Probing the nature of electroweak symmetry breaking with Higgs boson pair-production at ATLAS

Lake Louise Winter Institute 2022

Maximilian Swiatlowski

TRIUMF

The SM Higgs potential is:

$$V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$$

The SM Higgs potential is:

$$V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$$

Our universe lives in the minimum:

$$V = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \dots$$

= $V_0 + \frac{1}{2} m_H^2 h^2 + \frac{m_h^2}{2v^2} v h^3 + \dots$

The SM Higgs potential is:

$$V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$$

Our universe lives in the minimum:

$$V = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \dots$$

= $V_0 + \frac{1}{2} m_H^2 h^2 + \frac{m_h^2}{2v^2} v h^3 + \dots$
Mass term

The SM Higgs potential is:

$$V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$$

Our universe lives in the minimum:

Potential Higgs Potentials

Potential Higgs Potentials

We have a prediction for the shape from the SM...

But other shapes of the potential still allow for Electroweak Symmetry Breaking

Other shapes could reveal evidence for *Electroweak Baryogenesis*, or hints to vacuum stability

Potential Higgs Potentials

We have a prediction for the shape from the SM...

But other shapes of the potential still allow for Electroweak Symmetry Breaking

Other shapes could reveal evidence for *Electroweak Baryogenesis*, or hints to vacuum stability

Signal distribution strongly depends on κ_{λ}

Increasing κ_{λ} leads the 'triangle diagram' to dominate: signal peak shifts to lower m_{HH}

The Higgs decays instantly, to a range of particle types

The Higgs decays instantly, to a range of particle types

Higgs pairs are rare, and have a hugely rich structure of final states

The Higgs decays instantly, to a range of particle types

Higgs pairs are rare, and have a hugely rich structure of final states

Man on Wire, Guardian

The Higgs decays instantly, to a range of particle types

Higgs pairs are rare, and have a hugely rich structure of final states

Man on Wire, Guardian

 $4b, b\overline{b}\tau\overline{\tau}$, and $bb\gamma\gamma$ are the most powerful

H

 \square

1

 $HH \rightarrow bb\gamma\gamma$

Trigger on diphotons $(E_T > 35,25 \text{ GeV})$

Require two photons

(Leading (subleading) $p_T/m_{\gamma\gamma} > 0.35 (0.25)$)

Require 2 b-tagged jets (e = 77%)

bbyy Background Estimate

Background estimate formed on fit to $m_{\gamma\gamma}$ in different signal regions

Shape of background function determined from simulation, norm determined from data 'sidebands'

Contributions from fake γ estimated using data-driven method

Single Higgs background determined from simulation

Largest systematic from "spurious signal": fit signal + background on background-only MC template

bbyy Analysis Strategy

bbyy Analysis Strategy

After pre-selection, split into high-mass and low-mass selections

bbyy Analysis Strategy

After pre-selection, split into high-mass and low-mass selections

BDT trained in each region: select low- and high-purity signal regions with BDT

by Analysis Strategy

by Analysis Strategy

I.lh /

$HH \to b\bar{b}\tau\bar{\tau}$

Separate into $au_h au_h$ and $au_\ell au_h$ channels

Trigger on di- τ , $\ell + \tau$, or single ℓ

Require I or 2 'loose' τ : $m_{\tau\tau} > 60 \text{ GeV}$

Require 2 b-tagged jets $(\epsilon = 77\%)$

ATLAS-CONF-2021-030

bbττ Background Estimate

Top-quark background from MC, normalization floating in final fit Z+jets background from MC, normalization from leptonic control region Fake τ estimated from data

$b\bar{b}\tau\bar{\tau}$ Strategy and Results $\widetilde{\psi}$

$b\bar{b}\tau\bar{\tau}$ Strategy and Results

 $au_{had} au_{had}$ BDT

$b\bar{b}\tau\bar{\tau}$ Strategy and Results

$b\bar{b}\tau\bar{\tau}$ Strategy and Results \sim

$b\bar{b}\tau\bar{\tau}$ Strategy and Results

Fits to BDT/NN shape used for final analysis

Data agrees well with background prediction

 $au_{had} au_{had}$ has strongest sensitivity, but other channels also contribute

Limits on the SM

Limits on the SM

Let's put it all together: can we see HH?
Limits on the SM

Let's put it all together: can we see HH?

Here, show sensitivity to SM signal: what factor larger would the signal have to be, for us to be sensitive?

> Individual analyses set limits at ~4.5x SM

Together, set limit at 3.1x SM

CONF-2021-05

Signal σ goes up for extreme κ_{λ} : produce more signal

Limits also go up at extreme \mathcal{K}_{λ} : signal is growing, but is concentrated at low m_{HH} , same as backgrounds

Both analyses contribute to combination!

