

Oscillation research with KM3NeT/ORCA

KM3NeT

Lukas Maderer On behalf of the KM3NeT collaboration

Lake Louise Winter Institute 2022 23/02

KM3NeT/ORCA: Overview

•Oscillation Research with Cosmics in the Abyss •115 detection units (DU) with 18 optical modules (DOM) to detect Cherenkov light from neutrino interactions •Instrumented volume \approx 7Mton water Currently 10 DUs deployed and operating MATION

Event display

Use **time** and **space** information of hits to reconstruct neutrino **energy** and **direction**

 $\mathcal{O}(10^5) \nu$ -events/year

- •Effective volume after trigger condition and selection cuts
- •Less light at low energies => lower detection rates
- • v_{μ} can be seen due to long muon tracks => increase of effective volume

Energy reconstruction

2 reconstruction algorithms (tracks & shower)

Track/shower separation via Random decision forest (RDF) based on:

- Reconstruction output
- Fit likelihoods
- Geometry conditions
- Hit distribution PDFs
- •Etc. ...

Atmospheric muon suppression

- •RDF classifies v/atm. Muon
- •Analogue for noise (K40 decay, bioluminescence)

KM3NeT/ORCA, Lukas Maderer, LLWI 22

NMO sensitivity

NMO hypothesis test

Matter enhanced oscillations occur for (anti-)neutrinos in case of NO(IO):

- 1. Simulate expected event rate (3yrs) for normal ordering (NO)
- 2. Calculate Poisson likelihood χ^2 vs. inverted ordering (IO)

- NMO sensitivity dependent on Θ₂₃ octant and true NMO
- Favourable normal ordering scenario: 5σ in ~4 years

Independent approach of NMO determination => Tension in Δm_{31}^2 best-fit value for wrong assumption of NMO

Oscillation parameters

- High resolution of oscillation parameters
- •Determination of Θ_{23} octant

Tau appearance

Atm. Neutrino flux is (almost) pure of $v_{\tau} \Rightarrow$

- 1. Tau appearance as evidence for oscillation
- 2. Measurement of PMNS *τ*-sector - test unitarity!

Hypothesis test with scaling of v_{τ}^{CC} event rate

May be already visible in current data!

First glimpse at ORCA6

ORCA6 real data analysis

• Oscillations are visible

• Reasonable parameter sensitivity: $\sin^2 \Theta_{23} = 0.5^{+0.10}_{-0.10}$ $\Delta m^2_{31} = 1.95^{+0.24}_{-0.22}$

Summary and outlook

- Published analyses:
 - •NMO sensitivity/Tau appearance
 - Sterile neutrinos
- •In progress:
 - Quantum decoherence
 - Neutrino decay
 - Non-standard interactions
 - •Tau appearance in 6DU data
 - •Most important: more DUs!

- •KM3NeT URL: <u>https://www.km3net.org</u>
- •NMO/Tau DOI: 10.1140/epjc/s10052-021-09893-0
- •ORCA/JUNO DOI: 10.1088/1748-0221/16/11/C11007
- •ORCA6 DOI: 10.22323/1.395.1123
- •Sterile DOI: 10.1007/JHEP10(2021)180

Backup slides

KM3NeT/ORCA, Lukas Maderer, LLWI 22

Noise suppression

NMO hypothesis test

- 1. Simulate expected event rate (3yrs) for normal ordering (NO)
- 2. Calculate Poisson likelihood χ^2 vs. inverted ordering (IO)