Searches for strong production of supersymmetric particles with the ATLAS detector

Arka Santra on behalf of the ATLAS Collaboration **Department of Particle Physics and Astrophysics Weizmann Institute of Science** February 21, 2022 LLWI 2022 Conference

Lake Louise Winter Institute 2022

ntroduction:

Supersymmetric particle content

Standard Model

Supersymmetry

 \mathbf{X} : combinations of the partners to the gauge bosons and higgs fields

February 21, 2022

- \star Supersymmetry (SUSY): one of the most popular Standard Model (SM) extensions.
 - ★Each SM particle has its own supersymmetric partner.
 - ★ Spin differing by 1/2
 - ★Provides:
 - *a dark matter candidate (for R-parity conserving) theory).
 - \star the unification of fundamental forces at high energies.
 - \bigstar a solution to the fine-tuning problem of the Higgs mass.

 \star SUSY searches at the LHC going on extensively. \bigstar Strong production mechanism, as well as electroweak production.

★ Strong SUSY production: \bigstar Higher xsec than the electroweak production. \bigstar In general, search for high p_T particles and large missing transverse energy ($E_{\rm T}^{\rm miss}$).

Arka Santra

 $\tilde{\chi}_2^{\pm}$

Χ̃2

SUSY searches in a nutshell

Strategy:

 \bigstar Look for a region enriched with signal (SR) **★**Selection requirement on observables enhancing the signal significance. **★**Estimate the background ★ May be fully data-driven ★Partially data-driven where Control Regions (CR) are used to constrain the MC predictions \bigstar Validate the background estimation in the Validation Regions (VR).

Blinding

The data in SR are not looked at unless the background estimations are properly understood and validated. Systematic uncertainties are understood. Once satisfied with uncertainties, data in SR are looked at. \bigstar Any significant excess of data over estimated background goes to test for discovery. \star No excess in data sets upper limits in SUSY xsec and parameters.

SUSY search with two leptons and two jets

Searches for strong production of SUSY Gluino pair production with decay via slepton \bigstar Gluino pair production with decay via $Z^{(*)}$ **\bigstarSquark pair production with decay via Z^{(*)}** $\star \tilde{\chi}_1^0$ is the Lightest Supersymmetric Particle (LSP).

February 21, 2022

- \star Exactly two same flavor opposite sign electrons or muons with $p_T > 25$ GeV and two jets with $p_T > 30$ GeV.
- \star For analysis with 139 fb⁻¹, signal regions require
 - \star High $H_T > 250$ GeV to $H_T > 800$ GeV, where H_T is the scalar sum
 - \bigstar High $E_{\rm T}^{\rm miss}$ (> 250 GeV to > 300 GeV)
 - \bigstar Medium to high m_{T2} (>75 GeV to > 100 GeV), m_{T2} being the
 - extension of the transverse mass $m_{\rm T}$ for the case of two missing particles.
 - \star On-shell Z regions require invariant mass within 81 GeV to 101 GeV.

estimated from matrix method.

SRs.

SUSY search with τ : Stop-stau signal

Direct pair production of stops \bigstar 3 body decay to b-quark, neutrino and a scalar tau $(\tilde{\tau})$ $\star \tilde{\tau}$ decays to τ and \tilde{G} (LSP)

Previous result with 36.1 fb⁻ Two channels τ -s decay hadronically One τ decay hadronically and another leptonically. Stop mass exclusion up to 1150 GeV

Phys. Rev. D 104, 112005

For present search

Focus on channels with hadronic τ -s \star Two different regions of the parameter space **\star**Low to medium mass splitting: 2τ SR \bigstar High $p_T \tau$ -s, high E_T^{miss} and relatively soft b-jets **High mass splitting:** 1τ SR \bigstar High p_T b-jets, relatively soft τ and high $E_{\rm T}^{\rm miss}$

 $\star 1\tau$ SR has been optimized also for leptoquark search.

Background estimation

 \star Identification of τ

★Used Recurrent Neural Network (RNN) [ATLAS-PHYS-PUB-2019-033]

 \star Input: transverse and longitudinal impact parameters, ratio of EM energy and track momentum, mass of the track system, mass of the track+EM system etc

★Signal regions:

 $\star 2\tau$ channel

 $\star E_{T}^{miss}$ > 280 GeV, OS(τ_1, τ_2)=1, $m_{T2}(\tau_1, \tau_2)$ > 70 GeV

 $\star 1\tau$ channel

 $\star E_{\rm T}^{\rm miss}$ > 280 GeV, $\sum m_T(b_1, b_2)$ > 700 GeV, $m_T(\tau)$ > 300 GeV $\bigstar S_T = p_T(\tau) + p_T(j_1) + p_T(j_2) > 800 \text{ GeV}$

February 21, 2022

CRs and VRs in 1τ channel

Phys. Rev. D 104, 112005

★Dominant background $\star t\bar{t}$ (2 real τ) $\star t\bar{t}$ (1 real τ) \bigstar Single top (*Wt*) \star Control and validation regions in both channels \bigstar QCD is negligible because of the high $E_{\rm T}^{\rm miss}$ cut.

