Neutrino Astronomy with KM3NeT/ARCA

Sara Rebecca Gozzini

on behalf of the KM3NeT Collaboration

Instituto de Física Corpuscular (IFIC), University of Valencia and CSIC Lake Louise Winter Institute 2022

February 24, 2022

High-energy cosmic neutrinos

Neutrinos are expected from cosmic collisions yielding particles such as π^{\pm} and μ^{\pm} . Two major mechanisms for high-energy neutrino production: pp and $p\gamma$ scattering.

This can take place in different environments

- Jets of active galactic nuclei (AGNs)
- Starburst galaxies
- Tidal disruption events (TDEs)
- Expanding front of supernova remnants
- Gamma-ray bursts

Neutrino astronomy

High-energy astrophysics is multi-wavelength and multi-messenger. It includes:

- Observation of source = emission (γ rays, ν) caused by projectile (hadron? lepton?) on target (depends on source environment)
- Direct observation of projectile (cosmic rays): anisotropy

Extragalactic sources with high density of γ (AGN jets)

$$p + \gamma \rightarrow \Delta^+ \rightarrow \pi^0 + p \text{ or } \pi^+ + n$$
 Inverse Compton $e + \gamma$

Galactic sources with mixed environment with molecular gas (clouds), starlight, IR light

$$p + N \rightarrow X + \max(\pi^{\pm}, \pi^{0})$$
 Inverse Compton $e + \gamma$, Bremsstrahlung $e + p$

Neutrinos are fingerprint of hadronic processes.

Neutrino astronomy in the making: Cherenkov detectors

Look through the Earth for lepton tracks from $\nu \to I$ conversion. $\sigma_{\nu \to I} \sim 10^{-38}$ cm² at 1 GeV!

- Work at very faint signal rates instrumenting large reservoirs of transparent medium
- Need excellent angular resolution for directional reconstruction (connected with efficiency, geometry and scattering length of light in medium)
- Need algorithms for energy reconstruction (relying on Monte Carlo simulations)

KM3NeT

Infrastructure of different detectors, remotely operated, almost 100% duty cycle, one unique data set (broad physics program), with transfer of knowledge from ANTARES

Zoom on the layout of the KM3NeT building block

ORCA and ARCA same design

same digital optical module (DOM) holds 31 photomultipliers

ARCA: 90 m inter-string ARCA: 36 m inter-DOM ORCA: 23 m inter-string ORCA: 9 m inter-DOM

Experimental challenge

Astrophysical ν : atmospheric ν : atmospheric $\mu=1:10^4:10^{10}$

Tracks: predominantly ν_{μ} CC; angular resolution down to 0.1° at 1 PeV **Showers**: predominantly $\nu_{\rm e}$ CC or any NC; angular resolution 1° at 1 PeV

Typical search modes

Diffuse search

Excess at high energies without directional information

Point source search (auto-correlation)

Space (-time) clusters of events

Multimessenger search

Space-time coincidence upon alert from other experiments

Point source search (catalogue)

Space coincidence with preselected sources

Performance: KM3NeT/ARCA6 (lines deployed and connected)

Figure: Effective areas. The current configuration of KM3NeT/ARCA has already topped ANTARES.

Performance: KM3NeT/ARCA full detector

Effective area $\nu_{\mu} + \bar{\nu}_{\mu}$ of complete KM3NeT/ARCA

[PoS(ICRC2021)1077]

Angular resolution for ν_{μ} CC events [PoS(ICRC2021)1077]

Measurement of diffuse ν flux

Assuming flux parameters from IceCube, KM3NeT/ARCA will observe same flux in half a year with 5σ significance, using both track and shower events [PoS(ICRC2021)1077].

Time evolution of significance

Confidence regions of flux parameters

Search for single sources

Different search modes

- point-like sources (extra-Galactic)
 - auto-correlation: search for clusters of events: space or space-time coincidences
 - correlation with underlying catalogue of preselected sources upon astrophysical motivation

AGNs catalogued by Fermi, star-forming Galaxies, IceCube HE sample

- extended sources (Galactic)
 - \bullet disk-shaped, fitted or based on extension seen in $\gamma\text{-ray}$ emission
 - \bullet assuming shape of $\gamma\text{-ray}$ emission, when morphology is resolved

Neutrinos and γ rays are strictly connected as they are daughters of π^\pm , π^0 .

follow-up of prompt multi-messenger alert

Search for point sources (all-sky)

Assuming ν flux $\propto E^{-2}$, KM3NeT/ARCA will reach comparable level to IceCube for the Northern Hemisphere, and improve by almost a factor 2 for the Southern Hemisphere

Figure: Sensitivity at 90% C.L. reached with 3 and 7 years of ARCA [PoS(ICRC2021)1077]

Sensitivity to strongest Galactic sources

In hypothesis of hadronic emission, computing ν flux from γ -ray flux, several **extended** Galactic sources will be observable in a few years of operation.

Example of γ -ray emission as seen by H.E.S.S.

Expected ν fluxes (assumed 100% hadronic scenario)

Sensitivity at 90% CL as a function of the observation time

Core-collapse supernova u

Produced in stellar core collapse at the end of stellar evolution (like SN1987A). Real-time search based on coincident rate raise in single DOMs (multiplicity 7-11 in 500 ms time window) \rightarrow performed by both ORCA and ARCA [PoS(ICRC2021)941]

Figure: Middle: SN events expected from 3 simulated progenitors at ORCA and ARCA as a function of different multiplicity values compared with BG rates. Right: Sensitivity as a function of distance.

Multi-messenger networking

Flares, transients and other sources with time variability (GRBs, gravitational waves, SN)

Including the case of mixed hadronic/leptonic emission, where flares are caused by hadronic emission on top of quiescent state \rightarrow Prompt alerting system between experiments, associated with rapid online analysis (and pointing directions for telescopes)

KM3NeT is getting ready to send and receive alerts in multi-messenger network

- SN pipeline already active for real-time analysis
- KM3NeT will replace ANTARES in follow up of alerts (ATel, GCN via AMON)

Summary

KM3NeT/ARCA is designed to catch cosmic neutrinos in the $10^2 - 10^8$ GeV energy range.

Current status: 8 detection lines are recording data.

Performance of the final km³ array with 230 lines:

- pointing accuracy down to 0.1° at 1 PeV
- 2 able to detect the diffuse flux observed by IceCube with 5σ significance in half a year
- sensitivity to astrophysical sources in the Southern Hemisphere improves by almost 2 orders of magnitude with respect to IceCube
- participation in multi-messenger prompt alert network