Current and Future Neutrino Oscillation Measurements using IceCube DeepCore

Jessie Micallef Michigan State University micall12@msu.edu

Energies for Atmospheric Neutrino Oscillation

 \rightarrow Measuring atmospheric neutrino oscillation requires identifying neutrinos at energies < 100 GeV

DOI: 10.1016/j.nima.2020.164332

Neutrino Oscillation Measurements IceCube - J. Micallef

IceCube and DeepCore

- Instruments 1 km³ of ice at South Pole
- 5160 Digital Optical Modules (DOMs) detect Cherenkov light
- DeepCore:
 - Center 8 strings and nearby IceCube strings
 - Densely arranged DOMs with higher photo sensitivity
 - Detects atmospheric neutrinos from GeV - 100 TeV

Neutrino Oscillation Measurements IceCube - J. Micallef

IceCube Events at 10-GeV Scale

*Average about 17 pulses and 14 DOMs hit per event

- Less light produced per event means fewer DOMs record pulses
- Must leverage DeepCore array
- Need to optimize reconstructions specifically for these events

IceCube's Low Energy Reconstructions

- \rightarrow Accuracy: Handle input from only dozen DOMs
- \rightarrow Speed: Monte Carlo and systematics require reconstructing O(10⁸) events

Reconstructions	Pros	Cons	Average time per event (s)
Direct Photons	- Speed	- Only ~30% of events pass direct photon selection	5
Likelihood Table-Based	- Accuracy	 Limited by information stored in tables Speed 	40
Convolutional Neural Network (CNN) J. Micallef, et al. https://pos.sissa.it/395/1053/pdf https://pos.sissa.it/395/1054/pdf	- Speed - Adaptable for future geometries	- Extensive development and training needed	0.007 (GPU) 0.015 (CPU)

- 1. Event selection to remove background
- 2. Separate in event type (flavor)
- 3. Bin in energy and cosine zenith

Neutrino Oscillation Measurements IceCube - J. Micallef

- 1. Event selection to remove background
- 2. Separate in event type (flavor)
- 3. Bin in energy and cosine zenith

Neutrino Oscillation Measurements IceCube - J. Micallef

- 4. Explore systematic effects with pulls from nominal set
- 5. Compare data to no oscillation hypothesis

Neutrino Oscillation Measurements IceCube - J. Micallef

- Explore systematic effects with 4. pulls from nominal set
- 5. Compare data to no oscillation hypothesis

Neutrino Oscillation Measurements IceCube - J. Micallef

Systematic: neutrino flux spectral index **IceCube Work In Progress**

Tracks 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 32 64 128 256 32 64

Focusing on Direct Photons Reconstruction Result

- \rightarrow Accuracy: Handle input from only dozen DOMs
- \rightarrow Speed: Monte Carlo and systematics require reconstructing O(10⁸) events

Reconstruction	Pros	Cons	Average time per event (s)
Direct Photons	- Speed	- Only ~30% of events pass direct photon selection	5
Likelihood Table-Based	- Accuracy	 Limited by information stored in tables Speed 	40
Convolutional Neural Network (CNN) J. Micallef, et al. https://pos.sissa.it/395/1053/pdf https://pos.sissa.it/395/1054/pdf	- Speed - Adaptable for future geometries	- Extensive development and training needed	0.007 (GPU) 0.015 (CPU)

v_{μ} Disappearance Result using Direct Photons Reconstruction

- About 10% of full dataset
 - Called "verification sample" here
- Stable data/MC agreement for L/E
- Agrees with global neutrino experiments

Best fit of verification sample:

$$\sin^2 heta_{23}=0.505^{+0.051}_{-0.050}$$
 and $\Delta m^2_{32}=2.41^{+0.084}_{-0.084} imes10^{-3}eV^2$

Future Analysis Methods: Likelihood and CNN

- \rightarrow Accuracy: Handle input from only dozen DOMs
- \rightarrow Speed: Monte Carlo and systematics require reconstructing O(10⁸) events

Reconstruction	Pros	Cons	Average time per event (s)
Direct Photons	- Speed	- Only ~30% of events pass direct photon selection	5
Likelihood Table-Based	- Accuracy	 Limited by information stored in tables Speed 	40
Convolutional Neural Network (CNN) J. Micallef, et al. https://pos.sissa.it/395/1053/pdf https://pos.sissa.it/395/1054/pdf	- Speed - Adaptable for future geometries	- Extensive development and training needed	0.007 (GPU) 0.015 (CPU)

