

Status of the JUNO Experiment

Bedřich Roskovec

Charles University, Prague on behalf of the JUNO collaboration

Lake Louise Winter Institute 2022 Feb 20-26, 2022

- Jiangmen Underground Neutrino Observatory
- Under construction in cavern 700 m underground in Southern China
- Multipurpose experiment primarily to study neutrino properties through reactor $\bar{\nu}_{\rho}$ oscillation
- 52.5 km from two powerful nuclear power plants (NPPs)
- 20 kt of liquid scintillator (LS) largest of its kind in the world
- Superb energy resolution of ~3% at 1 MeV
- Ready for data taking in 2023

Experiment	Daya Bay	Borexino	KamLAND	JUN
LS mass [t]	8×20	~300	~1,000	20,00
Collected p.e./MeV	~160	~500	~250	~1,35
Energy res. at 1 MeV	~8%	~5%	~6%	3 %
U/Th purity of LS [g/g]	-	10 -19	10-17	10 -15/ 1 (

*baseline/we hope

B. Roskovec - Charles University

JUNO Overview

- Central detector neutrino target
 - 20 kt of LS in the acrylic sphere
 - 17,612 20-inch (large) photomultipliers (PMTs)
 - 25,600 3-inch (small) PMTs
 - In total, 78% photo-coverage \bullet
 - Coils to compensate Earth magnetic field (EMF)
- Water pool muon veto
 - Cylinder with 35 kt of pure water
 - Effective shielding
 - Cherenkov detector with 2,400 LPMTs
- Top Tracker precise muon measurement
 - 3 layers of plastic scintillator reused from the OPERA experiment
 - Covering 60% of the pool area

JUNO Detector

Selection of Detector Features

- 20-inch PMTs with ~75% photo-coverage
 - 5,000 dynode Hamamatsu PMTs excellent time resolution $\sigma_{TTS}=1.2$ ns
 - 12,612 MCP NNVT PMTs
- 3-inch PMTs with ~3% photo-coverage
 - 25,600 dynode HZC PMTs
 - Increase dynamic range of the detector
 - Photon-counting mode for <10 MeV calibrate the instrumental non-linearity of the 20-inch PMTs (dual calorimetry)

B. Roskovec - Charles University

Reactor Antineutrino Oscillations

- Nuclear reactors emit ~2×10²⁰ $\bar{\nu}_e/s/GW_{th}$ with energy $\mathcal{O}(MeV)$
- Electron antineutrinos detected via inverse beta decay: $\bar{\nu}_{e} + p \rightarrow e^{+} + n$
 - Prompt-delayed spatial and temporal coincidence \rightarrow background suppression
- $\bar{\nu}_e$'s oscillate survival probability depends on θ_{12} , θ_{13} mixing angles and Δm_{21}^2 , Δm_{31}^2 mass splittings (and neutrino mass ordering)
 - Access to all those parameters thanks to great energy resolution, statistics, etc.
 - First experiment to observe both oscillation modes simultaneously

$$P(\bar{\nu}_{e} \to \bar{\nu}_{e}) = 1 - \sin^{2} 2\theta_{12} \cos^{4} \theta_{13} \sin^{2} \left(\frac{\Delta m_{21}^{2} L}{4E}\right) \stackrel{\text{int}}{\underset{L}{\cap}} \stackrel{\text{int}}{\underset{L}{\cap}}$$

JUNO Near Far **Daya Bay Double Chooz RENO** sin²20₁₃=0 **** sin²20₁₃=0.085 31 KamLAND L[km] E[MeV] 10^{-1} 10

Reactor Antineutrino Oscillations

- Nuclear reactors emit ~2×10²⁰ $\bar{\nu}_e/s/GW_{th}$ with energy $\mathcal{O}(MeV)$
- Electron antineutrinos detected via inverse beta decay: $\bar{\nu}_{e} + p \rightarrow e^{+} + n$
 - Prompt-delayed spatial and temporal coincidence \rightarrow background suppression
- $\bar{\nu}_e$'s oscillate survival probability depends on θ_{12} , θ_{13} mixing angles and Δm_{21}^2 , Δm_{31}^2 mass splittings (and neutrino mass ordering)
 - Access to all those parameters thanks to great energy resolution, statistics, etc.
 - First experiment to observe both oscillation modes simultaneously

$$P(\bar{\nu}_{e} \to \bar{\nu}_{e}) = 1 - \sin^{2} 2\theta_{12} \cos^{4} \theta_{13} \sin^{2} \left(\frac{\Delta m_{21}^{2}L}{4E}\right) = \frac{1}{2} \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E}\right) = \frac{1}{2} \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E}\right) = \frac{1}{2} \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E}\right) = \frac{1}{2} \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E}\right) = \frac{1}{2} \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E}\right) = \frac{1}{2} \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E}\right) = \frac{1}{2} \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E}\right) = \frac{1}{2} \cos^{2} \theta_{12} \sin^{2} \theta_{13} \sin^$$

