

Lake Louise Winter Institute 2022

Neutrino CP Violation with the European Spallation Source neuropean Super Beam Marcos Dracos

IPHC-Strasbourg

Design Study financed by EU

LL2021, 24/02/2022

European Spallation Source

LL2021, 24/02/2022

ESS proton linac

- The ESS will be a copious source of spallation neutrons.
- 5 MW average beam power.
- 125 MW peak power.
- 14 Hz repetition rate (2.86 ms pulse duration, 10¹⁵ protons).
- Duty cycle 4%.
- 2.0 GeV protons
 - up to 3.5 GeV with linac upgrades
- >2.7x10²³ p.o.t/year.

Linac ready by 2025 (full power)

European Spallation Source

European Spallation Source as Neutrino Facility for CP violation observation (2nd Oscillation maximum)

or, what else can we do with 5 MW proton beam?

Oscillation probability

(neutrino beams)

$$P_{\nu_{\mu} \rightarrow \nu_{e}(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})} \simeq 4s_{23}^{2}s_{13}^{2}\frac{1}{(1-r_{A})^{2}}\sin^{2}\frac{(1-r_{A})\Delta L}{2} \quad \text{"atmospheric"} \\ +8J_{r}\frac{r_{\Delta}}{r_{A}(1-r_{A})}\cos\left(\delta_{CP}-\frac{\Delta L}{2}\right)\sin\frac{r_{A}\Delta L}{2}\sin\frac{(1-r_{A})\Delta L}{2} \quad \text{"interference"} \\ +4c_{23}^{2}c_{12}^{2}s_{12}^{2}\left(\frac{r_{\Delta}}{r_{A}}\right)^{2}\sin^{2}\frac{r_{A}\Delta L}{2} \quad \text{"solar"}$$

$$J_{r} \equiv c_{12}s_{12}c_{23}s_{23}s_{13}, \Delta \equiv \frac{\Delta m_{31}^{2}}{2E_{v}}, r_{A} \equiv \frac{a}{\Delta m_{31}^{2}}, r_{\Delta} \equiv \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}, a \neq 2\sqrt{2}G_{F}N_{e}E_{v}$$
matter effect

- for antimatter: $\delta_{CP} \rightarrow -\delta_{CP}$ and $a \rightarrow -a$
- fake matter/antimatter asymetry due to matter effect

$$\mathbf{A} = \frac{P_{\nu_{\mu} \to \nu_{e}} - P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}}}{P_{\nu_{\mu} \to \nu_{e}} + P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}}} \quad \text{Matter-antimatter}$$

- δ_{CP} dependence, sizable matter effect for long baselines and high energy

natter asymmetry

δ_{CP} and matter-antimatter asymmetry magnitude

$$A_{\alpha\beta}^{CP} = P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$
$$= J_{CP}^{PMNS} \cdot \sin\delta_{CP}$$

with: $J_{CP}^{PMNS} \sim 3 \times 10^{-3}$ (Jarlskog invariant)

(for hadrons: $J_{CP}^{CKM} \sim 3 \times 10^{-5}$, not enough even if $\delta_{CP} \sim 70^{\circ}$)

(from the already observed CP violation in the hadronic sector)

Theoretical models predict that if $|\sin \delta_{CP}| \ge 0.7$ (45°< δ_{CP} <135° or 225°< δ_{CP} <315°), this could be enough, under assumptions, to explain the observed asymmetry.

(Nucl.Phys.B774:1-52,2007, arXiv:hep-ph/0611338)

Use all this ESS linac power to go to the second oscillation maximum

but why?

LL2021, 24/02/2022

LL2021, 24/02/2022

Having access to a powerful science and tec proton beam...

What can we do with:

- 5 MW power
- 2 GeV energy
- 14 Hz repetition rate
- 10¹⁵ protons/pulse
- >2.7x10²³ protons/year
 - almost pure ν_{μ} beam
 - small v_e contamination which could be used to measure v_e cross-sections in a near detector

at 100 km from the target, per year (in absence of oscillations)

LL2021, 24/02/2022

Can we go to the 2nd oscillation maximum using our proton beam?