Signal σ goes up for extreme κ_{λ} : produce more signal

Limits also go up at extreme \mathcal{K}_{λ} : signal is growing, but is concentrated at low m_{HH} , same as backgrounds

Both analyses contribute to combination!

Allowed range: $-1.0 < \kappa_{\lambda} \le 6.6$

Signal σ goes up for extreme κ_{λ} : produce more *signal*

Limits also go up at extreme κ_{λ} : signal is growing, but is concentrated at low m_{HH} , same as backgrounds

> Both analyses contribute to combination!

Allowed range: $-1.0 < \kappa_{\lambda} \le 6.6$

to mid-Run2: $-5.0 < \kappa_{\lambda} \le 12.0$

 $V(\phi) = -m^2 \phi^2 + \lambda \phi^4$

The SM's potential only choice that is gauge invariant, renormalizable

$$V(\phi) = -m^2 \phi^2 + \lambda \phi^4$$

The SM's potential only choice that is gauge invariant, renormalizable

$$V(\phi) = -m^2 \phi^2 + \lambda \phi^4 + C \phi^6 + D \phi^8 + \dots$$

If we want modifications like these C and D terms: they have to emerge from new physics

$$V(\phi) = -m^2 \phi^2 + \lambda \phi^4$$

The SM's potential only choice that is gauge invariant, renormalizable

$$V(\phi) = -m^2 \phi^2 + \lambda \phi^4 + C \phi^6 + D \phi^8 + \dots$$

If we want modifications like these C and D terms: they have to emerge from new physics

$HH \rightarrow b\bar{b}b\bar{b}$ Resolved $HH \rightarrow b\bar{b}b\bar{b}$ Boosted

ATLAS-HBDS-2018-41

Reconstruct Higgs candidates, form "mass plane"

Step 0: form "mass planes" with leading/subleading Higgs, for 2b and 4b events

February 21, 2022

16

M. Swiatlowski (TRIUMF)

February 21, 2022

bbbb Results

bbbb Results

Data agrees well with background prediction

Boosted analysis is similar: simpler spline based reweighting

1000 1500 2000 2500 3000 3500 4000 4500 5000 m(HH) [GeV]

10⁻¹ 10⁻²

bbbb Results

Resonant Combination

Resonant Combination

Resonant Combination

Here, show results from all three analyses

 $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau\bar{\tau}$ have similar resonantoptimized searches

 $(b\bar{b}\tau\bar{\tau}$ has parameterized NN for different signal mass points)

> All three analyses complementary: set best limits at different ranges

Conclusions

Conclusions

Higgs pair measurements let us directly probe the shape of the Higgs potential

Conclusions

Higgs pair measurements let us directly probe the shape of the Higgs potential

Rapidly approaching sensitivity to even the rare SM x-sec!

Conclusions

Higgs pair measurements let us directly probe the shape of the Higgs potential

Rapidly approaching sensitivity to even the rare SM x-sec!

Projections for HL-LHC rapidly improving as analyses are optimized: many exciting years of analysis remain!

Thank you!

More in: <u>ATLAS-HDBS-2018-34</u> <u>ATLAS-CONF-2021-030</u> <u>ATLAS-HDBS-2018-41</u> <u>ATLAS-CONF-2021-052</u>

20

Backup

bbyy Results

Low mass: sensitive to κ_{λ}

• Data

10

M. Swiatlowski (TRIUMF)

140

150

 $m_{\gamma\gamma}$ [GeV]

160

Events / 2.5 GeV

10

8

6

0

110

120

130

High mass: sensitive to SM

140

• Data

ttγγ

γγbb

HH (SM)

Single Higgs

γγ+other jets

DataDriven yj

DataDriven jj

150

*m*_{γγ} [GeV]

160

Low mass: sensitive to κ_{λ}

No obvious signs of new physics!

22

10

Events / 2.5 GeV

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ HH \rightarrow b $\overline{b}\gamma\gamma$

 $M_{\chi} \ge 350 \text{ GeV}$

BDT Tight

ATLAS Preliminary $\sqrt{s} = 13$ TeV, 139 fb⁻¹ 14 • Data HH (SM) HH→bbγγ 12 Single Higgs $M_{\gamma} \ge 350 \text{ GeV}$ ttγγ **BDT** Loose 10 γγbb γγ+other jets DataDriven γj 8 DataDriven jj 6 0 110 150 120 130 140 160 $m_{\gamma\gamma}$ [GeV]

High mass: sensitive to SM

Events / 2.5 GeV

25

20

15

10

5

0

110

ATLAS Preliminary $\sqrt{s} = 13$ TeV, 139 fb⁻¹

120

130

HH→bb̄γγ

BDT Loose

 $M_{\chi} \le 350 \text{ GeV}$

🔶 Data

ttγγ

γγbb

HH (SM)

Single Higgs

γγ+other jets

DataDriven γj

150

 $m_{\gamma\gamma}$ [GeV]

160

DataDriven jj

Events / 2.5 GeV 20 15

25

10

5

0

110

Low mass: sensitive to κ_{λ}

130

140

But some of the best sensitivity to HH ever...

