Measurements of $B \rightarrow D^{**} \ell \nu_{\ell}$ decays at Belle

Frank Meier

Lake Louise Winter Institute 2022 20 - 25 February 2022

ERSI

N

Introduction

- ▶ inclusive: $BR(B^+ \to X_c \ell \nu_\ell) = (10.8 \pm 0.4) \% / BR(B^0 \to X_c \ell \nu_\ell) = (10.1 \pm 0.4) \% (PRD 75, 032001)$
- ▶ sum of BR($B \rightarrow D^{(*)} \ell \nu_{\ell}$) and BR($B \rightarrow D^{(*)} \pi \ell \nu_{\ell}$) = 9.05% / 8.35%
- ▶ gap of ~1.75 % between inclusive and exclusive branching fraction measurements of $B \rightarrow X_c \ell \nu_\ell$
- statistical fluctuation?
 - $B \rightarrow D\ell \nu_{\ell}$ and $B \rightarrow D^*\ell \nu_{\ell}$ known at 3-4% level
 - ▶ $B \rightarrow D\pi \ell \nu_{\ell}$ and $B \rightarrow D^*\pi \ell \nu_{\ell}$ only known at 7-9% / 12-14% level for charged / neutral modes
- missing exclusive decay modes?
 - $B \rightarrow D^{(*)}\pi\pi\ell\nu_{\ell}$ observed by BaBar (Phys. Rev. Lett. 116, 041801 (2016))
 - ► BR $(B^+ \to \overline{D}{}^0 \pi^+ \pi^- \ell^+ \nu_\ell)$ = (0.161 ± 0.030 (stat) ± 0.018 (syst) ± 0.008) %
 - ► BR $(B^+ \to \overline{D}^{*0} \pi^+ \pi^- \ell^+ \nu_\ell)$ = (0.080 ± 0.040 (stat) ± 0.023 (syst) ± 0.003) %
 - ► BR $(B^0 \to D^- \pi^+ \pi^- \ell^+ \nu_\ell) = (0.127 \pm 0.039 \,(\text{stat}) \pm 0.026 \,(\text{syst}) \pm 0.007) \,\%$
 - ► BR $(B^0 \to D^{*-} \pi^+ \pi^- \ell^+ \nu_\ell)$ = (0.138 ± 0.039 (stat) ± 0.030 (syst) ± 0.003) %
 - $B \rightarrow D^{(*)} \eta \ell \nu_{\ell}$ not yet measured at all
- ► $B \to D^{(*)} \pi \ell \nu_{\ell}$ and $B \to D^{(*)} \pi \pi \ell \nu_{\ell}$ important background contributions in measurements of $R(D) / R(D^*)$

Frank Meier (Duke University)

Experimental Setup

- asymmetric collision of e^+e^-
- \blacktriangleright center-of-mass energy mostly at $\Upsilon(4S)$ resonance
- ▶ $\Upsilon(4S) \rightarrow B^+B^-$ (~51.5%), $\Upsilon(4S) \rightarrow B^0\overline{B}^0$ (~48.5%)
- ▶ Belle collected ~772M $B\overline{B}$ pairs over the course of 10 years

4 / 16 25.02.2022

 $\Sigma +$

Full Event Interpretation

Comput. Softw. Big Sci. 3 (2019)

Displaced Vertices

- fully reconstruct one of the B mesons (tag-side) in many exclusive modes
- hadronic and semileptonic version: trade-off between efficiency and purity
- train BDT for each stage \Rightarrow signal probability

[%] [%]