Arka Santra

CRs and VRs in 2τ channel

February 21, 2022

Interpretation:

Phys. Rev. D 104, 112005

 \star Exclusion contours at the 95% confidence level for the stop-stau signal model

February 21, 2022

10

SUSY searches with photon and $E_{\rm T}^{\rm miss}$

 \bigstar Strong production of gluing pairs, decaying to photon, jets and $E_{\mathbf{T}}^{\text{miss}}$

 \star The LSP is \tilde{G} , the Next to LSP is the $\tilde{\chi}_1^0$.

 \bigstar Background for this analysis:

	Real $E_{\rm T}^{\rm miss}$	Instrumental E
Real photon	$Z(u u)\gamma$, $W\gamma$, $Z(u u)\gamma\gamma$,	$\gamma+jets,\ \gamma\gamma,$
	$tar{t}\gamma$, $W\gamma\gamma$	$Z(II) + \gamma, Z(II)$
Fake photon	W+jets, $Z(\nu\nu)$ +jets	QCD multijets
	tī	Z(II)+jets

 \star Background with fake photons: ★ Data-driven fake rate

 $\star e \rightarrow \gamma$ fakes

 \star Based on data samples of $Z \rightarrow ee/e\gamma_{fake}$

 \star The fake rate is determined as a function of $p_{\rm T}$ and η

 $\star j \rightarrow \gamma$ fakes

 \star Estimated using ABCD method in the photon ID/Isolation plane

ATLAS-CONF-2021-028

11

Results and interpretation ATLAS-CONF-2021-028

Conclusion

 \bigstar A brief overview of present SUSY searches from ATLAS experiment in strong production is shown here. \bigstar Very impressive and extensive search program. \star There are plenty of analyses going on right now with Run-2 dataset (139 fb⁻¹). \bigstar Stay tuned for many interesting results.

