

Measurements of the Higgs boson properties and their interpretations with the ATLAS experiment

<u>Ilaria Luise</u>

Lake Louise Winter Institute 2022

20th February 2022

What's next in the Higgs sector ?

We entered a new era for the Higgs sector: After the discovery, the focus shifted towards the measurement of its properties

Is this "the Higgs"?

"precise" Higgs measurements → search for deviations from the SM in differential cross-section measurements.

Probing the Higgs boson phase space:

Increased "resolution" to BSM effects:

 $H \rightarrow inv$

139

VBF

Decay channel	Target Production Modes	\mathcal{L} [fb ⁻¹]
$H ightarrow \gamma \gamma$	ggF, VBF, WH, ZH, ttH, tH	139
$H \rightarrow ZZ^*$	$ggF, VBF, WH, ZH, t\bar{t}H(4\ell)$	139
	$t\bar{t}H$	36.1
$H \rightarrow WW^*$	ggF, VBF	139
	tīH	36.1
$H \rightarrow \tau \tau$	ggF, VBF, WH, ZH, $t\bar{t}H(\tau_{had}\tau_{had})$	139
	$t\bar{t}H$	36.1
	WH, ZH	139
$H \rightarrow b \bar{b}$	VBF	126
	$t\bar{t}H$	139
$H \rightarrow \mu \mu$	$ggF, VBF, VH, t\bar{t}H$	139
$H \rightarrow Z\gamma$	ggF, VBF, VH, ttH	139
$H \rightarrow inv$	VBF	139

Boson Decays

Higgs decays into photons and vector bosons

STXS measurements:

BR

Channels with cleanest S/B ratio. Lot of data: categorise the events in a fine way

 H→WW→ℓvℓv: Larger BR but worst resolution due to neutrinos.

$H \rightarrow WW^* \rightarrow \ell_{\mathcal{V}} \ell_{\mathcal{V}}: \underline{ATLAS-CONF-2021-014}$

STXS measurements:

BR

Channels with cleanest S/B ratio. Lot of data: categorise the events in a fine way

- H→WW→ℓvℓv: Larger BR but worst resolution due to neutrinos.
- H→γγ: Small BR but high control on the background in sidebands. decay through loop probes coupling to both fermions and vectors.

$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$: <u>ATLAS-CONF-2021-014</u>

STXS measurements:

Channels with cleanest S/B ratio. Lot of data: categorise the events in a fine way

- H→WW→ℓvℓv: Larger BR but worst resolution due to neutrinos.
- H→γγ: Small BR but high control on the background in sidebands. decay through loop probes coupling to both fermions and vectors.
- $H \rightarrow ZZ \rightarrow 4\ell$: Lowest BR but very clean final state.
 - Main bkg: ZZ*, from data+simulation

BR

H→*γγ*: <u>ATLAS-CONF-2020-026</u>

H→ZZ*→4ℓ: <u>Eur. Phys. J. C 80 (2020) 957</u>

7

$H \rightarrow WW^* \rightarrow \ell_{\mathcal{V}} \ell_{\mathcal{V}}: \underline{ATLAS-CONF-2021-014}$

Coup	ling t	to Fe	rmior	IS	
		Qu	arks	Lept	ions
		-			
3'	^{'d} generation		b b	7	ν,
		Top quark	Bottom quark	Таи	Neutrino $\nu_{ au}$
			•••••••••••••••••••••••••••••••••••••••		
2"	^{id} generatio	Cc	83	μ	ν _μ
		Charm quark	Strange quark	Muon	Neutrino $ u_{\mu}$
		***************************************		**************	

Decay channel	Target Production Modes	\mathcal{L} [fb ⁻¹]
$H \rightarrow \gamma \gamma$	ggF, VBF, WH, ZH, ttH, tH	139
$H \rightarrow ZZ^*$	ggF, VBF, WH , ZH , $t\bar{t}H(4\ell)$	139
	$t\bar{t}H$	36.1
$H \rightarrow WW^*$	ggF, VBF	139
	tĪH	36.1
$H \rightarrow \tau \tau$	ggF, VBF, WH, ZH, $t\bar{t}H(\tau_{had}\tau_{had})$	139
	$t\bar{t}H$	36.1
$H \rightarrow b\bar{b}$	WH, ZH	139
	VBF	126
	$t\bar{t}H$	139
$H \rightarrow \mu \mu$	ggF, VBF, VH, ttH	139
$H \rightarrow Z\gamma$	ggF, VBF, VH, ttH	139
$H \rightarrow inv$	VBF	139

(+H \rightarrow cc not included in global combination yet)

VH,H→bb results:

VH production mode: exploit additional leptonic signatures in the final state.

