Borexino: Recent results and outlook on the final data

OREXINO

Lake Louise Winter Institute 2022 20-25 February, 2022

Andrea Pocar

University of Massachusetts, Amherst

AMMERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Synopsis

- Solar fusion and solar neutrinos
- The Borexino detector
- Summary of Borexino legacy results
- Recent results:
 - CNO neutrinos
 - sub-MeV directionality
- The final say

Why solar neutrinos?

- Solar neutrinos: one of the success stories of 20th century physics
 - Direct messengers of the nuclear thermo-fusion machinery in its core
 - Probes of its chemical composition and thermal profile

- - -> neutrino mass
 - Probe for more new physics

• Vehicles for the discovery of lepton flavor conversion ('neutrino oscillations')

Solar neutrinos from two nuclear fusion processes

 $4p \rightarrow {}^{4}He = 2e^{+} + 2\nu_{e} + (24.7 + 2m_{e}c^{2}) \text{ MeV}$

(~2% of the total energy) $\langle E_{
u}
angle \sim 0.53\,{
m MeV}$

CNO cycle ($\sim 1\%$)

Meanwhile, in heavier stars ...

in heavier stars the gravitational pressure favors CNO fusion of protons

$L_{\odot} = (3.846 \pm 0.015) \times 10^{53} \text{ erg/s}$

$$\frac{L_{\odot}}{4\pi (A.U.)^2} = \sum_i a_i \phi_i^{\nu}$$

CN neutrinos considered the dominant energy producing process in many stars

Solar neutrino spectrum (Bahcall et al.)

- Exquisite understanding of fusion processes in the Sun
- Experimental precision in some cases better than theoretical uncertainties
- Solar metallicity (for elements with Z>2) not yet fully pinpointed
- Current models disagree:
 - High Z vs. Low Z
 - CNO neutrinos can provide the answer

6

The stage – the Gran Sasso massif, Italy

Corno Grande (2912 m asl - highest elevation in the Appennines)

Gran Sasso National Laboratory

Adriatic Sea

LLWI 2022 — Feb 24, 2022

Hall C @ LNGS

the Borexino detector

Scintillator: 280 t PC+PPO (1.5g/l) in a 125 μm thick Inner nylon vessel (R=4.25m)

Buffer region: PC+DMP quencher (5g/l) 4.25m<R<6.75m

Outer nylon vessel: R=5.50m (²²²Rn Barrier)

<u>Stainless Steel Sphere:</u>

R=6.75m, 2212 8" PMTs with light guides. 1350m³

Water tank:

 γ and n shield, μ water cherenkov detector 208 PMTs in water, 2100m³

The Physics: solar neutrino spectrum

solar neutrino spectrum

Little directional information —> minimizing radioactivity is essential

solar neutrino-induced electron scattering spectrum in Borexino

10

The Borexino detector filled with liquid scintillator

detector filled on May 15, 2007

At 1 MeV: $\frac{\Delta E}{E} \sim 6\%$ $\sigma_{x,y,z} \sim 11 \text{ cm}$

1238 active channels for the CNO neutrino measurement

Borexino data and basic selection cuts

Borexino energy spectrum (Phase I)

12

Decomposing the spectrum

CNO, pep, ²¹⁰Bi highly correlated

14

Borexino Phase 2 results (2010-2016)

