

ForwArd Search ExperRiment

Supported by:

Deion Fellers (University of Oregon)

on behalf of the FASER collaboration

Additional US support from:

LHC Forward Physics

 Main LHC detectors are sensitive to transverse particles from head-on pp collisions

- Large forward cross section is currently wasted
 - $N_{\pi} \approx 10^{16}$ in far-forward region (300 fb⁻¹)
- Forward particles are highly collimated
 - Typical π^0 $p_T \approx \Lambda_{QCD}$
 - $\theta \approx p_T/E \approx 10^{-4} \text{ rad (for } E \approx \text{TeV)}$
 - Only ~ 1 cm spread for 100 m longitudinal travel

A small detector far away will see a large flux of long-lived

particles

LHC

FASER Overview

- New experiment at LHC looking for long-lived particles (Dark Photon) that travel 100's of meters along the longitudinal beam axis and decay into e⁺e⁻
- Very rare ($\varepsilon \approx 10^{-5}$): A' production $\propto \varepsilon^2$ and visible decay $\propto \varepsilon^2$

Saved by super high intensity in far forward direction (light meson decays) and

FASER Location

• 480m along the longitudinal line-of-sight of the ATLAS interaction point

Strong magnets and shielding ensure only weakly interacting particles reach FASER

Tracking Stations

- Silicon strip tracking (SCT) modules borrowed from ATLAS
- \sim 20 µm position resolution in charged particle bending direction
 - \sim 550 µm resolution in non-bending direction due to 20 mrad stereo angle

1 SCT Module

1 Tracking Plane

1 Tracking Station

FASER Signal

Two extremely energetic (~ TeV)
 oppositely charged tracks that have a
 common vertex inside the FASER decay
 volume and point back to the ATLAS IP

- No obvious significant backgrounds
 - Expect muon rate of 500 1000 Hz, but these will not mimic signal
- Very rare: $N_{signal} \propto \varepsilon^2 \times \text{(probability of decaying in small volume far away)}$
 - Decay volume is a cylinder with r = 10 cm and a length of 1.5 m

FASER Physics Reach

- Probes new dark photon phase space even after first fb⁻¹
 - ~300 fb⁻¹ expected in Run 3
- Sensitive to other BSM long-lived particles (ALP's)
- FASERv is an emulsion detector at the front of FASER that will measure neutrino scattering cross sections
 - Daiki Hayakawa <u>presented</u>
 FASERv yesterday

Photos

Current Status

- FASER's construction is complete
- Have collected data from LHC pilot beam, test beam, and cosmics
 - Test beam gave us over 150 million events of e, μ , and π particles in subset of detector
 - Data is being analyzed for characterization and commissioning of the detector
- Ongoing simulation and data reconstruction work
 - Both are already well developed

LHC Pilot Beam Event Display

Summary

- FASER is a new experiment at the LHC looking for light long-lived BSM particles in the very far-forward region of ATLAS
 - e.g. Dark Photons ($m_{A'} \approx 100$ MeV, $\varepsilon \approx 10^{-5}$)
- We have successfully installed FASER in time for LHC Run 3 (June 2022)
- Currently characterizing and commissioning the detector

FASER links:

- Public homepage: https://faser.web.cern.ch/
- Theory paper: https://arxiv.org/abs/1811.12522
- Detector design: https://arxiv.org/abs/1812.09139

