Search for ultra-high energy neutrinos at the Pierre Auger Observatory

Eric Mayotte^a on behalf of the Pierre Auger Collaboration^b emayotte@mines.edu spokespersons@auger.org

^a Colorado School of Mines, Department of Physics, 1523 Illinois St., Golden CO, 80401, USA
^b Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

February 24, 2022

- A cosmic ray observatory near the town Malargüe in the Mendoza province of Argentina
- The location was chosen for:
 - Clear weather and dark nights
 - A flat open Pampa able to accommodate the Observatory's targeted aperture size
- The observatory itself is 3000 km² and has accumulated roughly 100,000 km² sr yr of exposure
- The hearts of the Observatory are: The SD: 1660 water Cherenkov detectors The FD: 27 fluorescence telescopes

- A cosmic ray observatory near the town Malargüe in the Mendoza province of Argentina
- The location was chosen for:
 - Clear weather and dark nights
 - A flat open Pampa able to accommodate the Observatory's targeted aperture size
- The observatory itself is 3000 km² and has accumulated roughly 100,000 km² sr yr of exposure
- The hearts of the Observatory are: The SD: 1660 water Cherenkov detectors The FD: 27 fluorescence telescopes

- A cosmic ray observatory near the town Malargüe in the Mendoza province of Argentina
- The location was chosen for:
 - Clear weather and dark nights
 - A flat open Pampa able to accommodate the Observatory's targeted aperture size
- The observatory itself is 3000 km² and has accumulated roughly 100,000 km² sr yr of exposure
- The hearts of the Observatory are: The SD: 1660 water Cherenkov detectors The FD: 27 fluorescence telescopes

- A cosmic ray observatory near the town Malargüe in the Mendoza province of Argentina
- The location was chosen for:
 - Clear weather and dark nights
 - A flat open Pampa able to accommodate the Observatory's targeted aperture size
- The observatory itself is 3000 km² and has accumulated roughly 100,000 km² sr yr of exposure
- The hearts of the Observatory are: The SD: 1660 water Cherenkov detectors The FD: 27 fluorescence telescopes

- A cosmic ray observatory near the town Malargüe in the Mendoza province of Argentina
- The location was chosen for:
 - Clear weather and dark nights
 - A flat open Pampa able to accommodate the Observatory's targeted aperture size
- The observatory itself is 3000 km² and has accumulated roughly 100,000 km² sr yr of exposure
- The hearts of the Observatory are:

The SD: 1660 water Cherenkov detectors

The FD: 27 fluorescence telescopes

- A cosmic ray observatory near the town Malargüe in the Mendoza province of Argentina
- The location was chosen for:
 - Clear weather and dark nights
 - A flat open Pampa able to accommodate the Observatory's targeted aperture size
- The observatory itself is 3000 km² and has accumulated roughly 100,000 km² sr yr of exposure
- The hearts of the Observatory are:

The SD: 1660 water Cherenkov detectors

The FD: 27 fluorescence telescopes

UHE Neutrino search: discrimination method

Leverage the ν cross-section!

- CR showers must start high in atmosphere;
 → only muons survive to ground at high zenith angles
- ν induced showers can start much deeper: \rightarrow will maintain a high E/M component to ground
- ν_{τ} can interact in the earth and cause a particle shower from τ -lepton decay in atmosphere \rightarrow look for showers below limb \rightarrow **lowest background**

UHE Neutrino search: discrimination method

Leverage the ν cross-section!

- CR showers must start high in atmosphere; \rightarrow only muons survive to ground at high zenith angles
- ν induced showers can start much deeper: \rightarrow will maintain a high E/M component to ground
- ν_{τ} can interact in the earth and cause a particle shower from τ -lepton decay in atmosphere \rightarrow look for showers below limb \rightarrow **lowest background**

Leverage the ν cross-section!

- CR showers must start high in atmosphere; \rightarrow only muons survive to ground at high zenith angles
- ν induced showers can start much deeper: \rightarrow will maintain a high E/M component to ground
- ν_{τ} can interact in the earth and cause a particle shower from τ -lepton decay in atmosphere \rightarrow look for showers below limb \rightarrow lowest background

UHE Neutrino search: SD signatures

Leverage the ν cross-section!