252 ton-y exposure	r Phase II BX results (cpd/100t)	Bx flux (cm ⁻² s ⁻¹)	SSM (HZ/LZ) (cm ⁻² s ⁻¹)
pp	134 ± 10 ⁺⁶ -10 10%	$(6.1 \pm 0.05^{+0.3}_{-0.5}) \times 10^{10}$	5.98(1±0.006)×10 ¹⁰ 6.03(1±0.005)×10 ¹⁰
7Be	48.3 ± 1.1 ^{+0.4} -0.7	$(4.99 \pm 0.11^{+0.06} - 0.08) \times 10^{9}$	4.93(1±0.06)×10 ⁹ 4.50(1±0.06)×10 ⁹
pep	(HZ) $2.43 \pm 0.36^{+0.15}$ -0.22 5 (LZ) $2.65 \pm 0.36^{+0.15}$ -0.24	$(1.27 \pm 0.19^{+0.08} + 0.12) \times 10^{8}$ $(1.39 \pm 0.19^{+0.08} + 0.13) \times 10^{8}$	1.44(1±0.01)×10 ⁸ 1.46(1±0.01)×10 ⁸
8 B	0.223 ^{+0.015} -0.016 ± 0.06	(5.68 ^{+0.39} -0.41 ± 0.03)×10 ⁸	5.46(1±0.12)×10 ⁶ 4.50(1±0.12)×10 ⁶
hep	<0.002 (90% C.L.)	<2.2×105	7.89(1±0.30)×10 ³ 8.25(1±0.30)×10 ³
CNO	<8.1 (95% C.L.)	<7.9×10 ⁸	4.88(1±0.12)×10 ⁸ 3.51(1±0.12)×10 ⁸

precision and reach beyond design goals of the experiment

Nature 562, 505 (2018) PRD 101, 062001 (2020)

LLWI 2022 — Feb 24, 2022

controversy

(HZ and LZ

The solar metallicity puzzle

- The solar metallicity is important:
 - Catalysts to CNO process
 - density profile and evolution

- - LZ favored by spectroscopy
 - HZ favored by helioseismology

• Affects plasma opacity, indirectly affecting the core T and modifying the

• Discrepancy between solar properties predicted by HZ and LZ input values:

pep and 210Bi constraints

- pp/pep ratio (from nuclear physics)
- Solar luminosity constraint (0.4%)
- Oscillation parameters from global fit
- Relatively independent on CNO neutrinos

$$^{210}\text{Pb} \xrightarrow{\beta^{-}}{22.3 \text{ years}} ^{210}\text{Bi} \xrightarrow{\beta^{-}}{5 \text{ days}}$$

- Assume equilibrium in the A=210 decay sequence Affected by convective mixing of ²¹⁰Po from periphery -> requires thermal stabilization
- ²¹⁰Po minimum or plateau at the center

Thermal stabilization of the detector

2014 — Installation of T probes 2015-2016 — Thermal insulation of the water tank 2017 — active T control system atop water tank 2019-2020 — Hall C air T control system

Hall C floor rock 6 °C

LLWI 2022 — Feb 24, 2022

Temperature stabilization timeline

²¹⁰Po trend vs time

²¹⁰Po activity (in cpd/100t) within the inner 3-meter radius sphere of scintillator, binned in 3 tonne cubes

"Low Polonium Field region, 20 tonnes, just above the equator (observed layering successfully modeled with fluid simulations)

The Low Polonium Field analysis

- The ²¹⁰Po minimum found with 20 tonnes of scintillator
- Extrapolation of the ²¹⁰Bi upper limit to 70 tonnes requires ²¹⁰Bi spatial uniformity and time stability
- This is done by selecting β -like events in an energy range where ²¹⁰Bi (pep, CNO) events dominate (i.e. in the 'valley' between ⁷Be and ¹¹C)
 - radial and angular uniformity
 - time stability (no leaching from vessel)

$R(^{210}Bi) \le 11.5 \pm 1.3 \text{ cpd}/100t$

Multi-variate fit

 $R(CNO) = 7.2^{+3.0}$ ⁰ -1.7 cpd/100t

- The ²¹⁰Bi background constraint is an upper limit, reflected in the asymmetric uncertainty
- CNO to be considered an experimental lower limit

CNO neutrino measurement

Result confirmed at 3.5σ by counting analysis (R = 5.6+/-1.6 cpd/100t)