Tracks

Neutral Clusters

Analysis in a nut shell

- read in and convert data from Belle to Belle II format using B2BII Comput
- run hadronic Full Event Interpretation with Belle training
 - ▶ B_{tag} selection: $|\Delta E| < 180$ MeV, $M_{\text{bc}} > 5.27$ GeV/ c^2 , signal probability > 0.005
- \blacktriangleright final state particle selection (e^{\pm} , μ^{\pm} , K^{\pm} , π^{\pm} , π^{0} , and $K^{0}_{\rm S})$
- \blacktriangleright reconstruct D from final state particles and D^* by adding slow pion
 - $D^+ \to K^- \pi^+ \pi^+, D^+ \to K^0_{\rm S} \pi^+, D^+ \to K^0_{\rm S} \pi^+ \pi^0, D^+ \to K^- K^+ \pi^+, D^+ \to K^0_{\rm S} \pi^+ \pi^- \pi^+, D^+ \to K^0_{\rm S} K^+, D^+ \to \pi^+ \pi^0, D^+ \to K^- K^+ \pi^+, D^+ \to K^0_{\rm S} \pi^+ \pi^- \pi^-, D^+ \to K^0_{\rm S} \pi^+ \pi^- \pi^-, D^+ \to K^0_{\rm S} \pi^+ \pi^- \pi^-, D^+ \to K^0_{\rm S} \pi^+ \pi^-, D^+ \to K^0_{\rm S} \pi^+, D^+ \to K^0_{\rm$
 - $D^{0} \to K^{-}\pi^{+}, D^{0} \to K^{-}\pi^{+}\pi^{+}\pi^{-}, D^{0} \to K^{-}\pi^{+}\pi^{0}, D^{0} \to K^{0}_{5}\pi^{+}\pi^{-}, D^{0} \to K^{-}K^{+}, D^{0} \to K^{0}_{5}\pi^{+}\pi^{-}\pi^{0}, D^{0} \to \pi^{+}\pi^{-}$
- combine $D^{(*)}$ with 0, 1, and 2 bachelor pions + 1 lepton to form 24 different B_{sig} modes
- ▶ reconstruct $\Upsilon(4S)$ from $B_{\text{tag}} + B_{\text{sig}} (B^+B^-, B^0\overline{B}^0, B^0B^0)$
- check that there are no additional tracks in the rest of the event
- ▶ best $\Upsilon(4S)$ candidate selection based on tag-side signal probability and preference of D^* over D modes
- measure branching fractions of $B \to D^{(*)} \pi \ell \nu_{\ell}$ and $B \to D^{(*)} \pi \pi \ell \nu_{\ell}$ relative to $B \to D^* \ell \nu_{\ell}$

Frank Meier (Duke University)

Measurements of $B \rightarrow D^{**} \ell \nu_{\ell}$ decays at Belle

Comput. Softw. Big Sci. 2 (2018)

 $B^+ \rightarrow \overline{D}{}^0 \pi^+ \pi^- \ell^+ \nu_\ell$

BDT to suppress continuum background in $D\pi\pi$ modes

- training samples:
 - background: off-resonance data
 - signal: $B^+ \to \overline{D_1^0} \ell^+ \nu_\ell$ with $\overline{D_1^0} \to \overline{D}^0 \pi^+ \pi^ B^0 \rightarrow D_1^- \ell^+ \nu_\ell$ with $D_1^- \rightarrow D^- \pi^+ \pi^-$
- 25 training variables describing tag-side quantities, event shape, and rest of the event, like unaccounted energy in the ECL or Fox-Wolfram moments

electror significance Signal yield $\rightarrow \overline{D}^0 \pi^+ \pi^- \ell^+ \nu_\ell$ -0.3 _0 1 01 BDT classifier output

0.0

0.0

signal

charged

neutra

charm

significance 4.0 Signal yield s 2 (-0.3 0.0 0.1 BDT classifier output

Fit model

▶ fit dimension: $U = E_{\text{miss}} - p_{\text{miss}}$ with $E_{\text{miss}} = E_{e^+e^-} - E_{\text{tag}} - E_{D^{**}} - E_l$

 \blacktriangleright better sensitivity than fitting missing mass squared $M_{\nu}^2 = E_{\rm miss}^2 - p_{\rm miss}^2$