Yes, if we place our far detector at around 500 km from the neutrino source.

Water Cherenkov detector

- Neutrino Oscillations
- Proton decay
- Astroparticles
- Understand the gravitational collapsing: galactic SN \boldsymbol{v}
- Supernovae "relics"
- Solar Neutrinos
- Atmospheric Neutrinos
 - 500 kt fiducial volume (~20xSuperK)
 - Readout: ~20" PMTs
 - 30% optical coverage

LL2021, 24/02/2022

2nd Oscillation max. coverage

ESS Linac modifications to produce a neutrino

Super Beam

Autorean State Autorean Auto

LL2021

How to add a neutrino facility?

Brilliance

ESS NEUTRON PULS

time (ms)

- The neutron program must not be affected and if possible synergetic modifications.
- Linac modifications: double the rate (14 Hz \rightarrow 28 Hz), from 4% duty cycle to 8%.
- Accumulator (C~400 m) needed to compress to few μ s the 2.86 ms proton pulses, affordable by the magnetic horn (350 kA, power consumption, Joule effect)
 - H⁻ source (instead of protons),
 - space charge problems to be solved.
- ~300 MeV neutrinos.
- Target station.
- Underground detector.
- Short pulses (~µs) will also allow DAR experiments (as those proposed for SNS) using the neutron target.

Which baseline?

- ~60% δ_{CP} coverage at 5 σ C.L.
- >75% δ_{CP} coverage at 3 σ C.L.
- systematic errors: 5%/10% (signal/backg.)

Candidate active mines

ESS modifications and operation

H⁻ source

time operation option

accumulator latice

Latest Improvements

- New Magriation Matrices for the far detector
- Genetic Algorithm for Target Station optimisation

Improvements and Optimisations

507 ktons far detector ٠

https://arxiv.org/abs/2107.07585

٠

٠

JPER BEAM Improvements and optimisations IN SCIENCE AND TECHNOLOGY very preliminary

ESS

CS

20

Muons at the level of the beam dump

<E_µ>~0.5 GeV <L_µ>~3 km

L_{dt} (m)	N_{μ} (μ^+/pot)	N_{μ} (μ^+/s)	N_{μ} ($\mu^+/200d$)	$\langle P_{\mu} angle$ (GeV/c)
25	0.02	$2.5 imes 10^{14}$	4.3×10^{21}	0.48
50	0.01	1.2×10^{14}	2.1×10^{21}	0.56
100	4.5×10^{-3}	$0.6 imes 10^{14}$	1.0×10^{21}	0.64

decay tunnel length

LL2021, 24/02/2022

M. Dracos, IPHC-IN2P3/CNRS/UNISTRA

- COST Action EuroNuNet (CA15139): ended March 2020
 - <u>https://euronunet.in2p3.fr</u>
 - video for scientists: <u>https://www.youtube.com/watch?v=PwzNzLQh-Dw</u>
- EU-H2020 Design Study ESSvSB: on going up to March 2021 (3 months extension due to COVID19)
 - <u>https://essnusb.eu</u>
 - video for general public: <u>https://www.youtube.com/watch?v=qAnvft0nAlg</u>

ESSnuSB looking for the answer.

