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The Power of the Qubit! - The Quantum Walk Framework

• Quantum Walk is the quantum analogue of the classical random walk

|0i |1i

x = 0 x = 1 x = 2x = �1x = �2

Figure 1: One dimensional walker at position x = 0 can move either left or right depending

on the outcome of the coin flip, | #i and | "i respectively.

HC space. The shift operation is then performed, moving the walker into a superposition

of the position states, x = �1 and x = 1. A measurement after the step collapses the

wavefunction to recover the classical case of the walker being in either the x = �1 or x = 1

position.

The Hadamard coin used here is a balanced unitary coin operation† and therefore the

coin and shift operations can be defined as a single unitary transformation to the initial

qubit state,

U = S · (C ⌦ I), (2.3)

which is applied iteratively to represent the number of steps. For a quantum walk of N

steps, the propagation of the walker is described by the transformation U
N [11]. An exam-

ple of running an N = 100 step one dimensional, linear random walk for both the classical

case and the quantum case is shown in Figure 2. The classical case, shown in Figure 2a, has

been achieved by measuring the coin qubit at each step, removing the superposition from

the system. As expected, the classical walk yields a Gaussian distribution of positions cen-

tred about the initial position of the particle, with the variance �
2 = N . In stark contrast

to the classical case, Figure 2b shows the probability distribution of the quantum random

walk. It is clear to see the quantum interference between the intermediate steps of the

walk process in the distribution. It can be shown [11, 14] that the variance of the quantum

random walk process goes as �
2 ⇠ N

2. This is a remarkable attribute of the quantum

random walker, which propagates quadratically faster through the graph than the classical

walker. The average distance of the walker from the initial position is � =
p

N and � ⇠ N

for the classical and quantum walks respectively.

3 Quantum walk as a parton shower simulation

The quantum walk mechanism provides a natural framework for the simulation of parton

showers.

3.1 Theoretical outline of shower algorithm

We present a discrete QCD, collinear parton shower using the quantum walk framework.

Similarly to the parton shower algorithms presented in References [3, 4], the algorithm

†
Strictly speaking, the Hadamard coin introduces a bias to the quantum walk through the phase on the

coin qubit. This is discussed in detail in [11] and references therein. Here we remove this bias by using a

symmetric initial state.

– 3 –
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• We present a discrete, collinear toy QCD model comprising one gluon and one quark flavour

• To meet current QC qubit restrictions, only collinear splittings have been considered, meaning we 
do not keep track of individual kinematics
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The Parton Shower - Theoretical Outline

6

• We present a discrete, collinear toy QCD model comprising one gluon and one quark flavour
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• To meet current QC qubit restrictions, only collinear splittings have been considered, meaning we 
do not keep track of individual kinematics
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• The Sudakov factors have been used to determine whether an emission occurs:
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• The Sudakov factors have been used to determine whether an emission occurs:

Probk→ij = (1 − Δk) × Pk→ij(z)• Combine Sudakov and splitting functions to get splitting 
probability for  in a single shower step:k → ij
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Quantum Walk approach to the parton shower
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•  : increase dimension of position space to 2D  
to allow for the simulation of a gluons and quarks
ℋP
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•  : coin operation is now splitting probability:C
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Quantum Walk approach to the parton shower
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•  : shift operation updates shower content 
accordingly
S

•  : increase dimension of position space to 2D  
to allow for the simulation of a gluons and quarks
ℋP

•  : increase dimension of coin space to 
accommodate for the collinear splitting probabilities
ℋC

•  : coin operation is now splitting probability:C
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Quantum Walk approach to the parton shower
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2

*
2 log2(N + 1) + 6nq

*Scaling of a single register, not full circuit!
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• Present a dedicated quantum algorithm for the simulation of parton showers in high energy 
collisions:

• All shower histories calculated in full superposition constructing a final wavefunction 
containing all possible histories. Measurement projects out a physical quantity.