- ▶ simultaneous fit with 16 categories: B^+ and B^0 , D and D^* , π and $\pi\pi$, e and μ
- fit components:
 - ▶ signal: MC with decay via D_1 $(D\pi\pi)$ or D'_1 $(D^*\pi\pi)$ resonance
 - feeddown of $D^*\pi\pi$ in $D\pi\pi$ (π^0 missed in reconstruction of $D^* \to D\pi^0$)
 - off-resonance data to describe continuum events
 - $B\overline{B}$ background (charged + neutral samples merged)
 - $B \rightarrow D^{**} \ell \nu_{\ell}$ background
 - ► signal-to-background (crossfeed) efficiency ratio fixed to MC value 2
 - ▶ yield related to signal component within simultaneous fit
- ▶ PDF constructed as histograms with 120 bins in [-1;2]
 - MC weighted to correct known data-MC differences in PID, tracking efficiency, π^0 and K_s^0 efficiency, charm branching fractions, and tagging mode composition

Relative systematic uncertainties

- largest systematic uncertainty from fit modeling
 - composition of signal model
 - shape uncertainties due to limited MC statistics
- ▶ BDT signal efficiency differs between data and MC (systematic determined using $B \rightarrow D^* \ell \nu_\ell$)
- uncertainty on branching fraction of normalization mode \Rightarrow systematic of 1.9% (B^0) and 3.9% (B^+)
- ▶ uncertainty on branching fraction of charm modes (0.7 1.4%)
- small systematic uncertainties from PID, tracking, and selection efficiencies because of partial cancellation in ratio with normalization mode

Total systematic uncertainties in %								
	$D\pi\ell u_\ell$	$D^*\pi\ell u_\ell$	$D\pi\pi\ell u_\ell$	$D^*\pi\pi\ell u_\ell$				
B^0	2.6	2.6	8.9	22.4				
B^+	4.5	4.8	7.8	12.0				

Frank Meier (Duke University)

Results for $B^+ \to \overline{D}{}^0 \pi^+ \pi^- \ell^+ \nu_\ell$ (preliminary)

- $N_{\rm sig}(B^+ \to \overline{D}{}^0 \pi^+ \pi^- e^+ \nu_e) = 197 \pm 20$
- $N_{\rm sig}(B^+ \to \overline{D}{}^0 \pi^+ \pi^- \mu^+ \nu_\mu) = 131 \pm 18$
- ► BaBar found 171 ± 30 $B^+ \rightarrow \overline{D}{}^0 \pi^+ \pi^- \ell^+ \nu_\ell$

- good agreement of combined value with BaBar measurement
- statistical uncertainty reduced by factor 2

Results for $B^+ \to \overline{D}^{*0} \pi^+ \pi^- \ell^+ \nu_\ell$ (preliminary)

• $N_{\rm sig}(B^+ \to \overline{D}^{*0} \pi^+ \pi^- e^+ \nu_e) = 57 \pm 14$

•
$$N_{\rm sig}(B^+ \to \overline{D}^{*0} \pi^+ \pi^- \mu^+ \nu_\mu) = 39 \pm 14$$

► BaBar found 74 ± 36 $B^+ \rightarrow \overline{D}^{*0} \pi^+ \pi^- \ell^+ \nu_\ell$ signal candidates

- excellent agreement between electron and muon mode and with result by BaBar
- total uncertainty 2.5 times lower

Frank Meier (Duke University)

Resonance model of $B^+ \to \overline{D}^{(*)0} \pi^+ \pi^- \ell^+ \nu_\ell$

- ▶ use sPlot technique to calculate sWeights from fit of $E_{miss} p_{miss}$ distribution
- ▶ plot background-subtracted invariant $m(D^0\pi^+\pi^-)$ mass distribution (statistics too low for $D^{*0}\pi^+\pi^-$)

► decay via narrow D_1^0 resonance $(m(D_1^0)_{PDG} = (2422.1 \pm 0.6) \text{ MeV}/c^2)$ can be confirmed

Frank Meier (Duke University)

Results for $B^0 \rightarrow D^- \pi^+ \pi^- \ell^+ \nu_\ell$ (preliminary)