Three VH(bb) results with full Run II data:

- VH(bb) in resolved regime: Eur. Phys. J. C 81 (2021) 178
- VH(bb) in **boosted regime**: <u>Phys. Lett. B 816 (2021) 136204</u>
- VH(bb) resolved+boosted combination: ATLAS-CONF-2021-051

Slide on $H \rightarrow bb$ in other production modes in backup ⁹

Coupling to leptons:

H→µµ: Phys. Lett. B 812 (2021)

• Fully reconstructed final states with low hadronic activity.

• Very rare process:

- B(H→µµ) ~ (2.17 ± 0.04)×10⁻⁴
- Large backgrounds from **Drell-Yann**
- Significance: 2.0 σ (1.7 σ) obs. (exp.), μ = 1.2 ± 0.6.

 $\sigma(H \rightarrow \mu\mu) / \sigma SM(H \rightarrow \mu\mu) < 2.2 \text{ at } 95\% CL.$

H→ττ couplings/STXS: <u>CERN-EP-2021-217</u>

- Largest direct decay to Leptons.
- Complicated by experimental challenges associated with $\boldsymbol{\tau}$ lepton decay
- Three decay channels considered: $\tau_{had}\tau_{had},\,\tau_{had}\tau_{e,\mu}$ and $\tau_e\tau_{\mu}$
- VBF, VH and ttH enriched regions + boosted categories targeting at ggH

VBF, H\rightarrowTT observation and ggH, H\rightarrowTT evidence standalone at 5.3 (6.2) σ and 3.9 (4.6) σ , respectively!

Inclusive measurements:

VH, H→cc: <u>CERN-EP-2021-251</u>

- Direct constraints using H→cc decays
- Use charm-tagging with dedicated c-tag + b-veto WP
- First direct limit on $\kappa_c @ 95\%$ CL with $|\kappa_c| < 8.5$
- VH(cc) + VH(bb) combination:
 - Exclude $|\kappa_c y_c| = |\kappa_b y_b|$ at 95% CL

$$\mu_{VH(c\bar{c})}(\kappa_c) = \frac{\kappa_c^2}{1 + B_{H \to c\bar{c}}^{\text{SM}}(\kappa_c^2 - 1)}, \text{ Coupling modifier}$$

 μ (VH, H \rightarrow cc) < 26 at 95% CL (31 expected)

Boosted all-hadronic H→bb: <u>CERN-EP-2021-185</u>

- Constraints on Higgs boson inclusive production with transverse momentum above 1 TeV.
- Events categorised according to p_T of H→bb candidate jet. H → bb jet mass used as fit discriminant.
- biggest challenge: modelling of the multi-jet background through a smooth continuous function.

n ^H	μ_H	σ_H [fb]	
<i>P</i> T		Best fit	95% CL upper limit
> 450 GeV	$\textbf{0.7}\pm\textbf{3.3}$	13 ± 52 (stat.) ±32 (syst.) ±3 (theory)	144
$> 1{\rm TeV}$	26 ± 31	$3.4\pm3.9~(ext{stat.})\pm1.0~(ext{syst.})\pm0.8~(ext{theory})$	10.3

How can we profit from these results?