Bonus Slides

ATLAS SUSY Searches* - 95% CL Lower Limits

Summary of mass limits from **ATLAS for** al production mode

JL	ine 2021				$\sqrt{s} = 13$ l
	Model	Signature	$\int \mathcal{L} dt [\mathrm{fb}^{-1}]$	Mass limit	Reference
S	$ ilde{q} ilde{q}, ilde{q}{ ightarrow}q ilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & ext{2-6 jets} & E_T^{ ext{mis}} \ ext{mono-jet} & ext{1-3 jets} & E_T^{ ext{mis}} \end{array}$	^s 139 ^s 36.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2010.14293 2102.10874
arche	$\tilde{g}\tilde{g}, \tilde{g} { ightarrow} q \bar{q} \tilde{\chi}_1^0$	0 e, μ 2-6 jets E_T^{mis}	^s 139	$ \begin{array}{c} \tilde{g} \\ \tilde{g} \\ \hline{g} \\ \hline{forbidden} \\ \hline \hline \hline{forbidden} \\ \hline $	2010.14293 2010.14293
Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 <i>e</i> ,μ 2-6 jets	139	\tilde{g} 2.2 m($\tilde{\chi}_1^0$)<600 GeV	2101.01629
Ve	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	$ee, \mu\mu$ 2 jets $E_T^{ m mis}$	^s 36.1	\tilde{g} 1.2 m (\tilde{g}) -m $(\tilde{\chi}_1^0)$ =50 GeV	1805.11381
clusi	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	$egin{array}{llllllllllllllllllllllllllllllllllll$	^s 139 139	$ \begin{array}{c} \tilde{g} \\ \tilde{g} \end{array} \qquad \qquad \begin{array}{c} 1.97 \\ m(\tilde{\chi}_1^0) < 600 \text{GeV} \\ m(\tilde{g}) - m(\tilde{\chi}_1^0) = 200 \text{GeV} \end{array} $	2008.06032 1909.08457
Ц	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	$\begin{array}{cccc} \text{0-1} \ e,\mu & \text{3} \ b & E_T^{\text{mis}} \\ \text{SS} \ e,\mu & \text{6 jets} \end{array}$	^s 79.8 139	$\begin{array}{c} \tilde{g} \\ \tilde{g} \end{array} \qquad \qquad \begin{array}{c} \textbf{2.25} \\ \textbf{m}(\tilde{\chi}_1^0) < 200 \text{ GeV} \\ \textbf{m}(\tilde{g}) - \textbf{m}(\tilde{\chi}_1^0) = 300 \text{ GeV} \end{array}$	ATLAS-CONF-2018-041 1909.08457
	$ ilde{b}_1 ilde{b}_1$	$0 e, \mu$ $2 b$ E_T^{mis}	^s 139	$\begin{array}{c c} \tilde{b}_1 & & \\ \tilde{b}_1 & & \\ \tilde{b}_1 & & \\ 0.68 & & \\ 10 {\rm GeV} < \Delta {\rm m}(\tilde{\lambda}_1^0) < 400 {\rm GeV} \\ 10 {\rm GeV} < \Delta {\rm m}(\tilde{b}_1, \tilde{\chi}_1^0) < 20 {\rm GeV} \end{array}$	2101.12527 2101.12527
arks tion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$\begin{array}{cccc} 0 \ e, \mu & 6 \ b & E_T^{\text{mis}} \\ 2 \ \tau & 2 \ b & E_T^{\text{mis}} \end{array}$	^s 139 ^s 139	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1908.03122 ATLAS-CONF-2020-031
onp	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 $e, \mu \ge 1$ jet E_T^{mis}	^s 139	\tilde{t}_1 1.25 m($\tilde{\chi}_1^0$)=1 GeV	2004.14060,2012.03799
n. s pro	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	$1 e, \mu$ $3 jets/1 b E_T^{mis}$	^s 139	\tilde{t}_1 Forbidden 0.65 m($\tilde{\chi}_1^0$)=500 GeV	2012.03799
ge ect	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau G$	1-2 τ 2 jets/1 b E_T^{mis}	^s 139	\tilde{t}_1 Forbidden 1.4 m($\tilde{\tau}_1$)=800 GeV	ATLAS-CONF-2021-008
dire	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & 2 \ c & E_T^{\text{min}} \\ 0 \ e, \mu & \text{mono-jet} & E_T^{\text{min}} \end{array}$	° 36.1 ° 139	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1805.01649 2102.10874
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$	1-2 e, μ 1-4 b E_T^{mis}	^s 139	\tilde{t}_1 0.067-1.18 m($\tilde{\chi}_2^0$)=500 GeV	2006.05880
	$t_2 t_2, t_2 \rightarrow t_1 + Z$	$3 e, \mu$ $1 b E_T$	° 139	t_2 Forbidden 0.86 $m(\chi_1)=360 \text{ GeV}, m(t_1)-m(\chi_1)=40 \text{ GeV}$	2006.05880
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	$\begin{array}{lll} \text{Multiple }\ell/\text{jets} & E_T^{\text{mis}} \\ ee, \mu\mu & \geq 1 \text{ jet} & E_T^{\text{mis}} \end{array}$	^s 139 ^s 139	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ 0.96 $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ $m(\tilde{\chi}_{1}^{0})=0$, wino-bino $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5$ GeV, wino-bino	2106.01676, ATLAS-CONF-2021-022 1911.12606
	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via WW	$2 e, \mu$ E_T^{mis}	^s 139	$\tilde{\chi}_1^{\pm}$ 0.42 m($\tilde{\chi}_1^0$)=0, wino-bino	1908.08215
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via Wh	Multiple ℓ /jets E_T^{mis}	^s 139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Forbidden 1.06 m($\tilde{\chi}_1^0$)=70 GeV, wino-bino	2004.10894, ATLAS-CONF-2021-022
sct <	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ via $\tilde{\ell}_L / \tilde{\nu}$	$2 e, \mu$ E_T^{mis}	^s 139	$\tilde{\chi}_1^{\pm} \qquad 1.0 \qquad m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_1^{\pm}) + m(\tilde{\chi}_1^0))$	1908.08215
L A	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2τ E_T^{min}	° 139	τ [$\tau_{L}, \tau_{R,L}$] 0.16-0.3 0.12-0.39	1911.06660
Ŭ	$\ell_{\mathrm{L},\mathrm{R}}\ell_{\mathrm{L},\mathrm{R}},\ell\!\rightarrow\!\ell\chi_1^\circ$	$2 e, \mu$ 0 jets E_T^{mis} $ee, \mu\mu$ ≥ 1 jet E_T^{mis}	^s 139 ^s 139	$\begin{array}{c} \ell & 0.7 \\ \tilde{\ell} & 0.256 \end{array} \\ \end{array} \\ \begin{array}{c} m(\tilde{\ell}) - m(\tilde{\chi}_1^0) = 0 \\ m(\tilde{\ell}) - m(\tilde{\chi}_1^0) = 10 \text{ GeV} \end{array}$	1908.08215 1911.12606
	$ ilde{H} ilde{H}, ilde{H} ightarrow h ilde{G}/Z ilde{G}$	$0 e, \mu \geq 3 b E_{\text{This}}^{\text{mis}}$	^s 36.1	\tilde{H} 0.13-0.23 0.29-0.88 BR $(\tilde{\chi}_1^0 \to h\tilde{G})$ =1	1806.04030
		$0 \ e, \mu \ge 2$ large jets E_T^{mis}	^s 139	\tilde{H} 0.45-0.93 $BR(\tilde{\chi}_1^0 \to Z\tilde{G})=1$	ATLAS-CONF-2021-022
ed SS	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk 1 jet E_T^{mis}	^s 139	$ \begin{array}{c} \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \end{array} \begin{array}{c} \textbf{0.66} \\ \textbf{Pure Wino } \\ \textbf{Pure higgsino } \end{array} $	ATLAS-CONF-2021-015 ATLAS-CONF-2021-015
-IV icle	Stable \tilde{g} R-hadron	Multiple	36.1	<i>ğ</i> 2.0	1902.01636,1808.04095
art	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	Multiple	36.1	\tilde{g} [$\tau(\tilde{g})$ =10 ns, 0.2 ns] 2.05 2.4 m($\tilde{\chi}_1^0$)=100 GeV	1710.04901,1808.04095
<u>р</u> Г	$\hat{\ell}\hat{\ell},\hat{\ell}{\rightarrow}\ell\hat{G}$	Displ. lep E_T^{mis}	^s 139	$\tilde{e}, \tilde{\mu}$ $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ $\tilde{\tau}$ 0.34	2011.07812 2011.07812
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 <i>e</i> , <i>µ</i>	139	$\tilde{\chi}_{1}^{+}/\tilde{\chi}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1] 0.625 1.05	2011.10543
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to W W / Z \ell \ell \ell \ell \nu \nu$	4 e, μ 0 jets E_T^{mis}	^s 139	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ 0.95 1.55 m($\tilde{\chi}_{1}^{0}$)=200 GeV	2103.11684
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	4-5 large jets	36.1	$\tilde{g} [m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}, 1100 \text{ GeV}]$ 1.3 1.9 Large $\lambda_{112}^{\prime\prime}$	1804.03568
>	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$	Multiple	36.1	t $[\mathcal{X}'_{323}=2e-4, 1e-2]$ 0.55 1.05 $m(\tilde{\mathcal{X}}'_{1})=200 \text{ GeV}, \text{ bino-like}$	ATLAS-CONF-2018-003
RF	$tt, t \to b \chi_1^-, \chi_1^- \to b bs$	$\geq 4b$	139	<i>t</i> Forbidden 0.95 $m(\chi_1^-)=500 \text{ GeV}$	2010.01015
	$i_1 i_1, i_1 \rightarrow OS$ $\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow C\ell$	$\frac{2}{2} \mu = 2 h$	30.7 26.1	$\frac{1}{\tilde{t}} = \frac{1}{1} \frac{1}{1}$	1710.07171
	111,11 140	1μ DV	136	$\tilde{t}_{1} [1e-10 < \lambda'_{23k} < 1e-8, 3e-10 < \lambda'_{23k} < 3e-9] \qquad 1.0 \qquad 1.6 \qquad BR(\tilde{t}_{1} \rightarrow q\mu) = 100\%, \cos\theta_{t} = 1$	2003.11956
	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^{\pm} \rightarrow bbs$	1-2 $e, \mu \ge 6$ jets	139	$\tilde{\chi}_1^0$ 0.2-0.32 Pure higgsino	ATLAS-CONF-2021-007
	- ·, -				
Only	a selection of the available ma	ass limits on new states or	1(1 Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

