DUNE Long Baseline Oscillations

Lake Louise Winter Institute 2022 2022/02/23

Luke Pickering for DUNE Collaboration

The Deep Underground Neutrino Experiment

ROYAL HOLLOWAY

The Deep Underground Neutrino Experiment

The People 1100+ Collaborators 35+ Countries

ROYAL HOLLOWAY

The Deep Underground Neutrino Experiment

The People 1100+ Collaborators 35+ Countries

The Deep Underground Neutrino Experiment

The People

- 1100+ Collaborators
- 35+ Countries

PMNS Oscillations

- Unprecedented precision
- \bullet Strong $\delta^{}_{\rm CP}$ and MO Sensitivity

The Deep Underground Neutrino Experiment

The People

PMNS Oscillations

- 1100+ Collaborators Unprecedented precision
 - Strong δ_{CP} and MO Sensitivity

Rich Physics Program

• Sterile v's

probe

- Solar v's • Geo v's Weak nuclear
 - \bullet SN v's

• 35+ Countries

DUNE Components

The DUNE Neutrino Beam

ROYAL HOLLOWAY

Measuring Neutrino Oscillations

Near Detector Suite

The Far Detectors

The Far Detectors

• Four modules: each 17 kT

The Far Detectors

- Four modules: each 17 kT
- Uniquely fine-grained for far detectors

The Far Detectors

- Four modules: each 17 kT
- Uniquely fine-grained for far detectors

PMNS Oscillation Sensitivities

ROYAL HOLLOWAY

ROYAL HOLLOWA

• Unprecedented oscillation parameter sensitivity

Low Exposure Mass Ordering Sensitivity

Unambiguous Mass Ordering determination early in the physics programme

Appearance Sensitivity

ROYAL HOLLOWAY

Appearance Sensitivity

- Traditionally:
 - Use models to 'unfold' near detector observations.
 - Apply oscillation hypothesis
 - Compare to far detector observations

0000

Flux Model

Far detector prediction

ation

pothesis

- Traditionally:
 - Use models to 'unfold' near detector observations.
 - Apply oscillation hypothesis
 - Compare to far detector observations
- What happens if the model is wrong?
 - Inflate errors \rightarrow degrade sensitivity
 - Bias measurements

Far detector prediction

- Traditionally:
 - Use models to 'unfold' near detector observations.
 - Apply oscillation hypothesis
 - Compare to far detector observations
- What happens if the model is wrong?
 - Inflate errors → degrade sensitivity
 - Bias measurements
- **Case study:** What if we mis-model neutrino energy fraction to protons but don't notice at the near detector?

Far detector prediction

thesis

ation

- Traditionally:
 - Use models to 'unfold' near detector observations.
 - Apply oscillation hypothesis
 - Compare to far detector observations
- What happens if the model is wrong?
 - Inflate errors \rightarrow degrade sensitivity
 - Bias measurements
- Case study: What if we mis-model neutrino energy fraction to protons but don't notice at the near detector?

Near observations

Far detector prediction

DEEP UNDERGROUND NEUTRINO EXPERIMENT

DUNE-PRISM Near Detector

DUNE-PRISM Near Detector

DUNE-PRISM Near Detector

ROYAL HOLLOWAY

Off Axis at the Near Detector

ROYAL HOLLOWAY

Off Axis at the Near Detector

ROYAL HOLLOWAY

Off Axis at the Near Detector

34

ROYAL HOLLOWAY

Off Axis at the Near Detector

ROYAL HOLLOWAY

Off Axis at the Near Detector

ROYAL HOLLOWAY

Why PRISM?

Near observations

Far detector prediction

 E_{v} (GeV)

- Direct extrapolation of ND constraint
- Resilient to unknown unknowns in signal modelling

Near observations

Summary

- Unprecedented sensitivity to PMNS oscillations
 - PRISM insures against poor interaction modelling
 - CPV and Mass Ordering in one experiment
- Wide physics programme beyond standard oscillations

Backups

DEEP UNDERGROUND NEUTRINO EXPERIMENT

ROYAL HOLLOWAY

DUNE Fluxes

Disp Samples

PRISM Appearance

DEEP UNDERGROUND NEUTRINO EXPERIMENT

ROYAL HOLLOWAY

Macdonald's Plots

$\boldsymbol{\delta}_{\mathsf{CP}}$ Resolution

$\boldsymbol{\delta}_{\mathsf{CP}}$ and $\boldsymbol{\theta}_{13}$

Sensitivities for different scenarios

Cross-sections

Discrete Fourier Transforms

 Approximate function as a linear sum of sines and cosines

Discrete Fourier Transforms

 Approximate function as a linear sum of sines and cosines

By Original by en:User:Glogger, vectorization by User:SidShakal. -Hand-traced in Inkscape, based on Image:Fourierop_rows_only.png., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3570075

 Approximate function as a linear sum of sines and cosines

By Original by en:User:Glogger, vectorization by User:SidShakal. -Hand-traced in Inkscape, based on Image:Fourierop_rows_only.png., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3570075

60

Discrete Fourier Transforms

• Approximate function as a linear sum of sines and cosines

Discrete Fourier Transforms

• Approximate function as a linear sum of sines and cosines