The Higgs coupling combination:

Latest Result Presented @ Higgs2021 ATLAS-CONF-2021-053

41 STXS bins in total

SMEFT interpretation: Brief Introduction

Test presence of BSM physics assuming that new physics

 $H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$

 $(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$

 c_{HWB}

 c_{eH}

- 68 % CL

0.1

2

5

З

10

0.15

SMEFT = Standard Model Effective Field Theory Interpretation

Motivation:

EFT Constraints:

In Total around 30 c_i : Group them to fit only 13 param. → Eigenvector decomposition of STXS covariance 14 matrix (keep only Eigenvalues> 0.1)

Some examples \rightarrow

$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ fiducial cross-sections:

Conclusions

All analyses show an overall good agreement the with the Standard Model predictions

- "Precision era": Moved from inclusive searches to differential x-section measurements
- Full-Run2 results provide high sensitivity to the main Higgs boson production and decay modes
 - STXS uncertainties varying between 20% and 300%.
 - First fiducial x-sections in boson decay channels (uncertainties below 30%).
- Not covered backup:
 - ► H→invisible combination (ATLAS-CONF-2020-052)
 - ► Higgs as dark matter portal (ZH→ℓℓ+MET CERN-EP-2021-204)

Combinations and interpretations:

- ATLAS most granular simultaneous measurement to date: 41 STXS bins in total.
- Reinterpretations in terms of EFT or coupling modifiers set constraints on BSM scenarios.

More data ⇒ more measurements, more differential, more complicated interpretations

Backup

The Higgs boson in the Standard Model:

- In the Standard Model (SM):
 - The Higgs boson is the *mediator* of the Higgs field.
 - The Higgs mechanism provides masses to bosons and fermions
- The Higgs boson discovery in 2012 opened the way to the study of new sectors of the SM Lagrangian

Theory: Higgs sector in the Standard Model

Introducing mass terms for fermions and bosons would **destroy** the **gauge** invariance of the Lagrangian (non-renormalizable theory)

The Higgs Mechanism:

Add a scalar field to the SM lagrangian, invariant for gauge symmetry:

$$\mathcal{L}_{Higgs} = (D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) - \mu^{2}\Phi^{\dagger}\Phi - \lambda(\Phi^{\dagger}\Phi)^{2}$$

Minimize the potential and let the vacuum acquire a <u>specific</u> value:

$$\frac{\partial V(\Phi)}{\partial \Phi} = 0 \quad \Rightarrow \quad |\Phi_0| = v = \sqrt{\frac{\mu^2}{\lambda}}$$

This <u>spontaneously</u> breaks the SU(2)xU(1) symmetry.

 $SU(2)_{L} \otimes U(1)_{Y} \rightarrow U(1)_{EM}$

High energy

Low energy

 $\mathcal{L} \supset \underbrace{\frac{g^2 v^2}{4}}_{\mu} W^+_{\mu} W^{-\mu} + \frac{1}{2} \underbrace{\frac{(g^2 + g'^2) v^2}{4}}_{2} Z_{\mu} Z^{\mu} \longleftarrow \underbrace{\text{mass terms for Weak bosons}}_{V^{\mu}} W^{\pm}_{\mu} Z_{\mu} A^{\mu}_{\mu} + \frac{g^2 v}{2} W^+_{\mu} W^{-\mu}_{\mu} H + \frac{1}{2} \frac{(g^2 + g'^2) v}{2} Z_{\mu} Z^{\mu} H \longleftarrow \underbrace{V^{\mu}}_{\mu} U^{\mu}_{\mu} U^{\mu$ $- \frac{V^{\mu}}{V^{\nu}} \int \cdots H = 2i \frac{m_V^2}{v} g^{\mu\nu}$ **EW Bosons:** Interaction vertices $\mathscr{L} \supset -\left(\frac{y_{yukawa^{\mathcal{V}}}}{\sqrt{2}}\bar{f}f\right) - \frac{y_{yukawa}}{\sqrt{2}}H\bar{f}f \longleftarrow$ $\dots H = -i\frac{m_f}{v}$ Fermions: mass term for fermions

Phenomenology of the Higgs boson @ the LHC:

In the Standard Model (SM) the Higgs boson is the mediator of the Higgs field. The Higgs mechanism provides masses to bosons and fermions

VH, H→bb Combination: Results

SMEFT interpretation: Brief Introduction

SMEFT = Standard Model Effective Field Theory Interpretation

Motivation:

- Test presence of BSM physics assuming that new physics decouples at the current scale $\Lambda >> v,E$
- Parameterise BSM effects using Effective Lagrangian operators*

Technicalities:

- Constrain <u>Dim. 6 operators</u> impacting the Higgs coupling to SM
- Parametrise their impact on the **signal yields** in each STXS bin
- Parametrise σ(qq→ZH), σ(qq→WH), BR(H→bb) as polynomials in sensitivity to c_i

SMEFT Framework (Warsaw basis)

0.5

0

20

30

45

60

80

120

200

350 1000

 p_{τ}^{4l} [GeV]

10

10-20 0.03 0.39 0.02

0-10 10-20 20-30 30-45 45-60 60-80 80-120 20-200 350-100

 p_{τ}^{4l} [GeV] (reco)

0-10 0.41 0.04

STXS vs Fiducial x-sections:

https://cds.cern.ch/record/2765932/files/ATL-PHYS-SLIDE-2021-144.pdf

Pros and Cons

- Minimizes model-dependence
 - → Small extrapolations and SM assumptions (mainly through unfolding)
 - \rightarrow Reinterpretable in models with similar A \Rightarrow Long measurement lifetime
- e Simple experimental selection only (should match truth-level selection)
- Can be performed for any measurement variable
- e Only 1 or 2 variables at a time (but can have fine binning)
- o Works best for "clean" modes : good resolution, manageable backgrounds
- Fiducial region depends on final state ⇒ cannot trivially combine different modes

STXS

- \bullet SM description within each bin \Rightarrow Larger model-dependence
- SM description within each bin \Rightarrow Can use MVAs/NNs/ML.
- Well-suited to measure perturbations from SM (e.g. SMEFT)

- Common binning includes information from multiple variables
- e Larger bins, only limited number of variables
- Common binning for all decay modes simplifies combination

12

$H \rightarrow \gamma \gamma$ STXS measurement:

The Higgs coupling combination:

Parameter normalised to SM value 26

Wilson coefficients & EV decomposition:

Figure 17: Visualisation of the projection matrix from the Warsaw basis c_i (x-axis) to the fit basis c'_i (y-axis).

$H \rightarrow bb$ in other production modes:

g 000000

VBF, H→bb: <u>HIGG-2019-04</u>, <u>HIGG-2020-14</u>

- Categorisation into regions based on the output of an ANN
- Inclusive VBF(H \rightarrow bb) significance of 2.6 σ (2.8 σ) obs. (exp.)
- Result combined with VBF+γ analysis:
 - VBF significance at 2.9σ (2.9σ) obs. (exp.)

 $\mu_{VBF,H\to b\bar{b},\text{comb.}} = 0.99^{+0.30}_{-0.30}(\text{stat.})^{+0.18}_{-0.16}(\text{syst.})$

- Challenging final state:
 - Combinatorics from many b-jets
 - Large background from tt+HF jets.
- Events categorised by tt decay mode (1lep, 2lep) and candidate Higgs boson p_T.
- Probe boosted p_T regime as well.

Inclusive significance of 1.3σ (obs.) 3.0σ (exp.).

$H \rightarrow$ invisible and the dark matter portal:

"Invisible" = missing transverse momentum (MET)

ZH→ℓℓ+MET: <u>CERN-EP-2021-204</u>

upper limit @ 95% CL: B(H→ inv.) < 0.18 (0.18) obs. (exp.)

Set exclusion limits for simplified dark matter models and 2HDM+*a* models

H→invisible combination: <u>CONF-2020-052</u>

- In the SM, $H \rightarrow invisible$ is from $H \rightarrow ZZ^* \rightarrow 4v BR = 0.1\%$
- In **Higgs portal models**, H→invisible contributions arise from
 - $H \rightarrow XX$; X: dark matter (DM) particle, e.g. WIMPs

upper limits @ 95% CL on B(H→ inv.) obs. (exp.): Run 2 combination: 0.13 (0.12+0.05-0.04) Run 1+2 combination: 0.11 (0.11+0.04-0.03)