February 21, 2022

ATLAS Preliminary

Two leptons and two jets:

Year	Туре	Trigger	Comment
2015	ee	HLT_2e12_lhloose_L12EM10VH	
2015	μμ	HLT_2mu10	
2015	μμ	HLT_mu18_mu8noL1	
2015	eμ	HLT_e17_lhloose_mu14	
2015	eμ	HLT_e7_lhmedium_mu24	
2016	ee	HLT_2e15_lhvloose_nod0_L12EM13VH	except run 300540
2016	ee	HLT_2e17_lhvloose_nod0	run 300540 and from period D4
2016	μμ	HLT_2mu10	period A
2016	μμ	HLT_2mu14	from period B
2016	μμ	HLT_mu20_mu8noL1	periods A-D3
2016	μμ	HLT_mu22_mu8noL1	periods from D4
2016	еμ	HLT_e17_lhloose_nod0_mu14	
2016	еμ	HLT_e24_lhmedium_nod0_L1EM20VHI_mu8noL1	
2016	еμ	HLT_e7_lhmedium_nod0_mu24	
2017	ee	HLT_2e17_lhvloose_nod0_L12EM15VHI	except periods B5-B8
2017	ee	HLT_2e24_lhvloose_nod0	
2017	μμ	HLT_2mu14	
2017	μμ	HLT_mu22_mu8noL1	
2017	еμ	HLT_e17_lhloose_nod0_mu14	
2017	eμ	HLT_e26_lhmedium_nod0_mu8noL1	
2017	еμ	HLT_e7_lhmedium_nod0_mu24	
2018	ee	HLT_2e17_lhvloose_nod0_L12EM15VHI	
2018	ee	HLT_2e24_lhvloose_nod0	
2018	μμ	HLT_2mu14	
2018	μμ	HLT_mu22_mu8noL1	
2018	eμ	HLT_e17_lhloose_nod0_mu14	
2018	eμ	HLT_e26_lhmedium_nod0_mu8noL1	
2018	eμ	HLT_e7_lhmedium_nod0_mu24	

<u>SUSY-2018-05</u>

$$m_{\mathrm{T}}^2 \left(\vec{p}_{\mathrm{T},a}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}} \right) = 2 \times \left(p_{\mathrm{T},a} \times E_{\mathrm{T}}^{\mathrm{miss}} - \vec{p}_{\mathrm{T}a} \cdot \vec{p}_{\mathrm{T}}^{\mathrm{miss}} \right),$$

$$m_{\text{T2}}^{2} = \min_{\vec{x}_{\text{T},1} + \vec{x}_{\text{T},2} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max\{m_{\text{T}}^{2}(\vec{p}_{\text{T1}}, \vec{x}_{\text{T},1}), m_{\text{T}}^{2}(\vec{p}_{\text{T2}}, \vec{x}_{\text{T},2})\} \right],$$