- The ESS proton linac will be soon the most powerful linac in the world.
- ESS can also become a neutrino facility (ESSvSB) with enough protons to go to the 2nd oscillation maximum and increase significantly the CPV sensitivity and precise measurement of δ_{CP} .
- The European Spallation Source will be ready by 2025, upgrade decisions by this moment.
- Rich muon program for future ESS upgrades
 - Low energy nuSTORM
 - Muon Collider R&D
- Conceptual Design Report by end of March 2022
- New applications under preparation

Possible ESSvSB schedule

(2nd generation neutrino Super Beam)

ESSvSB at the European level

List of ESSnuSB Participating Institutions / Organisations

#	Institutions / organisations name	Accronym	Country
1	Centre National de la Recherche Scientifique	CNRS	France
2	University of Uppsala	UU	Sweden
3	Kungliga Tekniska Hoegskolan	КТН	Sweden
4	European Spallation Source Eric	ESS	Sweden
5	University of Cukurova	CU	Turkey
6	Universidad Autonoma de Madrid	UAD	Spain
7	National Center for Scientific Research "Demokritos"	DEMOKRITOS	Greece
8	Instituto Nationale di Fisica Nucleare	INFN	Italy
9	Ruder Boskovi Instgitute	RBI	Croatia
10	Sofiiski Universitet Sveti Kliment Ohridski	UniSofia	Bulgaria
11	Lunds Universitet	ULUND	Sweden
12	Akademia Gorniczo-Hutnicza Im. Stanislawa Staszica w Krakowie	AGH / AGH-UST	Poland
13	European Organization for Nuclear Resarch	CERN	Switzerland
14	University of Geneva	UNIGE	Switzerland
15	University of Durham	UDUR	United Kingdom

11 countries

- Starting date: 01/01/2018
- Ending date: 31/12/2021 → 31/03/2022,
- Duration: 48+3 Months,
- 3 months extension due to COVID19
- Kick-off meeting: 15 January 2018, Lund (ESS),
- 90% of the budget already received,
- All deliverables and milestones ready on time (some rescheduling due to COVID19 has been arranged with the EU Project Officer)

ESSvSB at the European level

- A H2020 EU Design Study (Call INFRADEV-01-2017)
 - **Title of Proposal**: Discovery and measurement of leptonic CP violation using an intensive neutrino Super Beam generated with the exceptionally powerful ESS linear accelerator
 - Duration: 4 years
 - Total cost: 4.7 M€
 - Requested budget: 3 M€
 - 15 participating institutes from
 11 European countries including CERN and ESS
 - 6 Work Packages
 - **Approved end of August 2017** far decay tunnel near accumulator linac target hadrons ⊗B \rightarrow m + n p switchyard! hadronic collector physics Detectors (focusing) WP2 WP3 WP4 WP5 WP6

LL2021, 24/02/2022

Muon Collider as Higgs Factory

arXiv:1908.05664

HIFI Uppsala Workshop 2-3 March 2020

LL2021, 24/02/2022

Main future muon Higgs alternatives

- Two adequate Higgs alternatives of a $\mu + \mu$ -collider will be discussed:
 - \succ the s-channel resonance at the <u>Ho</u> mass, to study with \approx 40'000 fb and L > 10³² all decay modes with small backgrounds;
 - > A higher energy collider, eventually up to $\int s \approx 0.5$ -1 TeV and $L > 10^{34}$ to study all other Higgs processes of the scalar sector
- The colliding beams ring can easily fit within existing locations:
 - For √s = 126 GeV the ring radius is ≈ 50 m (about 1/2 of the CERN PS or 1/100 of LHC) but with the resolution ≈ 0.003%
 - > For $\int s = 0.5$ TeV the corresponding ring radius is ≈ 200 m (about twice the CERN PS) and the resolution ≈ 0.1 %
- Two $\mu + \mu$ bunches of 2 x 10¹²ppp can likely be produced by a high pulsing rate of a few GeV protons at ≈ 5 MWatt.

Slide# : 12

Muons at ESS (ESSµSB)

Estimated performance for the Ho-factory (ESS)

- Two asymptotically cooled μ bunches of opposite signs collide in two low-beta interaction points with β*= 5 cm and a free length of about 10 m, where the two detectors are located.
- With PIC cooling a peak collider a luminosity of 4 x 10³² cm⁻² s⁻¹ is achieved
 - > The bunch transverse rms size is 0.05 mm and the $\mu-\mu$ tune shift is 0.086.
 - The SM Higgs rate is ≈ 10⁵ ev/year (10⁷ s) in each of the detectors.
 - An arrangement with at least two detector positions is recommended.