- $N_{\rm sig}(B^0 \to D^- \pi^+ \pi^- e^+ \nu_e) = 88 \pm 14$
- $N_{\rm sig}(B^0 \to D^- \pi^+ \pi^- \mu^+ \nu_\mu) = 58 \pm 12$
- ► BaBar found 56 ± 17 $B^0 \rightarrow D^- \pi^+ \pi^- \ell^+ \nu_\ell$

- total branching fraction compatible with BaBar value
- statistical uncertainty again reduced by factor 2

Results for $B^0 \rightarrow D^{*-} \pi^+ \pi^- \ell^+ \nu_\ell$ (preliminary)

- $N_{\rm sig}(B^0 \to D^{*-} \pi^+ \pi^- e^+ \nu_e) = 11 \pm 9$
- $N_{\rm sig}(B^0 \to D^{*-} \pi^+ \pi^- \mu^+ \nu_\mu) = 37 \pm 10$
- BaBar found 65 ± 18 $B^0 \rightarrow D^{*-} \pi^+ \pi^- \ell^+ \nu_\ell$

Duke

Resonance model of $B^0 \rightarrow D^{(*)-} \pi^+ \pi^- \ell^+ \nu_\ell$

- \blacktriangleright use sPlot technique to calculate sWeights from fit of $E_{\rm miss}-p_{\rm miss}$ distribution
- ▶ plot background-subtracted invariant $m(D^-\pi^+\pi^-)$ mass distribution (statistics too low for $D^{*-}\pi^+\pi^-$)

► clear peak at D_1^+ resonance $(m(D_1^+)_{PDG} = (2422.1 \pm 0.6) \text{ MeV}/c^2)$, but broader than for B^+ case

Frank Meier (Duke University)

 $0.43 \pm 0.08 \pm 0.03$

 $0.405 \pm 0.036 \pm 0.041$

 $0.371 \pm 0.023 \pm 0.010$

 $0.332 \pm 0.026 \pm 0.010$

 $0.353 \pm 0.017 \pm 0.009$

0.5

0.55 $\mathcal{BR}(B^0 \rightarrow \overline{D}{}^0 \pi^- \ell^+ \nu_\ell)$ [%]

Results for $B \rightarrow D^{(*)} \pi \ell \nu_{\ell}$ (preliminary)

BaBar PRL 100, 151802 (2008)

Belle PRD 98, 012005 (2018)

Belle (FEI)

Belle (FEI)

Belle (FEI)

0.3

0.35

0.4

0.45

all branching fractions a little bit lower than the previous world average and at least twice as precise

Duke

Conclusion

- ▶ world's best measurements of $B \rightarrow D^{**} \ell \nu_{\ell}$ branching fractions
- ▶ improvement of at least factor 2 over any other measurement, mainly thanks to new tagging algorithm
- all results of combined branching fractions compatible with previous world averages

$$\begin{split} &\mathcal{B}(B^0 \to \overline{D}^0 \pi^- \ell^+ \nu_\ell) = 0.353 \pm 0.017 \text{ (stat)} \pm 0.009 \text{ (syst)} \,\% \\ &\mathcal{B}(B^+ \to D^- \pi^+ \ell^+ \nu_\ell) = 0.384 \pm 0.014 \text{ (stat)} \pm 0.017 \text{ (syst)} \,\% \\ &\mathcal{B}(B^0 \to \overline{D}^{*0} \pi^- \ell^+ \nu_\ell) = 0.548 \pm 0.023 \text{ (stat)} \pm 0.014 \text{ (syst)} \,\% \\ &\mathcal{B}(B^+ \to D^{*-} \pi^+ \ell^+ \nu_\ell) = 0.537 \pm 0.019 \text{ (stat)} \pm 0.026 \text{ (syst)} \,\% \end{split}$$

$$\begin{split} \mathcal{B}(B^0 &\to D^- \pi^+ \pi^- \ell^+ \nu_\ell) = 0.143 \pm 0.018 \; (\text{stat}) \pm 0.013 \; (\text{syst}) \; \% \\ \mathcal{B}(B^+ \to \overline{D}^0 \pi^+ \pi^- \ell^+ \nu_\ell) = 0.175 \pm 0.015 \; (\text{stat}) \pm 0.014 \; (\text{syst}) \; \% \\ \mathcal{B}(B^0 \to D^{*-} \pi^+ \pi^- \ell^+ \nu_\ell) = 0.069 \pm 0.020 \; (\text{stat}) \pm 0.015 \; (\text{syst}) \; \% \\ \mathcal{B}(B^+ \to \overline{D}^{*0} \pi^+ \pi^- \ell^+ \nu_\ell) = 0.072 \pm 0.015 \; (\text{stat}) \pm 0.009 \; (\text{syst}) \; \% \end{split}$$

