and cutting-edge detector technologies
 - Build on NA62 experience:
 - Kaon decay-in-flight technique, NA62-like detector + major upgrades
 - Keep same (or better) performances at 4x intensity
- HIKE Phase1 & 2: innovative R&Ds
 - > High-rate 4D silicon tracker & Super-thin STRAW spectrometer
 - ➤ MEC shashlik with innovative scintillators, SAC with oriented crystals

Only place worldwide where this programme is addressed experimentally Unique and timely opportunity to address a strongly motivated physics case at CERN NA facility

High Intensity Kaon Experiments proposed for the ECN3

SPARES

The NA62 Experiment

Data taking periods & intensity

Nominal intensity: $\sim 3 \times 10^{12} \text{ POT/spill} \rightarrow 750 \text{ MHz hadron beam}$

Primary beam:

- 400 GeV CERN SPS protons **Secondary hadron beam:**
- K⁺ (6%) / π⁺ (70%) / p (24%)
- $p = 75 \text{ GeV}, \ \Delta p/p \sim 1\%$
- 60 × 30 mm² transverse size **Decay region:**
- 60 m long fiducial volume
- Vacuum $\sim O(10^{-6} \text{ mbar})$
- $\sim 5 \text{ MHz K}^+ \text{ decay rate}$

NA62 Run 1 (2016-2018) result

2018 data:

Background	Subset S1	Subset S2
$\pi^+\pi^0$	0.23 ± 0.02	0.52 ± 0.05
$\mu^+ u$	0.19 ± 0.06	0.45 ± 0.06
$\pi^+\pi^-e^+\nu$	0.10 ± 0.03	0.41 ± 0.10
$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.08
$\pi^+\gamma\gamma$	< 0.01	< 0.01
$\pi^0 l^+ u$	< 0.001	< 0.001
Upstream	$0.54^{+0.39}_{-0.21}$	$2.76^{+0.90}_{-0.70}$
Total	$1.11^{+0.40}_{-0.22}$	$4.31^{+0.91}_{-0.72}$

0.12 0.1 0.08 0.06			the second second	Contractions.		 Data SM K⁺→ 	»π ⁺ ν⊽
0.1 0.08	24		Manage of the last		A Property of	· 5	
-				•	•	••	
0.04	- Arthydr filed	·	Park Marratan Wann	•	•	andria.	
0			-	dielektei Bel		4.4.4	
-0.02 -0.04		· · · · · · · · · · · · · · · · · · ·	*************			:	
_	15	20	25	30	35	40	45

JHEP 06 (2021) 093

Expected: 7.6 signal + 5.4 background events

Observed: 17 K⁺ $\rightarrow \pi^+ \nu \nu$ candidates!

Combined NA62 2016-2018 data

 $SES = (8.39 \pm 0.53_{\text{syst}}) \times 10^{-12}$

Expected signal: $10.01 \pm 0.42_{\text{syst}} \pm 1.19_{\text{ext}}$

Expected bkg: $7.03^{+1.05}_{-0.82}$

Observed: 20 (1+2+17) events

BR(K⁺ $\rightarrow \pi^+ \nu \nu) = (10.6^{+4.0}_{-3.4} \pm 0.9_{\text{syst}}) \times 10^{-11}$

3.4 σ significance, most precise measurement to date!

NA62 Run 2 (2021-2025)

NA62 recommended by SPSC and approved by Research Board until LS3

Improvements in NA62 Run2:

- DAQ stability improved: run at higher beam intensity $(70\% \rightarrow 100\%)$
- Rearrangement of beamline elements around GTK achromat
- Added 4th station to GTK beam tracker
- Additional veto counters around beam pipe (both upstream/downstream the FV)
- New veto hodoscope upstream of decay volume (ANTI0)
- New hydrogen-filled Kaon identification detector (CEDAR-H) to reduce material along the beam line (since 2023)