LLWI 2022 — Feb 24, 2022

Cur

rent su	mmary of Borexi	Nature 562, 505 (2018) PRD 101, 062001 (2020)	
			Nature 587, 577 (2020)
	BX results (cpd/100t)	Bx flux (cm ⁻² s ⁻¹)	SSM (HZ/LZ) (cm ⁻² s ⁻¹)
pp	134 ⁺¹² -14 10%	6.1(1±0.10)×10 ¹⁰	5.98(1±0.006)×10 ¹⁰ 6.03(1±0.006)×10 ¹⁰
7Be	48.3 ^{+1.2} -1.3 2.7%	5.0(1±0.027)×10 ⁹	4.93(1±0.06)×10 ⁹ 4.50(1±0.06)×10 ⁹
pep	2.43+0.39 -0.42 16% -0.42	1.27(1±0.17)×10 ⁸ 1.39(1±0.16)×10 ⁸	1.44(1±0.01)×10 ⁸ 1.46(1±0.01)×10 ⁸
8 B	0.223+0.016 _0.017	5.68(1±0.076)×10 ⁸	5.46(1±0.12)×10 ⁶ 4.50(1±0.12)×10 ⁶
hep	<0.002 (90% C.L.)	<2.2×10 ⁵	7.89(1±0.30)×10 ³ 8.25(1±0.30)×10 ³
CNO	5σ 7.2 +3.0 -1.7	7.0+ ^{3.0} -2.0 ×10 ⁸	4.88(1±0.12)×10 ⁸ 3.51(1±0.12)×10 ⁸

Directionality signature for sub-MeV neutrinos

- Cherenkov light emitted for events >160 keV

• Correlate individual photon arrival time of events to the known position of the Sun (Correlated and Integrated Directionality (CID) technique)

• Extract the (feeble, <0.5%) Cherenkov signal using their faster hit time pattern (after TOF correction)

Include group velocity correction for Cherenkov photons

- Cherenkov photons that are absorbed and reemitted are included in scintillation population
- Cherenkov detected above 370 nm

LLWI 2022 — Feb 24, 2022

Directional measurement of sub-MeV neutrinos

- Verify method with gamma calibration sources
- Select Phase-I data in the Be-7 Compton shoulder energy range: E = 0.54 - 0.74 MeV

$$N_{solar-\nu} = 10887^{+2386}_{-2103}(stat) \pm 947(syst)$$
$$R(^{7}Be)_{CID} = 51.6^{+13.9}_{-12.5} \ cpd/100t$$

- No-solar neutrino excluded $>5\sigma$
- Rate of solar vinteractions consistent with SSM

October 4, 2021 – end of data-taking

Chiara Ghiano and Massimo Orsini turn off the DAQ and the PMT high voltage one last time

The swan's song: is the solar metallicity within reach?

- HZ/LZ compatible at 0.5 σ / 1.3 σ
- LZ disfavored at 2.1 σ when including pp-chain neutrino fluxes (Borexino only)
- Measured ²¹⁰Bi background is an upper limit, obtained from the minimum of the low-²¹⁰Po field distribution
- Borexino has another year of data with an ever more stable detector
- Looking for the onset of a minimum 'plateau' in the low-polonium field that would indicate the true ²¹⁰Po contamination of the scintillator
- Combined with higher statistics it could yield a CNO measurement sufficient to determine the metallicity of the Sun's core

 $R(CNO) = 7.2^{+2.9} - 1.7^{+0.6} - 0.5 cpd/100t$

The Borexino collaboration

with thanks and recognition to many historical collaborators and friends

in memoriam

Cristina Arpesella Martin Deutsch Burkhard Freudiger Andrei Martemianov Sandro Vitale Raju Raghavan Steve Kidner Hervé de Kerret Corrado Salvo Oleg Zaimidoroga Simone Marcocci

and John Bahcall

LLWI 2022 — Feb 24, 2022

- Solar neutrinos essential to prove solar fusion and discover neutrino oscillations
- Borexino has precisely mapped the pp solar chain and measured CNO neutrinos, unraveling all solar energy-producing mechanisms and a key process in heavier stars (as predicted by Bethe and Weizsäcker in the 1930s) -> one last result to come ...
- Borexino has pioneered low-radioactivity techniques which have defined a new standard for rare-event physics, shaping the career of many young scientists in the process

• Borexino has recently demonstrated that it is possible to extract directional information from sub-MeV neutrino interactions in scintillator (foundational for future experiments)