B. Roskovec - Charles University

- \sim 100,000 $\bar{\nu}_{e}$'s detected in 6 years
- Backgrounds well under control (e.g. JHEP11(2021)
- Sub-percentage measurement of θ_{12} , Δm_{21}^2 , Δm_{31}^2 improving precision by an order of magnitude in ~6 years!
- **Measurement of \theta_{13} JUNO cannot compete with short baseline reactor neutrino experiments** such as Daya Bay

B. Roskovec - Charles University

Precision Measurement of the Oscillation Parameters

	Precision/Parameter	sin²θ ₁₂	Δm ² 21	Δm ² 31	sin²θ ₁
)102)	JUNO 6 years	~0.5%	~0.3%	~0.2%	~12%
\rightarrow	PDG 2020	4.2 %	2.4 %	1.4 %	3.2 %

- Measurement independent of matter effects, CP-violation phase and θ_{23} octant
 - Unique information when compared and combined with other experiments lacksquare
- IVNO determines the neutrino mass ordering (NMO) at just 3σ significance with 6 years of data taking
 - Thanks to the $3 \% \sqrt{E(\text{MeV})}$ energy resolution, TAO constraints on the unoscillated reactor spectrum, ...
- Combination with other experiments greatly boost the potential to determine the neutrino mass ordering
 - Accelerator neutrino experiments, e.g. NOvA and T2K
 - Atmospheric neutrino experiments, e.g. KM3NeT-ORCA, IceCube Upgrade and PINGU

B. Roskovec - Charles University

Neutrino Mass Ordering Measurement

 Combination true NMO - Combination false NMO

Effect	Change w.r.t. <i>Phys</i> (2016) 030401
Taishan NPP with 2 cores from original 4	35.8 GW _{th} → 26.6 G
Experimental cavern up by 60 m	30% more muor
Better 20-inch PMT quantum efficiency	27% → 29%
More light from the LS	1200 p.e. → 1350

Other Physics with JUNO

- ⁸B solar neutrinos (*CPC 45 23004 (2021)*)
 - Elastic scattering of ν_{ρ} on e^{-1}
 - 60k events in 10 years
 - 2 MeV threshold for LS purity of 10⁻¹⁷ g/g
 - Independent measurement of Δm_{21}^2 , θ_{12}
- Atmospheric neutrinos (EPJC, 81 (2021))
 - ν_e , ν_μ discrimination based on hit time pattern
 - Low-energy atmospheric neutrino spectrum
 - $1-2\sigma$ sensitivity to NMO
- Geoneutrinos (*Phys. G 43 (2016) 030401*)
 - JUNO surpasses world's geoneutrino statistics in a year
 - Geoneutrino flux precision 6% in 10 years
 - Geophysical interpretation of the flux limited by large contribution from local continental crust

Visible energy [MeV]

Other Physics with JUNO

- 10^{5} Core-collapse supernova (SN) neutrinos 10^{4} 10k events for 10 kpc SN 10 $E_{d} \, dN/dE_{d}$ 10^{2} Detection of all neutrino flavours: ~5000 IBD, ~2000 pES, ~300 eES, ~300 NC-C Excellent energy resolution, low threshold 0.1 Diffuse SN neutrino backgrc₅ 65) Neutrinos from past SNs Pulse-shape discriminati background **un**10⁻¹ 3σ sensitivity in 10 years¹ 10 20 25 15 30 prompt event energy [MeV]
- Exotics
 - Proton decay $p \rightarrow \bar{\nu} + K^+$ through 3-fold coincidence
 - $\tau > 9 \times 10^{33}$ y in 10 years
 - Others searches: Dark matter, non-standard interaction, etc.