New upstream veto

New downstream veto

New ANTIO

The KOTO Experiment

Study of $K_L \to \pi^0 \nu \overline{\nu}$ @ JPARC 30GeV Main Ring Goal is to observe few SM events

Primary 30 GeV/c protons on gold target

✓ Intensity in 2021: $60 \text{ kW} = 6.6 \text{ x } 10^{13} \text{ p/5.2 s}$

Secondary neutral beam (K_L, neutron, photons)

✓ beam angle ~16°, 8 µsr "pencil" beam

 \checkmark <p(K_L)> = 2.1 GeV, 50% in [0.7-2.4] GeV/c range

✓ Fiducial decay region ~3 m

Arizona, Chicago, Chonbuk, Hanyang, Jeiu, JINR, KEK, Kyoto, Michigan, NDA, NTU, Okayama, Osaka, Pusan, Saga & Yamagata

Lead-scintillator sandwich Plastic scintillator counter CsI Calorimeter from KTeV

Hermetic \longrightarrow To suppress $K_L \to \pi^0 \pi^0$

KOTO Phase-II

$K^+ \to \pi \nu \bar{\nu}$: New Physics Scenarios

New physics affects K⁺ and K₁ BRs differently

Measurements of both can discriminate among NP scenarios

Models with:

- CKM-like flavor structure
 MFV
- New flavor-violating interactions
 with dominant LH or RH couplings

 Z/Z' with pure LH/RH couplings
 Littlest Higgs with T parity
- None of the above constraints
 Randall-Sundrum

Grossman-Nir bound

Model-independent relation

$$\frac{\mathrm{BR}(K_L \to \pi^0 \nu \bar{\nu})}{\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})} \times \frac{\tau_+}{\tau_L} \le 1$$

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ at HIKE: Random Veto

Criteria to veto photons and extra activity in-time + pileup = intensity-dependent signal loss Critical performance indicator: "random veto efficiency", measured on data (with $K^+ \rightarrow \mu^+ \nu$)

NA62:

- Signal selection efficiency ~ 65% at max beam intensity
- Quasi-linear dependence on the instantaneous beam intensity.
- Limiting factor: timing precision of the detectors (and double pulse resolution).

HIKE: Maintain or improve the random-veto efficiency.

→ Requires an improvement in the time resolution for the veto systems at least by the same factor as the intensity increase

$K^+ \to \pi^+ \nu \bar{\nu}$ at HIKE: Specific Models

Top-philic Z': (revisited by F. Kahlhoefer)

Constraints on a top-philic Z', on mass vs gauge coupling, see Refs. [JHEP 03 (2018) 074, Phys. Rev. D 97 (2018) 035002]. Assumed vector couplings to muons and tau leptons, and couplings to top quarks induced via mixing with a vector-like quark with mass 2 TeV and mixing angle 0.5. Lepton couplings are chosen such that various anomalies in $b \rightarrow s$ transitions can be fitted (green shaded region). Blue shaded regions (blue lines) indicate the current exclusion with 139 fb⁻¹ (projection for 3 ab⁻¹) for ATLAS.

arXiv:2310.17726]

Leptoquark model (revisited by D.Marzocca)

Constraints on coupling of S1 leptoquark from flavour and electroweak observables vs leptoquark mass. Region above each line is excluded at 95%CL. Constraints are derived using the complete one-loop matching of this leptoquark to the SMEFT derived in Ref. [JHEP 07 (2020) 225] following the pheno analysis of Refs. [JHEP 01 (2021) 138, Eur. Phys. J. C 82 (2022) 320].