Preselection Preselection Preselection Preselection Preselection Preselection		epton p _T	signal) SF-	os					
Region	N _{iets}	H_{T}	$E_{\rm T}^{\rm miss}$	m _{T2}	$E_{\rm T}^{\rm miss, sig}$	$p_{\rm T}^{\ell\ell}$	m	e	1
SRC	-	> 250	> 250	> 90	> 10	< 100	-		
SRLow	-	> 250	> 250	> 100	-	< 500	–		
SRZLow	≥ 4	> 250	> 250	> 100	-	< 500	$81 < m_{\ell\ell}$	< 101*	
SRMed	-	> 500	> 300	> 75	-	< 800	-		
SRZMed	≥ 4	> 500	> 300	> 75	-	< 800	81 < m _{ℓℓ}	< 101*	
SRHigh	-	> 800	> 300	> 75	-	-	-		
SRZHigh	≥ 4	> 800	> 300	> 75	-	-	$ $ 81 < $m_{\ell\ell}$	< 101*	
Region n _{je}	ts H ₁ [GeV	E ^{mi} [Gev	^{ss} m ₁ V] [Ge	$\mathcal{S}_2 = \mathcal{S}(E)$	$\binom{\text{miss}}{\text{T}}$) p_{T}^{ℓ} [Ge	χ $\Delta \phi($	$jet_{1,2}, p_{\mathrm{T}}^{\mathrm{miss}})$	SF/DF	
Signal regions									
SRC ≥ 2	2 > 25	50 > 25	50 > 9	> 00	10 40–1	.00	> 0.4	SF	
SRLow ≥ 2	2 > 25	50 > 25	50 > 10	- 00	- 40–5	500	> 0.4	SF	
\hookrightarrow SRZLow ≥ 4	4 > 25	50 > 25	50 > 10	- 00	- 40–5	500	> 0.4	SF	
SRMed ≥ 1	2 > 50)0 > 30	00 > 7		- 40-8	800	> 0.4	SF	
\hookrightarrow SRZMed ≥ 4	4 > 5(0 > 3($\frac{10}{20} > 7$	') - '5	40-800		> 0.4	SF	
\hookrightarrow SRZHigh ≥ 4	4 > 80	0 > 30 0 > 30)0 > 7		- >4	.0	> 0.4	SF	

Arka Santra

Two leptons and two jets: Flavor symmetry

Electron vs Muon
eff electron vs em

$$N^{\text{est}} = \frac{1}{2} \cdot \left[\sum_{i}^{N_{e\mu}^{\text{data}}} \left(k_e^{i}(p_T^{i,\mu}, \eta^{i,\mu}) + k_{\mu}(p_T^{i,e}, \eta^{i,e}) \right) \cdot \alpha(p_T^{i,\ell_1}, \eta^{i,\ell_1}) - \sum_{i}^{N_{e\mu}^{\text{MC}}} \left(k_e^{i}(p_T^{i,\mu}, \eta^{i,\mu}) + k_{\mu}(p_T^{i,e}, \eta^{i,e}) \right) \cdot \alpha(p_T^{i,\ell_1}, \eta^{i,\ell_1}) \right],$$
ons evaluated in a loose 2L2J region with data processes subtracted off via MC

- Correctio
- Non-FS processes subtracted off via MC

Uncertainties

- Statistics
- regions and SRs

Non-closure tests in loose 10% non closure syst.

Two leptons and two jets: Matrix method

- $N_{\text{pass}}^{\text{FNP}} = \frac{N_{\text{fail}} (1/\epsilon_{\text{real}} 1) \times N_{\text{pass}}}{1/\epsilon_{\text{FNP}} 1/\epsilon_{\text{real}}}$
- Here ϵ_{real} is the efficiency for a real prompt lepton to pass the single lepton requirement and ϵ_{FNP} are the same for FNP leptons.
- ϵ_{real} obtained from MC, ϵ_{FNP} obtained from data using tag-and-probe method.

The Matrix Method (MM)

For event with two leptons the following matrix is used to estimate the **fake leptons** and leptons from non-prompt sources (FNP background) The predicted yields $\left[N_{LL}^{RR} \right]$ f1 f2

 $= \begin{bmatrix} r_1 r_2 & r_1 f_2 & f_1 r_2 \\ r_1 (1 - r_2) & r_1 (1 - f_2) & f_1 (1 - r_2) \\ (1 - r_1) r_2 & (1 - r_1) f_2 & (1 - f_1) r_2 \\ (1 - r_1) (1 - r_2) & (1 - r_1) (1 - f_2) & (1 - f_1) (1 - r_2) \end{bmatrix}$ $\left[N_{TT}\right]$ N_{Tl} N_{lT} Nu

The measured number of events with two tight (TT), one tight and one loose (Tl, lT) and two loose (ll) leptons in the region of interest (i.e CR, VR, SR)

Notation:

The 1 and 2 subscripts refer to the two leptons (sorted after p_{T})