• Reframing in the Quantum Walk framework vastly improves the efficiency of the quantum 
parton shower algorithm and offers a potential quadratic speed up compared to MCMC 
sampling 

• Looking to the future: the introduction of kinematics to the algorithm will be a large step 
forward in the realism of the algorithm, with the potential of comparison to real data

Summary and Looking to the Future
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Quantum Walk approach to the parton shower - A Simple Shower 
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• Consider a simple shower with a single  
particle type 

•  : Here we alter the coin operation to 
reflect the splitting probability 

•  :  The walker position space now reflects 
the number of  particles present in the 
shower

• The shift operation only increases the position 
of the walker, as only  splittings

ϕ

ℋc
Pϕ→ϕϕ

ℋp

ϕ

ϕ → ϕϕ
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Quantum Walk approach to the parton shower - Results
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arXiv: 2109.13975
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Markov Chain parton shower implementation

in depth in Appendix ??, but, for definiteness, the probability of a gluon splitting to two

gluons is calculated as

Probg!gg =
�
1��g

�
⇥

�
1� Pg!qq(z)

�
⇥ Pg!gg(z). (3.7)

For the energy scale considered here, this should have a small a↵ect on the results as

Pg!qq(z) ⌧ Pg!gg(z).

3.2 Implementation on Quantum Circuit

A quantum circuit has been constructed to simulate a parton shower with collinear split-

tings. The circuit comprises of particle registers, emission registers and history registers

and uses a total of 31 qubits. The algorithm is discretised into individual steps. An emis-

sion can occur in each step, and the probabilities are calculated from the splitting functions

and Sudakov factors. In order to meet the 32 qubit limit of the IBM Q Quantum Simulator

[? ], the algorithm has been limited to two steps, but it is generally extendable. Figure ??

shows the circuit diagram for a single step.

pi

Update

pj

...

n Count |0i Reset

for

next stepe Emission |0i

h0 History

...

Figure 8: Circuit diagram for one step of the algorithm. The circuit comprises particle

registers, emission registers and history registers.

The algorithm follows a similar method to that described by Bauer et al. in [? ],

first counting the particles present in the simulation, determining whether an emission has

occurred and if so assessing which splitting did occur, then finally updating the particle

content of the simulation. In contrast to the method shown by [? ], the algorithm presented

here has the ability to simulate a QCD process, with splittings for both gluons and quarks

implemented using the splitting functions outlined in Eqs. (??) and (??). The addition of

such splitting functions leads to significant changes to the algorithm presented in Bauer

et al., specifically in the History and Update Gates of the algorithm, shown in Fig. ??. The

implementation of these gates is outlined in detail in Appendix ??. Unlike the algorithm

presented by Bauer et al., we have chosen not to introduce flavour mixing at the start of the

– 14 –

E Detailed Quantum Circuit for Collinear Parton Shower Algorithm

The algorithm presented here follows a similar method to that outlined by Bauer et al. [?

]. In contrast, the algorithm does not introduce flavour mixing, but does simulate a vector

boson with the possibility of boson splittings. As a result, the algorithm presented here

includes tailored History and Update gates to deal with the increased splitting channels.

Shown in Fig. ??, the circuit comprises of four tailored gate operations: Count, Emission,

History and Update gate. The particle identity is encoded using a three qubit base, and

the following qubit combinations have been chosen for each type of particle:

gluon quark antiquark

p

8
>><

>>:

p0

p1

p2

1

0

0

0

0

1

0

1

1

(E.1)

Using a 3-qubit base, it is possible to simulate 7 di↵erent types of particle and 1 null state.

Therefore, the algorithm could be easily extended to accommodate more quark flavours if

more qubits were available.

E.1 Count Gate

The count gate is made up from three individual counting mechanisms for each type of

particle, and is applied to each particle register individually. The algorithm utilises a

series of NOT, controlled-NOT (CNOT ) and To↵oli (CCNOT ) gates to update the count

registers, ni, depending on the type of particle represented in the particle register. Fig. ??

shows the counting mechanism for a gluon, controlling only from the gluon state outlined

in ??.

pk

p0

p1

p2

work
w0

w1

ng

nq

nq

Figure 12: Count Gate circuit decomposition for counting a gluon in the particle register.

To complete the count gate, this is repeated for all other possible particle types by applying

di↵erent combinations of NOT gates.

– 24 –

The total number of count registers, ni, used in the algorithm is 4. As the particle

count registers are updated at the beginning of a step, the maximum number of gluons that

can be present is 2 and the maximum number of quarks/antiquarks is 1. Therefore, for this

algorithm only 2 gluon count registers and 1 quark/antiquark count register are required.

Ideally, one would have the same number of count registers for each of the particle types,

and this would be equal to the step number. However, due to the limitation on the number

of available qubits, this has not been possible here.