No obvious signs

of new physics!

Events / 2.5 GeV

10

0

14⊢

0

110

120

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

High mass: sensitive to SM

130

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

120

HH→bb̄γγ

BDT Loose

 $M_{\chi} \leq 350 \text{ GeV}$

bbyy Results

• Data

ttγγ

γγbb

HH (SM)

Single Higgs

γγ+other jets

DataDriven γj

150

160

*m*_{vv} [GeV]

DataDriven jj

150

 $m_{\gamma\gamma}$ [GeV]

160

140

• Data

Why Neural Networks?

Why Neural Networks?

Here, apply NN to 2b data in VR

Why Neural Networks?

Here, apply NN to 2b data in VR

Works well, even on data that wasn't used in training!

Works well, even on data that wasn't used in training!

Here, apply NN to 2b data in VR

10-1 4b Data – Pred Pred 0.2 0.1 0.0 -0. -0.2800 400 600 1200 1000 1400 Corrected m(HH) [GeV]

Why Neural Networks?

4b Data

800

Why does this work?

1000

1200

Corrected m(HH) [GeV]

1400

February 21, 2022

4b Data – Pred Pred

0.2

0.

0.0

-0.

-0.2

400

600

Here, apply NN to 2b data in VR Works well, even on data that wasn't used in training!

Why Neural Networks?

Events / 14.3 GeV **ATLAS** Preliminary $\sqrt{s} = 13 \text{ TeV}, 126 \text{ fb}^{-1}$ Normalized 2b Data Resolved channel control region Stat. Uncertainty 10 10³ 10² 10¹ 10⁰ 10-4b Data – Pred Pred 0.2 0. 0.0 -0. -0.2 800 400 600 1000 1200 1400 Corrected m(HH) [GeV] Why does this work?

105

4b Data

NN's learn a density ratio of two classes: normally this ratio is used to isolate a single class, but can be used to reweight classes

Resonant p-value

$b\bar{b}\tau\bar{\tau}$ Resonant Limits

Non-resonant Acc x Eff

Variables for MVAs

- For $b\bar{b}\gamma\gamma$: photon kinematics, b-jet kinematics, bb-system kinematics, missing energy, total energy, "top-ness"
- For $b\bar{b}\tau\bar{\tau}$: mHH, mbb, mTT, DR(b,b), DR(T,T), DPt(lep,T), MET, DPhi(lepT, bb)...
- For $b\bar{b}b\bar{b}$:
- 1. $\log(p_{\rm T})$ of the selected jet with the 2nd-highest $p_{\rm T}$,
- 2. $\log(p_{\rm T})$ of the selected jet with the 4th-highest $p_{\rm T}$,
- 3. $log(\Delta R)$ between the two selected jets with the smallest ΔR ,
- 4. $log(\Delta R)$ between the other two selected jets,
- 5. the average $|\eta|$ of selected jets,
- 6. $\log(p_{\rm T})$ of the *HH* system,
- 7. ΔR between the two *H* candidates,
- 8. $\Delta \phi$ between the jets making up H_1 ,
- 9. $\Delta \phi$ between the jets making up H_2 ,
- 10. $\log(\min(X_{Wt}))$, and
- 11. the number of jets in the event with $p_{\rm T}$ > 40 GeV and $|\eta|$ < 2.5, including jets that are not selected.

Acceptance x Eff bbbb

Boosted Backgrounds

M. Swiatlowski (TRIUMF)

> 7000t

Events /5 6000

4000

3000

2000

1000

0.2

February 21, 2022

• More data

- More data
- Background estimation

- More data
- Background estimation
- Jet reconstruction

- More data
- Background estimation
- Jet reconstruction
- Jet triggering

- More data
- Background estimation
- Jet reconstruction
- Jet triggering
- A common theme to these problems: how to use **more** information

- More data
- Background estimation
- Jet reconstruction
- Jet triggering
- A common theme to these problems: how to use **more** information
 - And a common solution to many: machine learning

Universe Stability

Interference

+ |

Interference

M. Swiatlowski (TRIUMF)

Interference

 $\sigma \propto$

8

 $2 - \left(\int_{a}^{g} \frac{\kappa_{t} + \kappa_{\lambda}}{H} \right)^{H}$

M. Swiatlowski (TRIUMF)

February 21, 2022

32

Interference

Interference