T: lepton passes tight, **L**: lepton passes loose, l: lepton passes loose, but not tight

$$\begin{array}{c} f_{1}(1-f_{2}) \\ f_{1}(1-f_{2}) \\ f_{2} \\ r_{2} \\ r_{2} \end{array} \begin{pmatrix} (1-f_{1})f_{2} \\ (1-f_{1})(1-f_{2}) \end{bmatrix} \begin{bmatrix} r_{LL} \\ N_{LL}^{RF} \\ N_{LL}^{FR} \\ N_{LL}^{FF} \end{bmatrix}$$

The final yields:

 $N_{TT}^{RR} = r_1 r_2 N_{LL}^{RR}$ $N_{TT}^{RF} = r_1 f_2 N_{LL}^{RF}$ $N_{TT}^{FR} = f_1 r_2 N_{LL}^{FR}$ \longrightarrow The FNP background $N_{TT}^{FF} = f_1 f_2 N_{LL}^{FF}$

The real lepton background (from MC or other techniques)

Arka Santra

From Rupert Tombs/Eiric Gramstad

Stop-Stau Search

Di-tau preselection

At least two hadronic tau leptons At least one *b*-tagged jet

Variable	CR $t\bar{t}$ (2 real τ)	CR $t\bar{t}$ (1 real τ
$E_{\mathrm{T}}^{\mathrm{miss}}$		
$OS(\tau_1, \tau_2)$	1	
$m_{\mathrm{T2}}(au_1, au_2)$	< 35 GeV	$< 35 \mathrm{GeV}$
$m_{\mathrm{vis}}(\tau_1,\tau_2)$	> 50 GeV	> 50 GeV
$m_{ m T}(au_1)$	> 50 GeV	$< 50 \mathrm{GeV}$

<u>SUSY-2019-018</u>

Stop-Stau Search

Variable	CR $t\bar{t}$ (1 real τ)	CR single top	VR $t\bar{t}$ (1 real τ)	VR single top	SR
$E_{ m T}^{ m miss}$	> 280 GeV	> 280 GeV	> 280 GeV	> 280 GeV	> 280 GeV
s _T	[500, 600] GeV		> 600 GeV		> 800(600) GeV
$\sum m_{\mathrm{T}}(b_{1,2})$	[600, 700] GeV	> 800 GeV	[600, 700] GeV	> 800 GeV	$> 700 \mathrm{GeV}$
$m_{ m T}(au)$		$< 50 \mathrm{GeV}$		[50, 150] GeV	> 300(150) GeV
$p_{\mathrm{T}}(\tau)$		> 80 GeV		> 80 GeV	— (binned)

Systematic uncertainty	Di-tau SR	Single-tau one-bin SR	Single-tau multi-bin SR
Total	25%	17%	17%
Jet-related	19%	4.2%	3.9%
Tau-related	4.7%	5.5%	4.3%
Other experimental	3.7%	1.0%	0.8%
Theoretical modeling	13%	17%	19%
MC statistics	12%	7.5%	4.4%
Normalization factors	8.8%	15%	16%
Luminosity	0.8%	0.5%	0.4%

_

Stop-Stau: 7 RNN

|--|

	Observable	1-prong	3-prong
Track inputs	$p_{T}^{seed jet}$ p_{T}^{track} $\Delta \eta^{track}$ $\Delta \phi^{track}$ $ d_{0}^{track} $ $ z_{0}^{track} \sin \theta $ $N_{IBL hits}$ $N_{Pixel hits}$ $N_{SCT hits}$		
Cluster inputs	$p_{\rm T}^{\rm jet seed}$ $E_{\rm T}^{\rm cluster}$ $\Delta \eta^{\rm cluster}$ $\Delta \phi^{\rm cluster}$ $\lambda_{\rm cluster}$ $\langle \lambda_{\rm cluster}^2 \rangle$ $\langle r_{\rm cluster}^2 \rangle$		
High-level inputs	$p_{\rm T}^{\rm uncalibrated}$ $f_{\rm cent}$ $f_{\rm leadtrack}$ $\Delta R_{\rm max}$ $ S_{\rm leadtrack} $ $S_{\rm flight}^{\rm flight}$ $f_{\rm track}^{\rm flight}$ $f_{\rm track}^{\rm track}$ $p_{\rm T}^{\rm EM+track}/p_{\rm T}$ $m^{\rm EM+track}$ $m^{\rm track}$		

Tracks	Sha der	red nse	▶
Clusters	Sha der	red nse	▶
	Hig var	h-level riables	
		tion	1
		τ _{had-vis} rejec	1
		Fake	1