- study of D^{**} mass spectrum using sPlot technique
- paper to be submitted to journal soon

Backup

Frank Meier (Duke University)

Measurements of $B
ightarrow D^{**} \ell
u_\ell$ decays at Belle

25.02.2022 1 / 17

 $B^+ \rightarrow D^- \pi^+ \ell^+ \nu_\ell$

Duke

 $B^0 \to \overline{D}{}^0 \pi^- \ell^+ \nu_\ell$

 $B^+ \rightarrow D^{*-} \pi^+ \ell^+ \nu_\ell$

Fit of $B^+ \rightarrow \overline{D}^{*0} \pi^+ \pi^- \ell^+ \nu_\ell$

PDG averages of exclusive $B \rightarrow X_c \ell \nu_\ell$ branching fractions

- BR $(B^+ \to \overline{D}^0 \ell^+ \nu_\ell) = (2.35 \pm 0.09)\% (\sigma = 3.8\%)$
- BR $(B^+ \to \overline{D}^{*0} \ell^+ \nu_\ell) = (5.66 \pm 0.22)\% (\sigma = 3.9\%)$
- BR $(B^+ \to D^- \pi^+ \ell^+ \nu_\ell) = (0.44 \pm 0.04)\% (\sigma = 9.1\%)$
- BR $(B^+ \to D^{*-} \pi^+ \ell^+ \nu_\ell) = (0.60 \pm 0.04)\% \ (\sigma = 6.7\%)$

- BR $(B^0 \to D^- \ell^+ \nu) = (2.31 \pm 0.10)\% (\sigma = 4.3\%)$
- BR $(B^0 \to D^{*-} \ell^+ \nu_\ell) = (5.05 \pm 0.14)\% (\sigma = 2.8\%)$
- ► BR $(B^0 \to \overline{D}{}^0 \pi^- \ell^+ \nu_\ell) = (0.41 \pm 0.05)\% (\sigma = 12.2\%)$
- BR $(B^0 \to \overline{D}^{*0} \pi^- \ell^+ \nu_\ell) = (0.58 \pm 0.08) \% (\sigma = 13.8 \%)$

Frank Meier (Duke University)

Measurements of $B \to D^{**} \ell \nu_{\ell}$ decays at Belle

25.02.2022 6 / 17

Comparison with BaBar

- ▶ sources of largest systematic uncertainties in BaBar publication
 - ► decay model: $D^{**} \rightarrow D\pi\pi$ vs $D^{**'} \rightarrow D^{**}\pi$ followed by $D^{**} \rightarrow D\pi$
 - Iimited size of MC samples to model fit PDF
 - modeling of MVA input variables

Duke

sPlot technique

- ► sPlot: a statistical tool to unfold data distributions (Nucl.Instrum.Meth. A 555 (2005))
- method to statistically subtract background contributions
- perform extended maximum likelihood fit of discriminating variable
- calculate weights based on the yields and the pdf values
- apply weights to spectator variables \Rightarrow signal-only distribution
 - no correlation allowed between discriminating and spectator variable