$K^+ \rightarrow \pi^+ l^+ l^-$ at HIKE Phase 1

LD dominated, mediated by $K^+ \rightarrow \pi^+ \gamma^*$

$$d\Gamma/dz \propto G_F M_K^2 (a + bz) + W^{\pi\pi}(z)$$

$$z = m(l^+l^-)^2/M_K^2$$

Form factors (FF) (non pert. QCD)

 $K_{3\pi}$ loop term

Long-distance effects are purely universal

$$a_{+}^{\mu\mu} - a_{+}^{ee} = -\sqrt{2}\operatorname{Re}\left[V_{td}V_{ts}^{*}(C_{9}^{\mu} - C_{9}^{e})\right]$$
 [JHEP 02 049 (2019), PRD 93 074038 (2016)]

Long-distance contribution to the difference cancels out and is sensitive only to short-distance effects Lepton universitality (LU) predicts same a,b for $l=e,\mu$

HIKE Phase 1: Collect > $5x10^5$ background-free $K^+ \rightarrow \pi^+l^+l^-$ Measure Δa and Δb to ±0.007 and ±0.015 precision

Sensitivity also to many radiative decays of interest, i.e $K^+ \to \pi^+ \gamma \gamma$ precision of few per mille

HIKE: Cabibbo Angle Anomaly

Disagreement leads to (apparent?) violation of CKM unitarity:

$$\left|V_{ud}^{2}\right| + \left|V_{us}^{2}\right| + \left|V_{ub}^{2}\right| = 0.9985 \pm 0.0005$$

 V_{us} from kaon and tau decays,

 V_{ud} from super-allowed beta decays

Constraints from CKM unitarity on the contributions to the leptonic and semileptonic kaon decay amplitudes from right-handed quark currents

HIKE can clarify the origin of the

Cabibbo angle anomaly

In the scenario illustrated,

HIKE resolves tension between

 $K_{_{u2}}$ and $K_{_{l3}}$ but confirms anomaly due to $V_{_{ud}}$

HIKE: LNV/LFV Decays

Lepton Number/Flavor Violation: many decay modes, forbidden in SM

HIKE: O(10⁻¹²-10⁻¹³) sensitivity on BR of LNV/LFV K⁺ and K_L decays

SHADOWS Search for Hidden And Dark Objects With the SP

Search for Hidden And Dark Objects With the SPHIKE + SHADOWS: Dark Sector reach

Worldwide landscape from FIPs2022 Proceedings [arXiv:2305.01715, accepted by EPJC]

3×10¹⁹ POT in kaon mode 5×10¹⁹ POT in dump mode

Large-Angle Photon Veto

12 new large-angle photon veto stations (LAV)

- Sensitive radius 0.85 to 1.5 m
- Time resolution <250 ps
- Hermetic coverage out to 100 mrad
- Need good detection efficiency at low energy (inefficiency < few 10⁻⁴ for E > 100 MeV)
- Full digitization, segmentation in depth

Baseline technology for HIKE:

- Lead/scintillator tile with WLS readout
 1 mm Pb + 5 mm scintillator
- Light read out with SiPM arrays

Current NA62 LAVs: Lead glass

- Time resolution ~ 1 ns
- Cerenkov light is directional
- Complicated paths to PMT with multiple reflections

NA62 Large-angle veto station

Hadronic Calorimeter

High Intensity Kaon Experiments

HCAL: main detector for π/μ identification and separation (including catastrophically interacting muons, which deposit all or large fraction of their energy in the calorimeter)

NA62 HAC: Horizontal/Vertical scintillator strips

HIKE HAC: Cellular layout

Reduce rate on each channel & improve time resolution

Iron-scintillator sandwich design active layers built from scintillating tiles readout by SiPMs

Efficiency: results

The inefficiency (at normal incidence) due to the 3D pixel dead-area of the trenches is fully recovered by tilting the sensors around the trench axis at angles larger than 10°

Effect of tilting on distribution shapes Spline method, SPS/H8 (Nov'21)

Single Pixel @ 50V

As a result, the shapes are more Gaussian at increasing α_{tilt} Notice that, due to detection efficiency, α_{tilt} = 20° is the normal working condition of a 3D in a detecting system