Performance for Full Sample Selections

- Likelihood and CNN have comparable resolutions for v_{μ} CC (tracks)
- Lowest energy events typically provide most difficulty

Projected v_{μ} Disappearance Sensitivity Improvement for Full Sample Selections

- Projected sensitivity for full sample with improved reconstructions
- Expect improvement from 3 year result and from Direct Photon reconstruction
- Sensitivities projected from DeepCore 2018, 3 yr best fit point

Additional DeepCore Studies on the Horizon

- Tau Neutrino Appearance
- Neutrino mass ordering
- Non-Standard Interactions (https://pos.sissa.it/398/245/pdf)
- Search for sterile neutrinos (https://doi.org/10.1088/1748-0221/16/09/C09005)
- Neutrino decoherence

Non-Standard Interactions Sensitivity

Neutrino Oscillation Measurements IceCube - J. Micallef

IceCube Upgrade

Neutrino Oscillation Measurements IceCube - J. Micallef

Improved Sensitivity from IceCube Upgrade

- New reconstructions currently being developed
 - Machine learning based
- Projected sensitivity is a conservative estimate after only
 3 years of Upgrade running
- Further constraints expected from improved calibration and systematics

Conclusion

- IceCube's current v_{μ} disappearance constraints on Δm_{23}^2 and $\sin^2(\theta_{32})$ agree with global experiments
 - New reconstructions using full 8 year low energy IceCube sample expects improvement
- Expect competitive constraints on v_{τ} appearance and BSM phenomena
- ML reconstruction methods have comparable resolution and fast run times
 - Paving the way for the future in IceCube and IceCube Upgrade
- IceCube Upgrade expects further improvement in sensitivity and understanding of neutrino properties

Backup

Oscillation from Atmospheric Neutrinos

- Source flavor: mostly v_{μ}
 - Look for $v_{\mu} \rightarrow v_{\tau}$
 - Can also look for v_{τ} appearance
- Not fixed baseline
 - Neutrinos from different distances
 - Use neutrino angle in detector to determine L
- \rightarrow 2D measurement: varying L & E

List of Some Typical Systematics For IceCube Oscillation Analysis

Flux and cross section uncertainties (highly degenerate)	Typical prior/method
Overall neutrino rate	unconstrained
Linear energy-dependent effects (flux spectral index, DIS effects)	±0.10 in index
hadronic flux effects (17 Barr variables)	from Barr et al. 2006
Axial vector mass M_A (some effect for resonances, negligible for CCQE)	from GENIE
NC normalization	±20%
Detector/background uncertainties	
DOM overall sensitivity	±10%
DOM angular-dependent response: two parameters	from LED data
Photon scattering and absorption in glacial ice: two parameters	±5%
Atmospheric muon normalization	unconstrained
Atmospheric muon background shape (rate unconstrained)	from MC

Neutrino Oscillation Measurements IceCube - J. Micallef

CNN Input Variables

CNN uses per-DOM approach: summarize all pulses that hit each DOM

- Sum of charge
- time of first hit
- time of last hit
- charge weighted mean
- charge weighted σ

→ Structure of input array for each event has 5 summary variables per DOM per string = [string ID x DOM ID x summary variable] [8 DC/19 IC x 60 x 5]

GeV-Scale CNN Architecture

Five separate CNNs trained & optimized for "single" output.

Regressions:

- 1. Energy
- 2. Zenith
- 3. Interaction Vertex
 - \rightarrow (x, y, and z)

Classifications:

- 4. Track vs Cascade (flavor)
- 5. Atmospheric Muon vs Neutrinos

 \rightarrow Everything we need for oscillations analysis (+ more!)

Resolutions for Full Sample Reconstructions

True Energy (GeV)

- Resolutions for oscillation variables: energy & cosine zenith
- Comparable resolutions for Likelihood and CNN across target energies

Neutrino Oscillation Measurements IceCube - J. Micallef

Particle Identification (PID)

Topology:

- Tracks are v_{μ} CC
- Cascades are $v_{\rm e}$ CC, v_{τ} CC, all NC

Identifying PID at lowest energy difficult with only a few pulses:

- Low energy tracks look like cascades
- "Cascades" analysis bin includes low energy tracks
- "Mixed" bin has more tracks than cascades
- "Tracks" bin dominated by tracks

Full Sample Reconstruction Projections vs. Global Results

- Likelihood and CNN reconstructions projected sensitivities
 - Generated using best fit from DeepCore 2018, 3 year result
- Agrees with global results

Neutrino Oscillation Measurements IceCube - J. Micallef