Proton kinetic energy	2.0	GeV
Proton power	5.0	MW
Proton collisions	56 =14x4	ev/s
Timing proton collisions	17.86	ms
Protons/collision	2.5x10 ¹⁴	p/coll
Final muon momentum	62.5	GeV/c
Final muon lifetime	1.295	Ms
Total μ surv. fraction	0.07	
μ+ at collider ring	2.93x10 ¹²	µ/coll
μ- at collider ring	1.89x10 ¹²	µ/coll
Inv. transv. emittance, ε_N	0.37	π mm rad
Inv. long. emittance	1.9	π mm rad
Beta at collision $\beta_x = \beta_y$	5.0	cm
Circumf. of collider ring	350	m
Effective luminosity turns	555	
Effective crossing rate	29'970	sec-1
Luminosity no PIC	4.24 x 10 ³¹	cm ⁻² s ⁻¹
Luminosity + PIC (10 x)	4.2 x 10 ³²	cm ⁻² s ⁻¹
Higgs cross section	3.0 x 10 ⁻³⁵	cm ²
Higgs @10 ⁷ s/y, no PIC	$1.2 \ge 10^4$	ev/y
Higgs @10 ⁷ s/y + PIC	1.2 x 10 ⁵	ev/y
Higgs -> $\gamma\gamma$, 10 ⁷ s/y + PIC	≈2400	ev/y
Tune shift with PIC	0.086	

Without PIC

1.2 x 10⁴ ev/year

CERN March 2021

Decay At Rest at ESS

Possible if short pulses (~µs)

- Well known neutrino spectra (DAR).
- Very high neutrino intensities ~ 5×10^{15} v/s.
- Separate neutrinos of different flavors by time cut.
- Role that neutrino-nucleus interactions play in the supernova explosion process and subsequent nucleosynthesis.
- Accurate knowledge of neutrino-nucleus cross sections is important (almost no data exist).
- This lack of knowledge significantly limits our understanding of supernovae and of terrestrial observations of cosmic neutrinos to probe the deepest layer of these powerful explosions.

Coherent Scattering at ESS

JHEP 02 (2020) 123

Coherent Elastic Neutrino-Nucleus Scattering at the European Spallation Source

- D. Baxter,¹ J.I. Collar,¹,^{*} P. Coloma,²,[†] C.E. Dahl,^{3,4} I. Esteban,⁵,[‡] P. Ferrario,^{6,7},[§]
- J.J. Gomez-Cadenas,^{6,7}, M. C. Gonzalez–Garcia,^{5,8,9}, ** A.R.L. Kavner,¹ C.M. Lewis,¹
- F. Monrabal,^{6,7},^{††} J. Muñoz Vidal,⁶ P. Privitera,¹ K. Ramanathan,¹ and J. Renner¹⁰

- ESS can generate the largest pulsed neutrino flux suitable for the detection of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS).
- Innovative detector technologies able to profit from the order-ofmagnitude increase in neutrino flux provided by the ESS, along with their sensitivity to a rich particle physics phenomenology accessible through high-statistics, precision CEvNS measurements, are under study.

LL2021, 24/02/2022

Possible scenario for new near future applications

Possible WPs:

- Civil engineering (onsite and offsite) abd safety.
- Linac accumulator and racetrack.
- Target Station, hadron/muon production and muon extraction.
- Low Energy nuSTORM.
- Detectors and physics performance (synergy between ESSnuSB and LEnuSTORM).
- Muons for future. applications, including 6D cooling tests (several locations are possible).

- Low Energy nuSTORM at ESS
- Sterile Neutrino searches
- Neutrino cross sections measurements with unprecedented precision
- LBL performance improvement by systematic error mitigation
- To be adapted for lower muon energies (~0.5 GeV)