Timespot 1 28 nm CMOS ASIC

- ☐ First prototype: 28 nm CMOS pixel read-out ASIC for tracking at high rates
- \square Pixel matrix of 32×32 elements, with a pixel pitch of 55 μ m
- Each pixel contains an analogue, digital circuit and TDC
- □ Digitised signals sent out via 8 multiplexed output links at 1.28 Gb/s speed
- On-going efforts to scale the size of the ASIC
 → aim: to reach an integrated ASIC of 2 cm² by 2026
- ◆ ASIC power consumption <1.5 W/cm² comparable to GTK
 → GTK cooling system could be reemployed
- ♦ Chip and sensor production made by FBK
 → original design by the TimeSPOT project

All the above considerations make TimeSPOT with its ASIC Timespot1 a viable option for the HIKE beam tracker

Figure 9. Photograph of the Timespot1 silicon die.

Micro Channel Plate MCP-PMT

High-speed single photon counting applications <50ps TTS (FWHM)

- □ Similar to PMT → dynode structure replaced by MCP
- □ MCP is thin glass plate with an array of holes (capillaries) of $3-25\mu m$ diameter
- Continuous electron multiplication in thin glass capillaries
- □ High gain (10⁶) even in strong magnetic field (1T)

ALD Coating Channels Channels ALD Coating Channels ALD Coating

Limitations:

- Photo Cathode aging (feedback ions)
- 2. Rate capability $(\tau = RC)$

Atomic Layer Deposition (ALD) coated MCP

- Ultra-thin films of resistive and emissive layers (MgO, Al_2O_3) applied to glass capillaries
- \square ALD-coated MCP improved lifetime up to ~ 10 C/cm² integrated anode charge (IAC)
- □ Rate capability still marginal (1-10 MHz/cm² depending on PMT size, and MCP resistance)

PMT sizes range from 1x1/2x2 inch² (Hamamatsu, Photonis, Photek)

Incident electron

Micro Channel Plate MCP-PMT

Photonis & Photek ALD MCP-PMTs

A.Lehmann talk @ RICH2022

High-speed single photon application <50ps TTS (FWHM)

- □ Input rate capability ~MHz/cm²
- Low dark noise, high gain, good QE & filling factor

Limitation: PC aging due to ion feedback

- Main issue for high intensity experiments is QE degradation
- ☐ Standard MCP: poor lifetime (<200 mC/cm² IAC)
 </p>
- \square ALD coating of MCP pores $\rightarrow \sim 100x$ PC lifetime increase
- □ No QE degradation for Photonis MCP-PMT (R2D2) >34 C/cm²
- → HIKE-KTAG expected IAC ~ 4-5C/cm²/year

Limitation: Gain decreases at high photon rates ($\tau = RC$)

- □ 2-inch MCP-PMTs: ~1 MHz/cm² (with 10⁶ gain)
- □ 1-inch Hamamatsu R10754 ≥10 MHz/cm²
- Rate capability depends on MCP resistance

Increasing rate capability in MCP-PMTs

- \square Lower MCP resistance (ranging at tens of M Ω) or capacitance
- Lower gain operation

MCP-PMT Tests in Birmingham

Lab equipment:

- ✓ PILAS ps pulsed diode laser (405nm, 0-40 MHz)
- ✓ Diffuser for homogenous illumination of the device area
- ✓ Attenuators to reduce intensity to single-photon level
- ✓ HV supply
- √ Fast sampling ADC
- ✓ Picoammeter device (to measure IAC)

MCP-PMT Prototype + HV divider to arrive soon

Planned test measurements:

- > Lifetime: QE vs IAC
- > Rate capability: Gain vs photon rate
- > Time resolution: ΔT with respect to reference

Goals:

- ❖ reach level of expected IAC in HIKE (~25C/cm² per 5 years)
- ❖ Test rate capability and find working point (gain)

Lab test setup in Birmingham

Design of short (0.5m) STRAW prototype is complete

Prototype assembly and validation of connectivity, assembly procedures and tooling are on-going