Final state particle selection

- ▶ good photons: $E_{\gamma} > 0.075/0.05/0.1$ GeV (FWD / BRL / BWD)
- $\blacktriangleright~\mu^{\pm},~e^{\pm}:~\mathrm{d}\mathbf{r}<0.5\,\mathrm{cm},~|\mathrm{d}\mathbf{z}|<2\,\mathrm{cm},~p>0.3~\mathrm{GeV}/c$
- ▶ μ^{\pm} : muIDBelle > 0.9, eIDBelle < 0.8, 25 ° < θ < 145 °
- ▶ e^{\pm} : muIDBelle < 0.9, eIDBelle > 0.8, inCDCAcceptance
 - ► Bremsstrahlung correction using closest good photon in 5° cone
- ▶ K, p, π : dr < 2 cm, $|d\mathbf{z}| < 5$ cm, muIDBelle < 0.9, eIDBelle < 0.8
- K^{\pm} : atcPIDBelle(3,2) > 0.6
- ▶ π^{\pm} : atcPIDBelle(3,2) < 0.4, atcPIDBelle(4,3) < 0.2 or atcPIDBelle(4,2) < 0.2
- $\blacktriangleright~K_{\rm S}^0:$ K_S0:mdst with goodBelleKshort and $0.482 < m_{\pi^+\pi^-} < 0.514~{\rm GeV}/c^2$
- ▶ π^0 : pi0:mdst with $0.12 < m_{\gamma\gamma} < 0.15$ GeV/ c^2 and good photons

Reconstruction of D mesons

- 1 $D^0 \rightarrow K^- \pi^+$ 7. $D^0 \to K_{\rm s}^0 \pi^+ \pi^- \pi^0$ 1. $D^+ \rightarrow K_c^0 \pi^+$ 5 $D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$ 2 $D^0 \rightarrow K^- \pi^+ \pi^0$ 8 $D^0 \rightarrow \pi^+ \pi^-$ 2. $D^+ \rightarrow K_c^0 \pi^+ \pi^- \pi^+$ 6. $D^+ \to K_c^0 \pi^+ \pi^0$ 3. $D^0 \to K^- \pi^+ \pi^+ \pi^-$ 9. $D^0 \to K^- \pi^+ \pi^- \pi^+ \pi^0$ 3. $D^+ \rightarrow K^- \pi^+ \pi^+$ 7. $D^+ \rightarrow K^0_c K^+$ 4. $D^0 \to K_s^0 \pi^+ \pi^-$ 10. $D^0 \to \pi^+ \pi^- \pi^0$ 4 $D^+ \rightarrow K^- K^+ \pi^+$ 8 $D^+ \rightarrow \pi^+ \pi^0$ 9 $D^+ \rightarrow \pi^+ \pi^- \pi^+$ 5 $D^0 \rightarrow K^- K^+$ 6. $D^0 \rightarrow K^0_{\rm s} \pi^0$
- ▶ perform TreeFit with mass constraints on D, K_s^0 , and π^0 (no TreeFit for $D^0 \rightarrow K_s^0 \pi^0$)
- ▶ mass window: $\pm 15 \text{ MeV}/c^2$ for modes with at least one charged track and no π^0 , $\pm 25 \text{ MeV}/c^2$ otherwise
- usefulness of D modes studied

Frank Meier (Duke University)

Usefulness of D reconstruction modes for $B \to D^* \ell \nu_\ell$

- exclude D reconstruction modes individually
- perform signal extraction using six streams
- ▶ plot average signal significance defined as signal yield divided by (statistical) fit uncertainty

- identify modes that boost signal significance and those that reduce sensitivity
- previously used D modes almost always useful