E.2 Emission Gate

The emission gate implements the Sudakov factors from Eq. (??) by defining a U3 rotation

that can be applied to the emission register, e. The structure of this rotation takes the

same form as that presented by Bauer et al. in Reference [? ],

Ue =

 p
�tot(z1, z2) �

p
1��tot(z1, z2)p

1��tot(z1, z2)
p
�tot(z1, z2)

!
. (E.2)

This rotation changes the state of the emission gate, e, to |1i if there is an emission, and

keeps it in state |0i if there is no emission. Non-emission probabilities (Sudakov factors)

are used due to the Qiskit [? ] definition of a qubit state,

|0i =

 
1

0

!
, |1i =

 
0

1

!
. (E.3)

ng

ng1

ng2

nq

nq

work

w0

w1

w2

emission e Ue

Figure 13: Emission Gate for a single gluon in the first particle register. Here the Ue is

a U3 rotation is used to implement the Sudakov Factors.

Similarly to the Count Gate, the Emission Gate is constructed from a series of NOT

gates which determine the target state, and a series of CCNOT gates which implement the

operation if the target state is present. Here, the emission is determined by controlling from

– 25 –

the particle count gates. If the desired particles are present, then the emission rotation

from Eq. (??) is applied to the emission register. As only one emission can occur in a single

step, then only one emission qubit is needed per step.

E.3 History Gate

The history gate is the most complicated implementation in the algorithm. This is largely

due to the fact that a gluon can split to either a gluon pair, or a quark-antiquark pair. As a

consequence this requires two calculations of splitting probabilities for a gluon, as outlined

in Eq. (??). These probabilities are implemented by controlling from present particles and

applying a rotation to the relevant history register; again taking a form similar to the one

presented by Bauer et al. [? ],

Uh =

0

@

q
1�

Pk!ij(z)
Ptot(z)

�

q
Pk!ij(z)
Ptot(z)q

Pk!ij(z)
Ptot(z)

q
1�

Pk!ij(z)
Ptot(z)

1

A , (E.4)

where Ptot is defined as,

Ptot(z) = ng(Pg!qq + Pg!gg) + nqPq!qg + nqPq!qg. (E.5)

Here the non-splitting probabilities are used in the diagonal elements due to the definition

of the qubit states outlined in Eq. (??).

pk

p0

p1

p2

emission e

work

w0

w1

w2

history

h0

h1 Ug1

h2 Ug2

Figure 14: History Gate for a single gluon in the first step. Here the Uh gate is a U3

rotation used to implement the splitting probabilities.

The history gate used in this algorithm di↵ers from [? ], such that it controls from

the particle registers and not the count registers. This is to reduce the number of count
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pi

p0

Particles

passed on to

next step

p1

p2

pj

p0

p1 H

p2

history

h0

h1

h2

Figure 15: Update Gate for the first step of the algorithm. Each slice is a di↵erent update

mechanism: far left slice updates q ! qg splittings, centre slice updates g ! qq and the

far right slice updates g ! gg.

The CCNOT gate for the final slice in Fig. ?? also controls from a |0i state on the g ! qq

history qubit. Therefore a gluon can only split to a gluon pair if the history gate for a gluon

splitting to a quark-antiquark pair is in the |0i state. This is an acceptable approximation

because the splitting probabilities for g ! qq are a lot less than for g ! gg. Consequently,

there is only a small probability that they are both in the |1i state at any one time.

However, it is possible that this may be a limitation in comparison to current classical

parton shower algorithms provided by packages such as Pythia [? ], Herwig [? ] and

Sherpa [? ], as these give more complex weightings to the di↵erent splitting channels.
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Prob( |0⟩) = Tr(P0 |ψ⟩⟨ψ | ) = ⟨ψ |P0 |ψ⟩ = |α |2

• Measurement of an arbitrary qubit system, , is represented by the projection 
onto the  and  state, defining the projection operators  and .

• The probability of measuring the  state:

|ψ⟩ = α |0⟩ + β |1⟩
|0⟩ |1⟩ P0 = |0⟩⟨0 | P1 = |1⟩⟨1 |

|0⟩

• Qubits are measured in this Projection-Valued Measurement regime and so the final state of the 
qubit is altered by the measurement. If the qubit is measured in the  state, then the final qubit 
state is:

|0⟩

|ψ⟩ ←
P0 |ψ⟩

⟨ψ |P0 |ψ⟩
= |0⟩
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Looking to the Future of Quantum Computers
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• We are on the brink of a 
‘quantum revolution’ - IBM on 
track to exceed 1000 qubits by 
2023

• Quantum Walks have long 
been conjectured to give a 
quadratic speed up in the 
mixing time of Markov Chains

• Quadratic speed up has been 
proven for several quantum 
MCMC algorithms


