#### P-ONE

— The Pacific Ocean Neutrino Explorer —

Matthias Danninger for the P-ONE Collaboration Lake Louise Winter Institute 2022





#### P-ONE — The current vision

P-ONE Collaboration, Nature Astronomy (2020)



#### Design inspired by existing experiments:

- Array of instrumented vertical lines (IceCube)
- Multi PMT optical sensors (KM3Net)
- Clustered deployment (GVD)



What is different?



#### P-ONE — The current vision

P-ONE Collaboration, Nature Astronomy (2020)



#### Design inspired by existing experiments:

- Array of instrumented vertical lines (IceCube)
- Multi PMT optical sensors (KM3Net)
- Clustered deployment (GVD)



#### What is different?

First Neutrino Telescope hosted by an existing large scale oceanographic infrastructure:

OCEAN NETWORKS CANADA





VENUS Observatory

Discover the ocean. Understand the plane

**Explorer** 

- One of world's largest and most advanced cabled ocean observatory
- NEPTUNE observatory:
  - •completed in 2009
  - 800km loop of fibre optic cable, data flow and power infrastructure
  - designed for long-lived, highly reliable underwater operations
  - high-speed data link (10GB/s)
  - •high power (at least 9 kW/node)
  - "plug and play" basis allowing a highly modular deployment and maintenance

Fuca Plate

**→** 840 km of underwater fibre optic cable

2022-02-24 | Matthias Danninger | SFU

An Initiative of the University of Victoria







- Goal Characterize optical properties
- Interface, anchoring and deployment operation by ONC
  - JINST 14, P02013 (2019) and EPJC 81, 1071 (2021)









- Goal Characterize optical properties
- Interface, anchoring and deployment operation by ONC
  - JINST 14, P02013 (2019) and EPJC 81, 1071 (2021)









- Goal Characterize optical properties
- Interface, anchoring and deployment operation by ONC
  - JINST 14, P02013 (2019) and EPJC 81, 1071 (2021)







SFU





- Goal Characterize optical properties
- Interface, anchoring and deployment operation by ONC
- JINST 14, P02013 (2019) and EPJC 81, 1071 (2021)











SFU



#### 7

- 2 P-ONE pathfinder missions (2018 & 2020)
- Goal Characterize optical properties
- Interface, anchoring and deployment operation by ONC
  - JINST 14, P02013 (2019) and EPJC 81, 1071 (2021)











## Key result 1: Attenuation length

- Measure Attenuation length in the water
- For different wavelength
- Constant over 2 years of measurements
- Optical properties are good!



150 m

110m

70m

50m

30m







### Key result 2: 40K in situ measurement

- Understanding the 40K background
- Natural in-situ calibration with K40 possible  $^{40}{
  m K} 
  ightarrow ^{40}{
  m Ca} + e^- + \bar{
  u}_e$
- Cross-check of  $\lambda_{att}$  results, detector and site model







SDOM PMT housing Geant4 model







### Key result 2: 40K in situ measurement

- Understanding the 40K background
- Natural in-situ calibration with K40 possible  $^{40}{
  m K} \to ^{40}{
  m Ca} + e^- + \bar{
  u}_e$
- Cross-check of  $\lambda_{att}$  results, detector and site model
- Consistent results!

Salinity from this work: 2.5±1.4%
Salinity from ONC: 3.482±0.001%
Salinity at ANTARES site: 3.844%















## Key result 3: Bioluminescence as expected



- Bioluminescence is modulated with the tides
- Constant over more than 2 years of operations  $\longrightarrow$  no big bursts



The deep sea site of Cascadia basin is optically qualified to host P-ONE



#### Better characterization of Bioluminescence



- Measurement of wavelength dependent emission spectrum of bioluminescence with PMT spectrometers
- Comparison to detailed simulation of bioluminescence

Interdisciplinary: oceanography, microbiology, climate change related studies





t [s]





### Better characterization of Bioluminescence







Next steps towards a neutrino observatory





# P-ONE — prototype line (2023)

- Construction and deployment of a complete P-ONE mooring line
- Proof and verification of;
  - detector design
  - deployment techniques
  - positioning calibration (we aim to use optical position system)

















# P-ONE — prototype line (2023)

- Construction and deployment of a complete P-ONE mooring line
- Proof and verification of;
  - detector design
  - deployment techniques
  - positioning calibration (we aim to use optical position system)







#### Optical Calibration

- Understanding ocean water is key to the success
- Synergy with IceCube









### P-ONE — up to 10 line "Explorer" (2023 - 2026)



10 string Explorer



- up to 10 lines
- 200 modules
- ~100m spacing
- Instrumented Volume ~1/8 km3
- Exploring physics potential for:
  - atm. neutrinos
  - moon shadow
  - ambient background
  - and more...



### P-ONE — up to 10 line "Explorer" (2023 - 2026)



2027 and beyond





P-ONE

### The vision: from a single telescope (IceCube) to a multi network

PoS(ICRC2021)1185

<u>Assumption:</u> IceCube size detector at KM3NeT, GVD, and P-ONE location <u>Impact:</u>

- P-ONE will boost exposure to the Southern Sky by order of magnitudes
- A global network will achieve excellent full sky coverage for high-E astrophysical neutrinos





### Summary

















If you want to learn more: https://www.pacific-neutrino.org/

- Ocean Networks Canada is an exciting opportunity for neutrino physics
  - Cascadia Basin is a suitable deep sea site
- Prototype line being developed
- New Collaborators are welcome to join and support the efforts!





#### Extras







# STRAW — Strings for absorption length in water







#### Deployment was a 100% success!

- M. Boehmer et al JINST 14 P02013 (2019)
- Site characteristics EPJ C 81, 1071 (2021)

More neutrinos, better neutrinos!



- P-ONE project has large emphasis on collaboration and complementarity with existing efforts such as IceCube, GvD (Baikal), and KM3NeT —> we welcome collaboration/participation
- We aim for combined cross-calibration efforts to boost precision of all measurements at all neutrino telescope sites worldwide (POCAM, LiDAR, etc..)

- $\bullet$  Horizontal coverage from which HE  $\nu$  will not be affected by the Earth absorption
- With IceCube +3 neutrino telescopes (similar size), current sensitivity to astrophysical neutrinos would be improved by up two orders of magnitude (gain depends on energy)!









- $\bullet$  Horizontal coverage from which HE  $\nu$  will not be affected by the Earth absorption
- With IceCube +3 neutrino telescopes (similar size), current sensitivity to astrophysical neutrinos would be improved by up two orders of magnitude (gain depends on energy)!









#### AT HIGH ENERGY THE EARTH IS OPAQUE TO NEUTRINOS







IceCube Collaboration, "Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption

#### Photons in ice and water