Reconstruction of D^* and B modes

- $\blacktriangleright D^{*0} \to D^0 \pi^0$
 - 0.1389 < $m_{D^{*0}} m_{D^0}$ < 0.1455 GeV/ c^2
- $\blacktriangleright D^{*\pm} \rightarrow D^0 \pi^{\pm}, \ D^{*\pm} \rightarrow D^{\pm} \pi^0$
 - $|m_{D\pi} m_{D^{*\pm}}(\text{PDG})| < 3 \text{ MeV}/c^2$
- \blacktriangleright perform TreeFit with mass constraints on $D^*,\,D,\,K^0_{\rm S},\,\pi^0$
- $\blacktriangleright \ B^0 \to D^- \ell^+ \nu, \ B^0 \to D^{*-} \ell^+ \nu_\ell, \ B^+ \to \overline{D}{}^0 \ell^+ \nu_\ell, \ B^+ \to \overline{D}{}^{*0} \ell^+ \nu_\ell$
- $\blacktriangleright B^0 \to \overline{D}{}^0 \pi^- \ell^+ \nu_\ell, B^0 \to \overline{D}{}^{*0} \pi^- \ell^+ \nu_\ell, B^+ \to D^- \pi^+ \ell^+ \nu_\ell, B^+ \to D^{*-} \pi^+ \ell^+ \nu_\ell$
 - 2.05 < $m_{D\pi}$ < 3 GeV/ c^2
- ▶ ROE mask for no additional track in the event: dr < 2 cm, |dz| < 5 cm
- criteria for best $\Upsilon(4S)$ candidate selection
 - ▶ best B_{tag} signal probability, then B_{sig} with D^* preferred, then B_{sig} with lower $|m_D m_D(\text{PDG})|$

Frank Meier (Duke University)

Vetoes to suppress peaking background

- require $p_{\text{miss}} > 200 \text{ MeV}/c$ to suppress purely hadronic decays
- some B⁺→ D^{*−}π⁺ℓ⁺ν_ℓ with D^{*−}→ D
 ⁰π[−] fail D^{*} selection (either mass window or vertex fit) and are instead reconstructed as B⁺→ D
 ⁰π⁺π[−]ℓ⁺ν_ℓ
- \blacktriangleright veto this background contribution by requiring $m(\overline{D}{}^0\pi^-)>$ 2.05 GeV/ c^2
- ▶ second veto: suppress cross-feed if π^- is actually from B_{tag}
 - ▶ combine each π^- of B_{tag} with \overline{D}^0 from $B^+ \to \overline{D}^0 \pi^+ \pi^- \ell^+ \nu_\ell$ reconstruction
 - require $m(\overline{D}{}^0\pi^-) > 2.05$ GeV/ c^2 for all combinations
- if at least one reconstructed $B \to D^{(*)} \pi \ell \nu_{\ell}$ and one reconstructed $B \to D^{(*)} \pi \pi \ell \nu_{\ell}$ candidate present in same event and both are in signal region, throw away all candidates of this event

Fit function for D^{**} mass distribution

 $P(x; x_0, \omega_0) = \frac{1}{N} \frac{1}{(x_0 - x)^2 + \frac{1}{4}\omega_0^2}$

naive Breit-Wigner function

• relativistic Breit-Wigner with "mass-dependent" width $\Gamma(m)$

$$\frac{dN}{dm} \propto \frac{m \cdot \Gamma(m)}{(m_0^2 - m^2)^2 + m_0^2 \Gamma^2(m)}$$
$$\Gamma(m) = \Gamma_0 \frac{m_0}{m} \left(\frac{q}{q_0}\right)^{2L+1} \frac{F_L(Rq)}{F_L(Rq_0)}$$

 \blacktriangleright q is momentum of one of the daughter particles in the resonance's rest frame

$$q = \frac{1}{2m} \sqrt{\left(m^2 - (m_1 + m_2)^2\right) \left(m^2 - (m_1 - m_2)^2\right)}$$

- \blacktriangleright q_0 uses constant peak mass m_0 instead of candidate-by-candidate mass m
- ▶ L is orbital angular momentum quantum number between resonance and bachelor particle
- $F_L(x)$ are Blatt-Weisskopf form factors
- R is meson radius, I used R = 5 GeV $^{-1} \approx 1$ fm so far

Frank Meier (Duke University)

Fitting D^{**} signal MC

- MC production with out-dated values for peak, width and cut-off
- non-relativistic Breit-Wigner used for generation of resonances
- ▶ for resonances close to threshold relativistic BW necessary
- convolve BW with Gaussian of width 2 MeV/ c^2 to account for resolution effects