- CR showers must start high in atmosphere;
 → only muons survive to ground at high zenith angles
- ν induced showers can start much deeper: \rightarrow will maintain a high E/M component to ground
- ν_{τ} can interact in the earth and cause a particle shower from τ -lepton decay in atmosphere \rightarrow look for showers below limb \rightarrow **lowest background**

Highly inclined events, with long, E/M rich signals

UHE Neutrino search: SD signatures

Search for ultra-high energy neutrinos at the Pierre Auger Observatory - LLWI22 - Februrary 24th

Use the Area over Peak (AoP) to distinguish CR from ν

$$\mathsf{AoP} = rac{\mathsf{Area of signal trace}}{\mathsf{Peak trace value}}$$

Search for ultra-high energy neutrinos at the Pierre Auger Observatory - LLWI22 - Februrary 24th

The Auger SD analysis is split into 3 channels:

Down Going Low: $\theta \in [60^\circ, 75^\circ)$ **Down Going High:** $\theta \in [75^\circ, 90^\circ)$ **Earth Skimming:** $\theta \in [90^\circ, 95^\circ]$

Due to low background, Auger sensitivity dominated by Earth skimming channel

Diffuse Neutrino search results: exposure by flavor

UHE Neutrino search data unblinding: all sky diffuse

1906.07422[astro-ph] CAP10 (2019) 022

Skimming channel: u candidate if $\langle \text{AoP} \rangle > 1.83$ Set with 20% burn sample

 $\langle AoP \rangle$ is the mean AoP of all stations in event

Data date range: 01.2004 - 08.2018

UHE Neutrino search results: all sky diffuse limits

Expected ν events: Red band: 1.4 - 5.9 Gray band: 0.8 - 2.0 Blue band: 0.4

> Data date range: 01.2004 - 08.2018

SD search: daily exposure to point-like sources

Good sensitivity at EeV energies in a broad range of declinations

The best sensitivity at -53° and 55° where sources spend more time in the field of view of Earth-skimming

> Higher upper limits than: IceCube and ANTARES, but strongest over 100 PeV

SD search: limits to point-like sources

Complex exposure means sensitivity to sources depends on source location and event timing

or very small depending on luck

Complex exposure means sensitivity to sources depends on source location and event timing

FAL

DGL DGH ES 10⁻¹ 10⁻² 60 65 70 75 80 85 90 95

Complex exposure means sensitivity to sources depends on source location and event timing

or very small depending on luck

Paper in prep

FAL

PoS(ICRC2021)968 •

Complex exposure means sensitivity to sources depends on source location and event timing

or very small depending on luck

Paper in prep

FAL

PoS(ICRC2021)968 •

FAL

Complex exposure means sensitivity to sources depends on source location and event timing

or very small depending on luck

A lucky catch: NS-NS merger event GW170817

Entirety of 90% CL GW event location in FoV of ES channel

Leads to very high prompt neutrino fluence limits

Time dependent exposure leads to substantially lower 14-day neutrino fluence limits

Fast LVC alert follow-up infrastructure in place No UHE-neutrino events found for 62 O1-3a events

Non-observation leads to an all sources stacked luminosity upper limit calculated as

$$L_{up,i} = \frac{N_{up,i}}{T} \left(\sum_{s} \sum_{p \in \Omega_{90}(s)} P_{p,s} A_{p,s,i} \int_0^\infty \frac{\Pi_{p,s}(r)}{r^2} dr \right)^{-1}$$

Where:

s, i, and p are source, time-bin and sky pixel respectively r is a luminosity parameter $N_{up} = 2.44$, the 90 % Cl FC non-observation limit $A_{p,s,i}$ is each source's Auger exposure $P_{p,s}$ and $\Pi_{p,s}(r)$ are the source localization and distance PDFs $\Omega_{90}(s)$ is the 90 % Cl contour for $P_{p,s}$ and $\Pi_{p,s}$

Fast LVC alert follow-up infrastructure in place No UHE-neutrino events found for 62 O1-3a events

Non-observation leads to an all sources stacked luminosity upper limit calculated as

$$\Delta_{up,i} = \frac{N_{up,i}}{T} \left(\sum_{s} \sum_{p \in \Omega_{90}(s)} P_{p,s} A_{p,s,i} \int_0^\infty \frac{\prod_{p,s}(r)}{r^2} dr \right)^{-1}$$

Integrated isotropic neutrino fluence limits per merger: $2.2 \times 10^{46} \text{ erg s}^{-1}$ instantaneous