- The precise knowledge of the reactor antineutrino spectrum important for several analyses
 - Mass ordering determination, sub-percentage oscillation parameters, geoneutrinos, ...
 - Models' uncertainty not sufficient for JUNO's precision
- Detector with high precision and JUNO-like energy resolution needed
- Taishan Antineutrino Observatory detector at ~30 m from Taishan NPP core (*arXiv:2005.08745*)
- Not a "near" detector in Daya Bay, NOvA, etc. sense
- Goals:
 - Precise measurement of the $\bar{\nu}_{e}$ spectrum
 - Model-independent reference for JUNO, other experiments and nuclear databases
 - Reactor monitoring & safeguard

Yangjiang NPP $6 \times 2.9 \, \mathrm{GW}_{\mathrm{th}}$

Search for sterile neutrinos

. . .

TAO Overview

- 1 ton fiducial volume GdLS detector
- At ~30 m from Taishan NPP core, ~5 w.m.e. overburden
- Fully read out by SiPM (photo-coverage>95%, photon det. eff. >50%)
- Operated at -50°C to suppress SiPM noise
- 4,500 p.e. per MeV → Energy resolution $< 2 \% \sqrt{E(MeV)}$ (better than JUNO)
- ~2,000 $\bar{\nu}_e$'s per day (comparable to Daya Bay)
- Background under control due to shielding and veto system
- Ready for data taking in 2023 (alongside JUNO)

B. Roskovec - Charles University

TAO Design

5100 Ø800950 ۲ Water tank ۲ ^o2200 2800 0 0 ۲ Lead 00 Ø2100

Current Status & Timeline

- Experimental cavern excavation finished just started detector installation
- All components ready or under production no serious pandemic-related production issues
- Ready for data taking in 2023

B. Roskovec - Charles University

•

Neutrino detection

Conclusions

- JUNO is pushing the edge of liquid scintillator neutrino detection
 - Largest of its kind, highest photo-coverage, precise energy calibration, ...
- Multipurpose experiment with world-leading potential
 - Sub-percentage measurement of θ_{12} , Δm_{21}^2 , Δm_{31}^2
 - Neutrino mass ordering at about $\sim 3\sigma$ synergistic boost when combined with other experiments Sensitivity to diffuse supernova neutrino background lacksquare

 - Largest geoneutrino sample in a year
 - Others solar neutrinos, atmospheric neutrinos, search for rare processes, ...
- Construction well in progress ready for data taking in 2023

Extras

19th JUNO collaboration meeting JUNO

Collaboration

Reactor	Power (GW_{th})	Baseline (km)	IBD Rate (day^{-1})	Relative Flux ($\%$	
Taishan	9.2	52.71	15.1	32.1	
Core 1	4.6	52.77	7.5	16.0	
Core 2	4.6	52.64	7.6	16.1	~215 km
Yangjiang	17.4	52.46	29.0	61.5	JONO
Core 1	2.9	52.74	4.8	10.1	Taicha
Core 2	2.9	52.82	4.7	10.1	$^{\prime}$ ~52.5 km $^{\prime}$ 2×4.6
Core 3	2.9	52.41	4.8	10.3	Yangjiang NPP
Core 4	2.9	52.49	4.8	10.2	6×2.9 GW _{th}
Core 5	2.9	52.11	4.9	10.4	136.0 11 22
Core 6	2.9	52.19	4.9	10.4	
Daya Bay	17.4	215	3.0	6.4	

Oscillation Parameters Uncertianty Breakdown (6 y)

Δm_{21}^2	JUNO Simulation Preliminary
stat	
stat+eff	
stat+runc	
stat+rcor	
stat+b2bTAO	
stat+snf	
stat+noneq	
stat+abc	
stat+nl	
stat+bg	
stat+ME	
stat+all syst	
	A.U.

$\sin^2 \theta_{12}$	JUNO Simulation Preliminary
stat	
stat+eff	
stat+runc	
stat+rcor	
stat+b2bTAO	
stat+snf	
stat+noneq	
stat+abc	
stat+nl	
stat+bg	
stat+ME	
stat+all syst	

B. Roskovec - Charles University

Δm_{31}^2	JUNO Simulation Preliminary
stat	
stat+eff	
stat+runc	
stat+rcor	
stat+b2bTAO	
stat+snf	
stat+noneq	
stat+abc	
stat+nl	
stat+bg	
stat+ME	
stat+all syst	

