ATLAS Results on Charmonium Production and B_c Production and Decay

Sally Seidel, for the ATLAS Collaboration LLWI 2022 25 February 2022

Four recent results on charmonium and B_c from ATLAS, using LHC pp data.

ATLAS from inside to out:

- Inner detector (pixel, silicon microstrips, straw-tube TRT) $|\eta| < 2.5$, surrounded by a 2T axial B field from the solenoid
- Sampling calorimeters (LAr EM $|\eta|$ < 3.2; Scint tile HAD $|\eta|$ < 3.2; LAr HAD 1.5 < $|\eta|$ < 4.9)
- Air core toroids provide B field for Muon drift tubes + cathode strip chambers (muon tracking to $|\eta| < 2.7$) and resistive plate + thin gap chambers (triggering to $|\eta| < 2.4$)

- I. J/ψ Production in Association with a W[±] Boson at 8 TeV
- II. Relative B_c^{\pm}/B^{\pm} Production Cross Section at 8 TeV
- III. Production Cross Section of J/ ψ and ψ (2S) at High p_T at 13 TeV
- IV. $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ Decays at 13 TeV

Measurement of J/ ψ Production in Association with a W[±] Boson at 8 TeV*

Message: Associated prompt production of $J/\psi + W^{\pm}$ probes the mechanism for charmonium production in hadronic collisions and is proposed to be a clear means to compare the color octet and color singlet models.

The outcome: measurements of 3 ratios, all with the form:

$$R \equiv \frac{\sigma(pp \to J/\psi + W^{\pm})}{\sigma(pp \to W^{\pm})} \cdot B(J/\psi \to \mu\mu)$$

- R_{fid} "fiducial" independent of unknown J/ ψ spin alignment or J/ ψ acceptance corrections
- R_{incl} "inclusive" accounting for J/ ψ spin alignment and J/ ψ acceptance corrections
- $R_{DPS\text{-}sub}$ "inclusive with double parton scattering subtracted" remove cases where the J/ψ and W^{\pm} come from different parton pairs.

Results are compared to NLO color octet prediction for single-parton scattering.**

^{*}JHEP 01 (2020) 095.

^{**}M. Song et al., Chin. Phys. Lett. 30 (2013) 091201, extended to 8 TeV by original authors.

Motivation:

- The main models for perturbative calculations of quarkonium production in hadronic collisions differ in how the system is produced:
 - in a **color singlet** (CS) state (requires 2 hard gluons in color singlet initial state, or one gluon splitting into $Q\overline{Q}$ then one Q radiating a hard gluon)

-or-

- with QQ remaining in **color octet** (CO) state and then generating color-neutral meson by low energy non-perturbative matrix elements.
- Associated J/ψ + W[±] production has been presented* as a clear signature of CO processes, although higher-order CS processes have also been proposed.**

^{*} G. Li et al., Phys. Rev. D 83 (2011) 014001.

^{**} B.A. Kniehl et al., Phys. Rev. D 66 (2002) 114002.

The method:

- 20.3 fb⁻¹ of pp collisions at 8 TeV this is a factor 4 increase in dataset size over the previous ATLAS measurement*
- Find the W's: W is associated with the primary vertex (PV) through transverse impact parameter. Apply isolation criteria. Improve W selection through cut on transverse mass.
- Find the J/ψ's: If a W event has 2 additional muons, apply a J/ ψ reconstruction with common-vertex constraint. Select on: $8.5 < p_{TJ/\psi} < 150$ GeV and $|y_{J/\psi}| < 2.1$.
- Limit to prompt J/ψ 's produced in the initial hard interaction either directly or indirectly through feed-down (including radiatively) from a heavier charmonium state. Prompt candidates have a pseudo-proper decay time τ consistent with zero, where

$$\tau(\mu^+\mu^-) \equiv \frac{\vec{L} \cdot \vec{p}_T^{J/\psi}}{p_T^{J/\psi}} \cdot \frac{m(\mu^+\mu^-)}{p_T^{J/\psi}},$$

and \vec{L} is the 2-D displacement between PV and J/ ψ vertex.

• Suppress systematic uncertainties on W reconstruction and integrated lumi by taking the ratio of prompt cross sections to inclusive W cross section.

^{*} ATLAS collaboration, HEP 04 (2014) 172.

- Results binned for $|y_{J/\psi}| < 1$ and $1 < |y_{J/\psi}| < 2$ and, for the full |y| bin, differentially in $p_{TJ/\psi}$.
- Measurements of the azimuthal angle between the W[±] and the J/ ψ indicate **that double parton scattering (DPS),** in which the J/ ψ and the W come from different hard interactions, is present.
- The DPS contribution P^{ij} is estimated for a process containing a W[±], using the measured cross-section $\sigma^{ij}_{J/\psi}$ for J/ψ production and the effective transverse overlap area of the interacting partons σ_{eff} : $P^{ij}_{J/\psi|W} = \sigma^{ij}_{J/\psi}/\sigma_{eff}$. Results are presented for $\sigma_{eff} = 15$ mb and 6.3 mb.

