

The DUNE Near Detector

Daniel Cherdack, University of Houston on behalf of the DUNE Collaboration Lake Louise Winter Institute Thursday June 20th, 2019

UNIVERSITY of HOUSTON

Mixing Between Weak Flavor and Mass Eigenstates

- For most interactions the incoming and outgoing particles are the same flavor
 - Gravitational
 - Electromagnetic
 - Strong
- For Weak interactions the incoming and outgoing particles are weak isospin pairs
- Differences between Weak Flavor and Mass eigenstates also allow for apparent mixing between isospin pair families
- This mixing is described by the:
 - CKM Matrix (quarks)
 - PMNS Matrix (leptons)

2

The Mixing Matrices

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}_{J} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{M}$$

The PMNS Matrix

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

- For most interactions the incoming and outgoing particles are the same flavor
 - Gravitational
 - Electromagnetic
 - Strong
- For Weak interactions the incoming and outgoing particles are weak isospin pairs
- Differences between Weak Flavor and Mass eigenstates also allow for apparent mixing between isospin pair families
- This mixing is described by the:
 - CKM Matrix (quarks)
 - PMNS Matrix (leptons)

3

The Mixing Matrices: Relative Element Sizes

Quarks

4

The Mixing Matrices: Unitarity

Quarks

Leptons

5

Daniel Cherdack | University of Houston

6

Daniel Cherdack | University of Houston

Predicting the Neutrino Event Rate

$$N_{\textit{pred}}(E_{\nu}^{\textit{reco}}) = \Phi(E_{\nu}^{\textit{true}}) \sigma(E_{\nu}^{\textit{true}}) P(\alpha \rightarrow \beta, E_{\nu}^{\textit{true}}) \epsilon(E_{\nu}^{\textit{reco}}) S(E_{\nu}^{\textit{true}}, E_{\nu}^{\textit{reco}})$$

Predicting the Neutrino Event Rate

$$N_{pred}(E_{v}^{reco}) = \Phi(E_{v}^{true}) \sigma(E_{v}^{true}) P(\alpha \rightarrow \beta, E_{v}^{true}) \epsilon(E_{v}^{reco}) S(E_{v}^{true}, E_{v}^{reco})$$

$$Measure with a near detector \Phi(E_{v}^{true}) \sigma(E_{v}^{true}) \sigma(E_{v}^{true}) P(\alpha \rightarrow \beta, E_{v}^{true}) P(\alpha \rightarrow \beta, E_{v}^{true})$$

H

Daniel Cherdack | University of Houston

The DUNE ND Complex (CDR Reference Design)

ND-LAr Modular TPC (ArgonCube)

- Design
 - Same liquid argon target as the DUNE FD
 - Modular design: 35 1×1×3 m³ modules with two TPCs per module (50 cm drift)
 - Charge readout: LArPix pixel readout for direct-to-3D charge information
 - Light readout: High (~40%) detector coverage with ns-scale timing and cm-scale position
- Physics
 - High-statistics v interactions in LAr TPC
 - ~30M accepted v_{μ} CC events/year (FHC / v mode, 1.2 MW beam)
 - Constrain flux via v+e elastic scattering and "low-v" method
 - Precise constraints on event rates (flux × cross sections) in LAr

10 February 23rd, 2022

Daniel Cherdack | University of Houston

ND-GAr Magnatized TPC

- Design
 - Same Ar target at the DUNE FD (and ND-LAr)
 - High-pressure (10 bar)
 - TPC surrounded by EM calorimeter and superconducting magnet
 - May need to wait for Phase II; Temporary Muon Spectrometer (TMS) until then (magnetized planes of Fe & scintillator)
- Physics
 - Spectrometer for tracks that exit ND-LAr: track sign and momentum (TMS can still do this)
 - v-Ar interactions with low thresholds: better understand the hadronic system details
 - Excellent particle ID: study details of exclusive final states
 - Fine tuning of cross section systematic errors

SAND: System for On-Axis Neutrino Detection

SAND Consortium

- Design
 - Fixed on-axis position
 - LAr TPC Target + STT + Ecal + solenoid magnet
 - Ecal and Magnet repurposed from KLOE Experiment
- Physics
 - Continuous monitoring of the on-axis flux: able to provide detailed flux stability measurements on a ~weekly basis
 - STT provides CH and C targets for comparison with world cross section data (mostly CH) and H cross sections via subtraction
 - Ar events provide ND-LAr cross check

PRISM

- Design
 - System for moving the LAr TPC + tracker up to 30 m transverse to the beam direction
 - Enables scan of beam at multiple off-axis positions
- Physics
 - Beam energy spectrum changes with off-axis position
 - Peak energy is reduced; peak width narrows
 - Use statistical subtraction to measure cross sections in a narrow incoming neutrino energy range
 - Better control of hadronic physics with constrained incoming neutrino energy
 - Direct use of ND data in oscillation analysis: shifts cross section uncertainties to flux uncertainties

PRISM

- Design
 - System for moving the LAr TPC + tracker up to 30 m transverse to the beam direction
 - Enables scan of beam at multiple off-axis positions
- Physics
 - Beam energy spectrum changes with off-axis position
 - Peak energy is reduced; peak width narrows
 - Use statistical subtraction to measure cross sections in a narrow incoming neutrino energy range
 - Better control of hadronic physics with constrained incoming neutrino energy
 - Direct use of ND data in oscillation analysis: shifts cross section uncertainties to flux uncertainties

DUNE ND Complex Summary

- Multi-detector design
- Liquid Argon TPC
 - Similar technology to the FD
 - Design changes to handle high rates
- Downstream Spectrometer
 - Measures momentum and charge of exiting tracks
 - Will eventually be a GAr TPC able to measure hadronic shower details
- On-axis beam monitor
 - Ensure stable beam operations
 - Contribute physics measurements and crosschecks
- Off-axis measurements from PRISM
 - Enables statistical constraints of incoming neutrino energy
 - Paradigm shifting oscillation measurement technique

Thank You

Questions?

Daniel Cherdack | University of Houston

Understanding v Cross Sections

Lake Louise Winter Institute

February 23rd, 2022

Daniel Cherdack | University of Houston

17

Understanding v Cross Sections

18 February 23rd, 2022

Daniel Cherdack | University of Houston

19 February 23rd, 2022

Daniel Cherdack | University of Houston

DUNE ND R&D

ND-LAr

- Tested ~70% scale module
- \bullet 2×2 ν beam test @ FNAL
- Full-scale tests to follow

Module-0 @ Bern

ND-GAr

- R&D gas TPCs @ FNAL (IROC) and RHUL (OROC)
- Gas, HV tests underway in dedicated HPgTPCs

ALICE IROC

SAND

- 3DST beam tests @ CERN
- US-Japan joint prototyping efforts underway

CERN tests

20

Daniel Cherdack | University of Houston

DUNE ND R&D

ND-LAr

- Tested ~70% scale module
- \bullet 2×2 v beam test @ FNAL
- Full-scale tests to follow

ND-GAr

- R&D gas TPCs @ FNAL (IROC) and RHUL (OROC)
- Gas, HV tests underway in dedicated HPgTPCs

ALICE IROC

SAND

- 3DST beam tests @ CERN
- US-Japan joint prototyping efforts underway

CERN tests

February 23rd, 2022

21

Daniel Cherdack | University of Houston