 6.0×10^{51} erg over 24-hours 6.3×10^{51} erg over 60-days

prep prep .≘ _ Paper Paper FAL PoS(ICRC2021)1140 PoS(ICRC2021)1145 ANITA flight 1 and 3 saw two steeply up-going showers: $E \sim 2 \times 10^{17} \,\text{eV}$ $\beta_1 = 27^\circ \text{ and } \beta_2 = 35^\circ$ No SD sensitivity. Large FD sensitivity

- Basic methodology: search for steeply up-going shower-like event signatures in FD data ($\theta > 110^{\circ}$)
- FD acts like a tracking calorimeter
 - \rightarrow monitored atm is $> 8 \, \text{km}^3$ of water equivalent
 - $\rightarrow \sim 2\,{\rm yr}$ exposure after accounting for duty cycle
- Aperture and detector volume are energy dependent
- Known background of laser and atmospheric events
 - \rightarrow required extensive cleaning using 10 % burn sample
- Difficult to remove background of geometrically degenerate reconstuctions

ANITA flight 1 and 3 saw	two steeply up-going showers:
$E\sim 2 imes 10^{17}{ m eV}$	$eta_1=27^\circ$ and $eta_2=35^\circ$
No SD sensitivity	<i>J</i> . Large FD sensitivity

- Basic methodology: search for steeply up-going shower-like event signatures in FD data ($\theta > 110^{\circ}$)
- FD acts like a tracking calorimeter
 - \rightarrow monitored atm is $> 8\,\text{km}^3$ of water equivalent
 - $\rightarrow \sim$ 2 yr exposure after accounting for duty cycle
- Aperture and detector volume are energy dependent
- Known background of laser and atmospheric events
 - \rightarrow required extensive cleaning using 10 % burn sample
- Difficult to remove background of geometrically degenerate reconstuctions

Search for steeply up-going showers and ANITA events follow-up

ANITA	flight 1 and 3 saw	two steeply up-going showers:
	$E\sim 2 imes 10^{17}{ m eV}$	$eta_1=27^\circ$ and $eta_2=35^\circ$
	No SD sensitivity.	Large FD sensitivity

- Basic methodology: search for steeply up-going shower-like event signatures in FD data ($\theta > 110^{\circ}$)
- FD acts like a tracking calorimeter
 - \rightarrow monitored atm is $> 8\,km^3$ of water equivalent
 - $\rightarrow \sim 2\,\text{yr}$ exposure after accounting for duty cycle
- Aperture and detector volume are energy dependent
- Known background of laser and atmospheric events
 - ightarrow required extensive cleaning using 10 % burn sample
- Difficult to remove background of geometrically degenerate reconstuctions

prep prep .≘ _ Paper Paper FAL PoS(ICRC2021)1140 PoS(ICRC2021)1145

ANITA	flight	1	and	3 saw	two	steeply	y u	p-going	showers:
	$E\sim 2$	\times	10^{17}	eV	β_1	$=27^\circ$ a	nd	$\beta_2 = 35$	0
	No S	D	sens	itivity	. La	rge FD	ser	nsitivity	

- Basic methodology: search for steeply up-going shower-like event signatures in FD data ($\theta > 110^{\circ}$)
- FD acts like a tracking calorimeter
 - \rightarrow monitored atm is $> 8\,km^3$ of water equivalent
 - $\rightarrow \sim 2\,\text{yr}$ exposure after accounting for duty cycle
- Aperture and detector volume are energy dependent
- Known background of laser and atmospheric events
 - \rightarrow required extensive cleaning using 10 % burn sample
- Difficult to remove background of geometrically degenerate reconstuctions

Search for steeply up-going showers and ANITA events follow-up

prep prep .⊆ .⊆ Paper i Paper i FAL PoS(ICRC2021)1140 PoS(ICRC2021)1145

ANITA	flight 1 and 3 saw two steeply up-going showers:		
	$E\sim 2 imes 10^{17}{ m eV}$ $eta_1=27^\circ$ and $eta_2=35^\circ$		
No SD sensitivity. Large FD sensitivity			

- Basic methodology: search for steeply up-going shower-like event signatures in FD data ($\theta > 110^{\circ}$)
- FD acts like a tracking calorimeter
 - \rightarrow monitored atm is $> 8\,km^3$ of water equivalent
 - $\rightarrow \sim 2\,\text{yr}$ exposure after accounting for duty cycle
- Aperture and detector volume are energy dependent
- Known background of laser and atmospheric events
 - \rightarrow required extensive cleaning using 10 % burn sample
- Difficult to remove background of geometrically degenerate reconstuctions

