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The High-Luminosity Era of the LHC

• Increasingly clear that, if the LHC can access evidence for 
new dynamics, then:

…it likely has a very low cross section 
…it could be hidden in regions we have overlooked
…it very well could be subtle – “hidden in the tails”

• Focus now is the luminosity – high luminosity running

2

– A redesign of the collider aimed towards the following goals:
• Achieve a peak instantaneous luminosity of 5.0E34 cm-2s-1

• Accumulate an integrated luminosity of 250/fb per year

– This would allow for a total integrated luminosity of 3000/fb to be accumulated over 12 years of running
• Recall, CMS has accumulated 178/fb of integrated luminosity so far
• This would be x17 larger than the sample we have already recorded in the first decade of running

– Further, the re-design allows the machine to ultimately go to 7.5E34 and 4000/fb, which can be invoked 
depending on conditions and what we observe

x5 increase over design parameter! 

x3.5 increase over single best year (2018, 68/fb)!
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The Challenge of the HL-LHC era

• Dealing with the effects of pileup interactions 
will be a major challenge of the HL-LHC era

• Although PU interactions significantly overlap 
in space, they are more separable in space + 
time.

• Imagine separating the 25ns beam crossing into 
consecutive time slices
– Each exposure has far fewer vertices than when 

integrating over an event’s complete time profile.

• Per-particle timing provided by the MIP 
Timing Detector (MTD) allows 4D track and 
vertex reconstruction
– PU reduced in each time slice
– Every object is improved
– Significant benefit to CMS physics program

One 25ns bunch crossing

Every object is degraded
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MTD Conceptual Design

4Detailed description available in MTD TDR: CERN-LHCC-2019-003

Barrel Timing Layer (BTL)

The MTD provides a precision time 
measurement for MIPs with σt=30-40ps 
and has sufficient radiation tolerance to 

operate up to 3000/fb. 

LYSO bars + SiPM readout
• TK/ECAL interface: |η| < 1.45
• Inner radius: 1148 mm
• Thickness: 40 mm
• Length: ±2.6 m along z
• Area: 38 m2

• 332k channels

Endcap Timing Layer (ETL)
Si with internal gain (LGAD):
• On the CE nose: 1.6 < |𝜂| < 3.0
• Radius: 315 < R < 1200 mm
• Position: z = ±3.0 m (45mm thick)
• Surface ~14 m2; 8.5M channels
• Fluence: up to 2E15 neq/cm2

• 1.3x1.3 mm2 pixels: 9M channels

Visualization of MTD geometry 
implemented in GEANT and 
relationship to CMS.

Backbone of the MTD system:
• Sampling clock frequency of 160 

MHz sync’d to LHC bunch crossings
• RMS jitter of <15 ps
• Distributed to 9.3M channels 

separated by up to 6 meters 

Reference clock

x

y

z

𝜂 = − ln tan
𝜃
2

𝜃 meas’d wrt +z

https://cds.cern.ch/record/2667167


Chris Neu, University of Virginia           Precision Timing with the CMS MIP Timing Detector Lake Louise Winter Institute                  22 February 2022

Sensitive Elements 

BTL: Cerium-doped 
LYSO readout by a silicon 
photo-multipliers (SiPMs)

– Fast and bright crystal
– Radiation tolerant
– Well-understood 

commodities 

ETL: “Low-Gain 
Avalanche Diode” (LGAD)

– Large signal, large slew-
rate ⇒rapid electrical 
response 

– More signal in less material 
⇒ short drift time, better 
timing resolution

– Low gain ⇒ low shot noise, 
below electronics pedestal
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FBK UFSD3.2 sensor performance

Test beam: <30 ps even at end of life

pre-rad 8e14 1.5e15
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BTL Design Overview
• 331k total channels from 165k LYSO bars
• Main components: Trays

– Mechanical support & CO2 via cooling plate:  
– LYSO, SiPMs, FE boards comprise Detector Modules
– DMs grouped in Readout Units

• Tray details:
– 72 trays (36 in ϕ ´ 2 in h)
– Each tray has dimensions : 250 x 18 x 2.5 cm3

– 6 RUs per tray. 

18 cm

2 
. 5

 c
m

2 trays in 𝜼

250 cm

250 cm

One tray, end view

+

LYSO+SiPM
Sensor Modules FE Boards housing

TOFHIR ASICs
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ETL Design Overview

• Main component: Modules
– LGAD sensors bump-bonded to ASICs
– Interspersed with readout boards

• Implementation in CMS
– Two layers of silicon sensors covering 1.6 < |η| < 3.0 
– Sensors mounted in rows on each face of Al cooling 

disks 
– Readout boards placed between sensor rows, 

staggered wrt opposite face for full sensor coverage. 
– Two such disks/endcap to provide average of 1.8 

hits/track. 
– Mounted on neutron moderator upstream of the CE, in 

an independently cooled and accessible volume.

