Latest Oscillation Results from NOvA

Matt Judah, for the NOvA Collaboration Lake Louise Winter Institute 2022

Neutrino Oscillations

Neutrinos are created as one flavor ...

... but can be detected in another

Neutrino Oscillations

Neutrinos are created as one flavor ...

Each flavor is a linear combination of mass states:

Oscillations depend on all these parameters and the differences between the mass differences!

... but can be detected in another

Pittsburgh Latest Oscillation Res

NOvA Physics Program

 NOvA: long-baseline neutrino oscillation experiment (810 km baseline)

NOvA Physics Program

- NOvA: long-baseline neutrino oscillation experiment (810 km baseline)
- Addresses open questions:
 - Sign of Δm^2_{32} : normal or inverted hierarchy?
 - Value of θ_{23} : maximal mixing or (ν_{μ}/ν_{τ} symmetry)
 - Is there CP violation in the lepton sector?

Using $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{\mu}$ and antineutrino oscillations

$$\delta_{CP} = ?$$

NOvA Physics Program

- NOvA: long-baseline neutrino oscillation experiment (810 km baseline)
- Addresses open questions:
 - Sign of Δm_{32}^2 : normal or inverted hierarchy?
 - Value of θ_{23} : maximal mixing or (ν_{μ}/ν_{τ} symmetry)
 - Is there CP violation in the lepton sector?

Using $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{\mu}$ and antineutrino oscillations

- Broad physics program:
 - Neutrino-nucleus cross-section measurements [PRD, arXiv:1902.00558]
 - Search for sterile neutrinos [PRL, arXiv:2106.04673]

• Astrophysics: Multi-muon air showers [PRD, arXiv:2105.03848] And More! ^{University of} Pittsburgh Latest Oscillation Results from NOvA - M. Judah

The NUMI Beam

- Typically runs ~650kW:
 - 5 near detector events / spill
 - ~1 event / day at the far detector
- Charge select pions to get 96% (83%) pure muon neutrino (antineutrino) beam
- Current datasets have:

Target

University of **Pittsburgh**

 ≈1 million events in the near detector for both beam modes

Latest Oscillation Results from NOvA - M. Judah

2020 Dataset

Why neutrinos and antineutrinos?

- 1. In vacuum and no CP-violation, ν and $\bar{\nu}$ oscillation probabilities are equal
- 2. **CP-violation** produces opposite effects for ν and $\bar{\nu}$ oscillation probabilities
- 3. Matter effects generate opposite effects depending on Mass **Hierarchy**
- 4. θ_{23} can increase or decrease oscillation probabilities

University of

Pittsburgh

δ=0

2.

 $\delta = \pi/2$

δ=0

The NOvA Detectors

- 2 functionally identical detectors: 14 mrad off-axis and 810 km apart
- Orthogonal layers of segmented PVC filled with liquid scintillator 3D tracking and calorimetry
- Optimized for electron showers: ~6 samples per X_0 and ~60% active
- Good time resolution (~5 ns) and spatial resolution(~few cm)
- Allows clear separation of interactions

To Readout

Event Selection

- Identify neutrino flavor using convolution neural network.
 - Deep-learning technique inspired by computer vision
- Before main algorithm to ID events:
 - · Events are contained

University of

• Reject cosmic rays with BDTs

Muon Neutrinos at the ND

- Use $\nu_{\!\mu}$ sample to predict $\nu_{\!\mu}$ and ν_e signal at FD

University of

• Dominant uncertainties from flux and $\nu - A$ interaction uncertainties

- $\nu_e\text{-like}$ spectrum shows backgrounds to the $\nu_\mu \rightarrow \nu_e$ signal
- Sample used to predict the backgrounds at the FD
- Largest background is intrinsic beam $\nu_e \ \& \ \bar{\nu}_e$

University of

Far Detector ν_{μ} CC Spectrum

v-beam	NOvA Preliminary	⊽-beam	antineutrino app
	Core only	Events / 12.50×10 ²⁰ POT	Core only FD data 2020 best-fit 1-σ syst range Wrong sign bkg Total beam bkg Cosmic bkg 2 3 4
Total Observed	82	Total Observed	33
Total Prediction	85.8	Total Prediction	n 33.2
Wrong-sign	1.0	Wrong-sig	n 2.3
Beam Bkgd.	22.7	Beam Bkgo	d. 10.2
Cosmic Bkgd.	3.1	Cosmic Bkgo	d. 1.6
Tatal Dissal	26.0	Total Plyad	14.0

We observe no strong $\nu_{e}/\bar{\nu}_{e}$ asymmetry

NOvA Preliminary

Results

- Best Fit:
 - Normal Hierarchy
 - $\Delta m_{32}^2 = (2.41 \pm 0.07) \times 10^{-3} \text{ eV}^2$
 - $\sin^2 \theta_{23} = 0.57^{+0.04}_{-0.03}$
- Precision measurements of Δm^2_{32} and $\sin^2 \theta_{23}$
- Constraints on δ_{CP}
 - NH: $\delta_{CP}=3\pi/2$ disfavored at ~ 2σ
 - IH: $\delta_{CP} = \pi/2$ disfavored at >3 σ
- Working on a joint fit of the data from NOvA and T2K!

University of Pittsburgh

The Future

University of

- Plan to reduce the largest systematic uncertainties related to detector energy scale using our test beam experiment
- NOvA can reach 3σ hierarchy determination sensitivity for 30-50% of δ_{CP} values with full dataset and upgraded beam

Questions?

University of Pittsburgh