Start design of a full-length (2.1m straw) prototype with 19 µm wall thickness by the end of 2023

igh Intensity Kaon Experiments at CERN SPS - A. Romano - Birmingham PP Group Seminar - 29/11/2023

The Main Electromagnetic Calorimeter (MEC)

Baseline option: Fine-sampling shashlyk based on PANDA forward EM calorimeter

Sampling: 0.275 mm Pb + 1.5 mm scintillator. Transverse module size: $55 \times 55 \text{ mm}^2$

Composition: Moliere radius \sim 59mm, $X_0 \sim$ 3.80 cm, sampling fraction \sim 39%

PANDA/KOPIO prototypes:

- $\sigma_E/\sqrt{E} \sim 3\% / \sqrt{E}$ (GeV)
- $\sigma_t \sim 72 \text{ ps } / \sqrt{E} \text{ (GeV)}$
- σ_x ~ 13 mm / \sqrt{E} (GeV)

HIKE MEC Geant4 Simulation

New for Phase2: Longitudinal shower information from spy tiles

- PID information: identification of μ , π , n interactions
- Shower depth information: improved time resolution for EM showers
- Spy tiles optically isolated from shashlyk stack and read out by dedicated WLS fibers (romashka design = chamomile)

1st prototype assembled in Protvino and tested at OKA in April 2018

MEC simulation and test beams

G4 simulation of 5 GeV photon shower in MEC module

Detection efficiency vs incident particle energy

Test Beam at DESY (in collaboration with LHCb) with $14 X_0$ shashlyk prototype:

- Significant leakage (transverse + longitudinal) affecting small prototype
- Energy fractions in spy layers qualitatively reproduced
- ➤ Time resolution \sim 170 ps at E_e = 5 GeV
- Time resolution for spy layers significantly worse (400-600 ps) → acceptable since event time determined by main shashlyk signal

Design and construct a full-depth prototype (25 X_0) of baseline solution with conventional scintillator and uniform shashlyk stack for test beam in 2024

Fine-sampling shashlyk design satisfies HIKE efficiency requirements

Shashlyk Test Beam at DESY

Module tested and compared to standard shashlyk

LHCb beam test at DESY T24 November 2019

 e^+ beam, 5 kHz E = 1-6 GeV (steps of 0.2 GeV) Silicon tracker/MWPC beam telescope Beam tagging with σ_t < 20 ps

Observations:

- Significant leakage (transverse + horizontal) affecting small prototype
 More testing with larger assembly of modules needed for validation
- Energy fractions in spy layers qualitatively reproduced
- Time resolution ~170 ps at E_e = 5 GeV Includes ~150 ps constant term attributed to leakage Statistical term ~140 ps similar to standard shashlyk
- Time resolution for spy layers significantly worse (400-600 ps)
 May be acceptable since event time determined by main shashlyk signal

MEC: Simulation of γ /n separation

Energy fraction in spy group = energy deposited in spy tiles/ deposited in shashlyk

Info from spy tiles provides:

- 5-10x improvement in neutron rejection
- Overall neutron
 rejection at level of 10³

Coherent effects in crystals

Coherent effects increase cross-section for electromagnetic shower processes (bremsstrahlung, pair production)

- Decrease effective value of X_0
- Exploit coherent effects for calorimetry?

Coherent superposition of Coulomb fields Electric field ε approx. const. $\sim 10^{10}\text{-}10^{12}$ V/cm Effective field $\varepsilon' = \gamma_{\rm eff}$ ($\gamma_{\rm eff} = E/m_e c$) For $\varepsilon' \sim \varepsilon_0 = 2\pi m^2 c^3 leh$ virtual pairs disassociate

Geant4 simulation Bandiera et al., NIMA 936 (2019)

- Early initiation of EM showers
- Minimize fluctuations of deposited energy vs depth