February 21, 2022

Stop-Stau: τ RNN

February 21, 2022

ATLAS-PHYS-PUB-2019-033

Arka Santra

Stop-Stau

	Di-tau SR	Single-tau SR (one-bin)			Sing (binne)	le-tau SR d in $p_{\rm T}(\tau)$)		
			[50,	100] GeV	[100,	200] GeV	> 2	00
Observed	2	6		8		6		2
Total bkg.	4.1 ± 1.0	3.23 ± 0.55	10.1	±1.8	5.1 :	±1.1	2.05	±
$t\bar{t}$ (2 real τ)	0.81 ± 0.71							
$t\bar{t}$ (1 real τ)	0.82 ± 0.27	1.20 ± 0.30	4.8	± 1.2	2.69	± 0.88	0.64	±
<i>tī</i> -fake	0.51 ± 0.15	0.69 ± 0.15	2.83	± 0.87	0.66 :	±0.17	0.185	±
Single top	$0.03 \begin{array}{c} +0.10 \\ -0.03 \end{array}$	$0.39 \begin{array}{c} +0.45 \\ -0.39 \end{array}$	0.85	$^{+0.86}_{-0.85}$	0.54	±0.54	0.57	±
W + jets	$0.08 \begin{array}{c} +0.11 \\ -0.08 \end{array}$	0.35 ± 0.16	0.34	±0.12	0.64	±0.24	0.37	±
Z + jets	0.35 ± 0.14	0.187 ± 0.054	0.275	± 0.081	0.043	±0.022	0.123	±
Multiboson	0.48 ± 0.21	0.085 ± 0.037	0.163	± 0.037	0.111:	±0.030	0.030	+(
$t\overline{t} + V$	0.60 ± 0.15	0.242 ± 0.064	0.65	±0.16	0.31	±0.12	0.092	±
$t\overline{t} + H$	$0.28 \begin{array}{c} +0.29 \\ -0.28 \end{array}$	$0.039 {}^{+0.040}_{-0.039}$	0.10	± 0.10	0.060	+0.061 -0.060	0.028	+(
Other top	0.122 ± 0.067	0.043 ± 0.022	0.096	±0.074	0.091	±0.049	0.0120	0±
Analysis region		$\langle A\epsilon\sigma\rangle_{\rm obs}^{95}$ [fb]	$S_{ m obs}^{95}$	S_{\exp}^{95}	CL _b	p(s=0)	Ζ	
Di-tau SI	R	0.03	4.1	$5.3^{+2.2}_{-1.5}$	0.18	0.50	0.0	
Single-ta	u one-bin SR	0.06	8.2	$5.1^{+2.1}_{-1.3}$	0.91	0.08	1.37	7

Arka Santra

24

Exclusion limit (vector leptoquark)

February 21, 2022

											SRL	SRM	
Phot	$\frac{\text{ATLAS-CONF-2021-028}}{\text{CONF-2021-028}}$								$s - \gamma$	× 1/	≥ 1	≥ 1	> 400
										> 14	+3 Gev	> 300 Gev	> 400
								$N_{\rm eptons}$			> 5	5	
Sir	nale ph	oton triaaer	with p_r	т > 1	40 Ge\	/		$\Lambda \phi$ (jet	E miss		≥ 3	≥ 3	
	3 1 1 1	330	······P					$\Delta \psi(\eta c)$	L_{T}		> 0.4	> 0.4	
								$\Delta \psi(\gamma, I)$	T	> 25	> 0.4	> 200 GeV	> 600
								L_{T}		> 200		> 300 GeV	> 1600
								п _Т р4		> 200			> 1000
								-Λ _T			< 0.90	< 0.90	
Regions	Nphotons	$p_{\rm T}^{\rm leading\gamma}({\rm GeV})$	Nleptons	Njets	N _{b-jets}	$\Delta \phi$ (jet, $E_{\rm T}^{\rm miss}$)	$\Delta \phi(\gamma$	$(E_{\mathrm{T}}^{\mathrm{miss}})$	$E_{\rm T}^{\rm miss}$ (C	GeV)	H _T (GeV	$(I) R_{\rm T}^4$	
CRQ	≥ 1	> 145	0	≥ 3	-	< 0.4	>	0.4	> 10	00	> 1600) -	
CRW	≥ 1	> 145	≥ 1	≥ 1	0	> 0.4		-	[100, 2	200]	> 400	-	
CRT	≥ 1	> 145	≥ 1	≥ 2	≥ 2	> 0.4		-	[50, 20	[00	> 400	-	
VRL1	≥ 1	> 145	≥ 1	≥ 2	-	> 0.4		-	[50, 20	00]	> 800	-	
VRL2	≥ 1	> 145	≥ 1	≥ 2	-	> 0.4		-	[50, 20	[00	> 1300) -	
VRL3	≥ 1	> 145	≥ 1	≥ 2	-	> 0.4		-	> 20	00	[600, 160	- [00	
VRL4	≥ 1	> 145	≥ 1	≥ 2	-	< 0.4		-	> 20	00	> 1100) -	
VRQ	≥ 1	> 145	0	≥ 3	-	> 0.4	>	0.4	[100, 2	200]	> 1600) -	
VRM1L	≥ 1	> 145	0	≥ 5	-	> 0.4	>	0.4	[100, 2	200]	> 1600) < 0.90	
VRM2L	≥ 1	> 145	0	≥ 5	-	> 0.4	>	0.4	[150, 2	200]	> 1600) < 0.90	
VRM1H	≥ 1	> 300	0	≥ 3	-	> 0.4	>	0.4	[100, 2	200]	> 1600) -	
VRM2H	≥ 1	> 300	0	≥ 3	-	> 0.4	>	0.4	[150, 2	200]	> 1600) -	
VRE	≥ 1	> 145	-	≥ 1	≥ 1	> 0.4	<	: 0.4	> 20)0	[100, 160	- [00	