		MC		fit		2(peak-threshold)	
	threshold	cut-off	peak	width	x_0	ω_0	width
$D_0^{*+} \rightarrow D^0 \pi^+$	2.004 40	2.097	2.4	0.1503	$2.3889{\pm}0.0012$	$0.1530{\pm}0.0027$	5.3
$D_0^{*0} \rightarrow D^- \pi^+$	2.009 22	2.101	2.4	0.1503	$2.3895 {\pm} 0.0008$	$0.1419{\pm}0.0018$	5.2
$D_1^+ \rightarrow D^{*0} \pi^+$	2.146 42	2.153	2.423	0.0200	2.4220 ± 0.0006	$0.0210{\pm}0.0013$	27.7
$D_1^0 \rightarrow D^{*-} \pi^+$	2.14983	2.1503	2.4223	0.0204	2.4213 ± 0.0002	$0.0212{\pm}0.0004$	26.7
$D_2^{*+} \rightarrow D^0 \pi^+$	2.004 40	2.1481	2.4601	0.037	$2.4606 {\pm} 0.0004$	$0.0394{\pm}0.0008$	24.6
$D_2^{*0} \rightarrow D^- \pi^+$	2.009 22	2.1521	2.4611	0.043	2.4612 ± 0.0003	$0.0454{\pm}0.0006$	21.0
$D_{1}^{\prime +} \to D^{*0} \pi^{+}$	2.146 42	2.145	2.445	0.2503	2.410 ± 0.007	0.243 ± 0.017	2.4
${D'}_1^{\bar 0} \rightarrow D^{*-} \pi^+$	2.14983	2.145	2.445	0.2503	$2.4096{\pm}0.0020$	$0.229 {\pm} 0.005$	2.4

- except for D'_1 states fitted peak masses more or less compatible with generated ones
- $\blacktriangleright\,$ fitted width compatible with generated width within a few $\sigma\,$
- tried fitting with relativistic BW to test implementation
 - ▶ works, fit results close to non-relativistic model but plots indicate clear shape differences (see backup)

Frank Meier (Duke University)

Fit of sweighted $m(D^{**})$ distribution for charged tags

- for now use sum of non-relativistic BW convolved with Gaussian (RooVoigtian)
- $m(D_0^{*0}) = (2.274 \pm 0.004) \text{ GeV}/c^2$
 - MC value $m(D_0^{*0}) = 2.308 \text{ GeV}/c^2$
- $\sigma(D_0^{*0}) = (0.245 \pm 0.014) \text{ GeV}/c^2$
 - MC value $\sigma(D_0^{*0}) = 0.276~{\rm GeV}/c^2$
- $m(D_2^{*0}) = (2.4588 \pm 0.0006) \text{ GeV}/c^2$
 - MC value $m(D_2^{*0}) = 2.4589 \text{ GeV}/c^2$
- $\sigma(D_2^{*0}) = (0.0209 \pm 0.0011) \text{ GeV}/c^2$
 - MC value $\sigma(D_2^{*0}) = 0.023~{\rm GeV}\!/c^2$
- ► additional D*(2640)⁰ component in generic MC with ultra-narrow width?

Fit of sweighted $m(D^{**})$ distribution for neutral tags

- for now use sum of non-relativistic BW convolved with Gaussian (RooVoigtian)
- $m(D_0^{*+}) = (2.233 \pm 0.008) \text{ GeV}/c^2$
 - MC value $m(D_0^{*+}) = 2.308 \text{ GeV}/c^2$

•
$$\sigma(D_0^{*+}) = (0.223 \pm 0.022) \text{ GeV}/c^2$$

- MC value $\sigma(D_0^{*+}) = 0.276~{\rm GeV}\!/c^2$
- $m(D_2^{*+}) = (2.4585 \pm 0.0012) \text{ GeV}/c^2$
 - MC value $m(D_2^{*+}) = 2.459 \text{ GeV}/c^2$
- $\sigma(D_2^{*+}) = (0.0327 \pm 0.0016) \text{ GeV}/c^2$
 - MC value $\sigma(D_2^{*+}) = 0.025~{\rm GeV}\!/c^2$
- ► additional D*(2640)⁺ component in generic MC with ultra-narrow width?