- Reconstruct geometry and profile simultaneously to reduce degeneracy
- Reconstruct in both upward and downward geometries

prep

Paper Paper

FAL

>oS(ICRC2021)1140
>oS(ICRC2021)1145

• Compare fit likelihoods to select candidates

$$l = \frac{\arctan(-2\log(\frac{L_{down}}{\max(L_{up}, L_{down})})/50)}{\pi/2}$$

- Use down-going CR background simulations to model background
- Optimize candidate selection cut to maximise efficiency and purity

- Reconstruct geometry and profile simultaneously to reduce degeneracy
- Reconstruct in both upward and downward geometries
- Compare fit likelihoods to select candidates

$$l = \frac{\arctan(-2\log(\frac{L_{down}}{\max(L_{up}, L_{down})})/50)}{\pi/2}$$

- Use down-going CR background simulations to model background
- Optimize candidate selection cut to maximise efficiency and purity

likelihood from the reconstruction in downward mode

• Reconstruct geometry and profile simultaneously to reduce degeneracy

prep

Paper in Paper in

FAL

PoS(ICRC2021)1140 PoS(ICRC2021)1145

- Reconstruct in both upward and downward geometries
- Compare fit likelihoods to select candidates

 $\frac{\arctan(-2\log(\frac{L_{down}}{\max(L_{up},L_{down})})/50)}{\pi/2}$

• Optimize candidate selection cut to maximise efficiency and purity

• Reconstruct geometry and profile simultaneously to reduce degeneracy

prep

<u>2. 2.</u>

Paper Paper

μ

PoS(ICRC2021)1140 PoS(ICRC2021)1145

FAL

- Reconstruct in both upward and downward geometries
- Compare fit likelihoods to select candidates

$$I = \frac{\arctan(-2\log(\frac{L_{down}}{\max(L_{up}, L_{down})})/50)}{\pi/2}$$

- Use down-going CR background simulations to model background
- Optimize candidate selection cut to maximise efficiency and purity

• Reconstruct geometry and profile simultaneously to reduce degeneracy

prep

Paper in Paper in

FAL

PoS(ICRC2021)1140 PoS(ICRC2021)1145

- Reconstruct in both upward and downward geometries
- Compare fit likelihoods to select candidates

$$I = \frac{\arctan(-2\log(\frac{L_{down}}{\max(L_{up}, L_{down})})/50)}{\pi/2}$$

- Use down-going CR background simulations to model background
- Optimize candidate selection cut to maximise efficiency and purity

FD up-going search: Results

prep prep _⊆ ___ Paper Paper ÄL FAL oS(ICRC2021)1140 ^{ooS}(ICRC2021)1145

Background expectation 0.45 ± 0.18 events After unblinding 1 up-going candidate event found Consistent with background expectation

Candidate undergoing further testing

Rolke the integral upper limit with $N_{bkg} = 0.45$ and $N_{obs} = 1$, for steeply up-going showers: Limit for E^{-1} spectrum: $3.6 \times 10^{-20} \text{ cm}^{-2} \text{ sr}^{-1} \text{ s}^{-1}$ Limit for E^{-2} spectrum: $8.5 \times 10^{-20} \text{ cm}^{-2} \text{ sr}^{-1} \text{ s}^{-1}$

Recast to a τ -lepton production within 50 km of surface for different zenith ranges using nuTauSim

Conclusion

- Very restrictive limits to the diffuse flux of UHE neutrinos for energies at and above 10¹⁸ eV.
- Outstanding sensitivity to transient sources if located in the FoV of the Earth-skimming channel.
- Highly constraining direct follow-up of ANITA anomalous events.
- Pierre Auger Observatory is a key detector in multi-messenger astronomy at EeV energies.

Thanks for you interest!

Questions?

Backup

Backup slides

Neutrino search results: all sky diffuse down-going high

PIERRE

OBSERVATOR

Data date range: 01.2004 - 08.2018

Neutrino search results: all sky diffuse down-going low

1906.07422[astro-ph] CAP10 (2019) 022

PIERRE

AUGE

Data date range: 01.2004 - 08.2018

Search for ultra-high energy neutrinos at the Pierre Auger Observatory – LLWI22 – Februrary 24^{th}