February 21, 2022

Photon+E^{miss}

Total (stat. + syst.) uncertainty Statistical uncertainty

Jet energy scale and resolution b-tagging calibration Jet fakes MC theory Electron fakes Electron/photon energy resolution and Muon reconstruction and identification Photon ID and isolation Pile-up reweighting $E_{\rm T}^{\rm miss}$ soft-term scale and resolution

	SRL [%]	SRM [%]	SRH [%]
	28	25	17
	20	15	12
	18	19	4.1
	3.2	4.3	3.6
	2.1	2.5	2.3
	3.6	3.1	10
	1.4	1.9	< 1
scale	5.5	1.1	4.1
ı	2.6	1.8	< 1
	2.6	2.1	1.1
	< 1	1.2	1.0
	< 1	< 1	< 1

Photon+Emiss

Observed event

Expected SM e

 $t\bar{t}\gamma$ $W\gamma$ γ + jets $Z(\rightarrow \nu\nu)\gamma$ $\gamma \gamma / W \gamma \gamma / Z \gamma \gamma$ Fake photons f Fake photons fi $Z(\rightarrow \ell \ell)\gamma$

Signal Region	Nobs	Nexp	$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	$\langle \epsilon \sigma \rangle_{\exp}^{95}$ [fb]	$S_{\rm obs}^{95}$	S_{\exp}^{95}	$p_0(\mathbf{Z})$
SRL	2	2.67 ± 0.75	0.030	$0.034^{+0.019}_{-0.011}$	4.12	$4.7^{+2.6}_{-1.6}$	0.50 (0.00)
SRM	0	2.55 ± 0.64	0.018	$0.032^{+0.018}_{-0.011}$	2.56	$4.4^{+2.5}_{-1.6}$	0.50 (0.00)
SRH	5	2.55 ± 0.44	0.054	$0.034^{+0.019}_{-0.011}$	7.43	$4.7^{+2.6}_{-1.6}$	0.09 (1.36)

SRLSRMSRHits205events 2.67 ± 0.75 2.55 ± 0.64 2.55 ± 0.44 0.70 ± 0.18 0.87 ± 0.18 0.22 ± 0.05 0.55 ± 0.37 0.70 ± 0.42 1.08 ± 0.21 0.49 ± 0.29 0.17 ± 0.10 0.07 ± 0.01 0.31 ± 0.11 0.35 ± 0.12 0.94 ± 0.28 0.23 ± 0.11 0.25 ± 0.10 0.08 ± 0.01 from e 0.22 ± 0.08 0.04 ± 0.03 0.06 ± 0.04				
its205events 2.67 ± 0.75 2.55 ± 0.64 2.55 ± 0.44 0.70 ± 0.18 0.87 ± 0.18 0.22 ± 0.05 0.55 ± 0.37 0.70 ± 0.42 1.08 ± 0.21 0.49 ± 0.29 0.17 ± 0.10 0.07 ± 0.01 0.31 ± 0.11 0.35 ± 0.12 0.94 ± 0.28 0.23 ± 0.11 0.25 ± 0.10 0.08 ± 0.01 from e 0.22 ± 0.08 0.04 ± 0.03 0.06 ± 0.04 from jets 0.15 ± 0.09 0.14 ± 0.09 0.09 ± 0.07		SRL	SRM	SRH
events 2.67 ± 0.75 2.55 ± 0.64 2.55 ± 0.44 0.70 ± 0.18 0.87 ± 0.18 0.22 ± 0.05 0.55 ± 0.37 0.70 ± 0.42 1.08 ± 0.21 0.49 ± 0.29 0.17 ± 0.10 0.07 ± 0.01 0.31 ± 0.11 0.35 ± 0.12 0.94 ± 0.28 0.23 ± 0.11 0.25 ± 0.10 0.08 ± 0.01 from e 0.22 ± 0.08 0.04 ± 0.03 0.15 ± 0.09 0.14 ± 0.09 0.09 ± 0.07	its	2	0	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	events	2.67 ± 0.75	2.55 ± 0.64	2.55 ± 0.44
0.03 ± 0.03 0.03 ± 0.01 -	rom <i>e</i> From jets	0.70 ± 0.18 0.55 ± 0.37 0.49 ± 0.29 0.31 ± 0.11 0.23 ± 0.11 0.22 ± 0.08 0.15 ± 0.09 0.03 ± 0.03	0.87 ± 0.18 0.70 ± 0.42 0.17 ± 0.10 0.35 ± 0.12 0.25 ± 0.10 0.04 ± 0.03 0.14 ± 0.09 0.03 ± 0.01	0.22 ± 0.05 1.08 ± 0.21 0.07 ± 0.01 0.94 ± 0.28 0.08 ± 0.01 0.06 ± 0.04 0.09 ± 0.07