Sensor Layers Al support 
plate
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Timing Impact: Primary Vertex Finding

• Primary mission of the MTD: pileup mitigation

• One domain in which this is crucial: the 
identification of the primary vertex
– The p-p collision location in a 25 ns bunch crossing 

from which the interesting physics process originates
– Constructed from charged particle tracks that are 

consistent with a common location
– Tracks from spatially-nearby pileup interactions can 

be inadvertently added to the primary vertex

• Time-aware primary vertex reconstruction 
reduces incorrect association of tracks from 
nearby pileup interactions by a factor of 2:
– Fully offsets the impact of the transition from 140 à

200 PU running
– Brings per-vertex track purity close to typical current 

LHC running conditions
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HL-LHC
mean density

200 PU running

HL-LHC
mean density

140 PU runningLHC
mean density

If no MTD, so many 
unwanted PU tracks!

With MTD, incidence 
of PU tracks close to 

current LHC era.
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Timing Impact: Isolated Charged Lepton Identification

• Charged leptons are crucial for identification of Z 
and W boson decays
– Example: 𝐻 → 𝑍𝑍 → 𝜇"𝜇#𝜇"𝜇#

• Charged leptons from W and Z decays are 
typically isolated from other activity in the event
– Charged leptons also come from decays of hadrons, 

which can be interesting in their own right but are not 
what we seek when looking for W/Z signatures 

– Usually such leptons are close by to other activity in 
the detector

– So we veto such non-isolated candidates

• Tracks from PU interactions can overlap with an 
authentic, isolated charged lepton 

9

Timing information from MTD helps by flagging 
tracks that should not be used to determine whether a 

candidate is isolated.

Efficiency for a 30 GeV 
muon goes from 90% (no 
MTD) to 95% (with MTD).

Seems like a small effect –
but benefits are observed for 
all types of reconstructed 
objects!
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Timing Impact: b-jet Identification

• Decays of bound states of quarks manifest themselves in 
CMS as a spray of particles we refer to as a jet
– Mostly protons, pions, kaons
– It is valuable to know the origin story of a specific jet:

• Did this jet come originally from a quark or a gluon?
• If from a quark, was it from a b or c quark?

• b-quark jets are important: 
– Primary decay mode of the Higgs, via 𝐻 → 𝑏$𝑏
– Exclusive decay mode of the top quark, via 𝑡 → 𝑊!𝑏

• Special property of b-quark jets: 
– b-quark lifetime is relatively long: 𝜏 = ~1.5ps
– This means a b-quark jet starts from a decay significantly 

displaced from where it was produced: 𝑐𝜏 = ~0.5 𝑚𝑚

• PU interactions hurt our ability to identify the displaced 
vertex associated with a b-jet:
– Reduced efficiency for authentic b-jets
– Increased the incidence of false positives from non-b-jets
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Timing information from MTD helps by 
restricting displaced vertex ID to tracks 

consistent in the time domain.
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Timing Impact: Measurement of Di-Higgs Production

• Ultimate characterization of the Higgs through 
measurement of its self-coupling
– Accessible through di-Higgs production:

• Search for HH production exploits many final state 
signatures
– Cumulative benefits from MTD from each of the object-

level gains
– Examples:

• 𝐻𝐻 → 𝑏𝑏𝑏𝑏:  MTD provides 18% increase in signal yield
• 𝐻𝐻 → 𝑏𝑏𝛾𝛾:     22% increase in signal yield

– Considering all di-Higgs final states, the MTD provides 
statistical power equivalent to 25% more HL-LHC data
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H

H
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Timing Impact: Long Lived Particles

• Long-lived particles (LLPs) are hallmarks of 
several BSM theories
– Feeble interaction with matter à low decay prob à long 

lifetime
– Attractive hypothesis for particle dark matter
– LHC experiments have been looking for LLPs in Runs 1,2:

• Focus on identifying significantly displaced decay vertices –
spatial analysis only

• MTD offers a completely new capability in LLP 
searches
– Kinematic constraint from LLPs visible decay daughters
– Space+time information à LLP’s velocity
– Coupled with the reconstructed energy deposited from 

the decay produces à LLP’s mass
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Without the MTD, there would be no mass 
information for an observed LLP beyond the trivial 

constraint provided by the 25ns LHC clock.

One 
example:

"𝜒!" is the LLP here.
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Timeline: The High Luminosity LHC Era

• blah
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We are here.

2028 2029

https://project-hl-lhc-industry.web.cern.ch/content/project-scheduleAdapted from

Module 
Production  

Integration and 
CommissioningBTL:

ETL: Module 
Production

Integration and 
Commissioning

https://project-hl-lhc-industry.web.cern.ch/content/project-schedule
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Summary and Outlook

• The High Luminosity era of the LHC is on the horizon. The large new 
accumulated data sample comes at a penalty in terms of pileup interactions 
flooding the detector.

• The MTD will rely on precision timing of particles produced inside CMS to 
provide significant pileup mitigation, furthering the experiment’s mission in the 
HL-LHC era. 

• The MTD also brings new capabilities to CMS that could help uncover the 
elusive signs of new dynamics.
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