Result:

The predicted cross section ratio is closer to data for $\sigma_{eff} = 6.3$ mb, but neither value of σ_{eff} allows a good match to the J/ ψ p_T dependence. Inclusion of color singlet processes may improve the agreement.

Measurement of the Relative B_c[±]/B[±] Production Cross Section at 8 TeV*

Message and motivation: No published calculation of the cross section at 8 TeV is available. Evidence of dependence of this ratio upon $p_T(B)$ is shown. This is the first measurement of this relative cross section for this combination of fiducial volume and energy.

The outcome:
$$\frac{\sigma(B_c^{\pm}) \cdot B(B_c^{\pm} \to J/\psi \pi^{\pm})}{\sigma(B^{\pm}) \cdot B(B^{\pm} \to J/\psi \pi^{\pm})}$$
 is measured for bins:

• 2 p_T bins for the rapidity range |y(b)| < 2.3:

$$13 \text{ GeV} < p_T(B_c^{\pm}) < 22 \text{ GeV} \text{ and } p_T > 22 \text{ GeV}$$

• 2 rapidity bins for the p_T range $p_T(B) > 13$ GeV:

$$|y| < 0.75$$
 and $0.75 < |y| < 2.3$

• and for the full range: $p_T > 13$ GeV and |y| < 2.3

^{*} Phys. Rev. D 104 (2021) 012010.

The method:

- Find the J/ψ : combine every oppositely-signed pair of muons, constrain to a common vertex.
- Find the B candidates: fit the tracks of the 2 muons to a charged-hadron track, constrain to a common vertex. Charged hadron takes kaon (pion) mass for B^{\pm} (B_c). Constrain the J/ ψ mass to its world average value.
- Remove combinatorial background in which J/ψ is combined with unrelated light charged hadron: select on significance of impact parameter of hadron track relative to PV in transverse plane.
- Remove partially-reconstructed B_c semileptonic decays in which a muon fakes a hadron.
- Find $\frac{\sigma(B_c^{\pm}) \cdot B(B_c^{\pm} \to J/\psi\pi^{\pm}) \cdot B(J/\psi \to \mu^{+}\mu^{-})}{\sigma(B^{\pm}) \cdot B(B^{\pm} \to J/\psi\pi^{\pm}) \cdot B(J/\psi \to \mu^{+}\mu^{-})} = \frac{N^{reco}(B_c^{\pm})}{N^{reco}(B^{\pm})} \cdot \frac{\varepsilon(B^{\pm})}{\varepsilon(B_c^{\pm})}$

where ε 's are efficiencies and N^{reco} is extracted from mass distributions by unbinned maximum-likelihood fits.

Example invariant mass distributions:

Inclusive result: For full range $p_T > 13$ GeV and |y| < 2.3, the production cross section ratio is $0.34 \pm 0.04(\text{stat})^{+0.06}_{-0.02}(\text{syst}) \pm 0.01(\text{lifetime})$

Differential (points) and inclusive (lines) results:

The differential measurement suggests a possible dependence on p_T : the production cross section of the B_c decreases faster with p_T than the production cross section of the B^\pm .

No significant dependence on rapidity is observed.

Measurement of the Production Cross Section of J/ ψ and ψ (2S) Mesons at High Transverse Momentum at 13 TeV*

Message – This analysis broadens the scope of comparison between experiment and theory by adding a high p_T selection on the quarkonium – this is expected to improve discrimination among competing models** of vector charmonium production.

The outcome - ATLAS has measured:

- double differential production cross sections of J/ ψ and $\psi(2S)$ through their decays to $\mu^+\mu^-$.
- Prompt and non-prompt cross sections separately for both states.
- For each state, the ratio of non-prompt to total (i.e. fraction of non-prompt).
- For both prompt and non-prompt, the production ratios of $\psi(2S)$ relative to J/ψ .

The characteristics of the measured cross sections are compared to predictions based on the FONLL model.***

^{*}ATLAS-CONF-2019-047.

^{**}G. Li et al., PRD 83 (2011) 014001; J.P. Lansberg and C. Lorce, Phys. Lett. B 726 (2013) 218; B. Gong et al., JHEP 03 (2013) 115; M. Song et al., JHEP 02 (2011) 071; M. Butenschoen and B.A. Kniehl, Nucl. Phys. Proc. Suppl. 222-224 (2012) 151.

^{***}M. Cacciari et al., JHEP 0103 (2001) 006; M. Cacciari et al., JHEP 1210 (2012) 137.

The method -

- Apply single-muon trigger with threshold $p_T > 50$ GeV.
- Find the J/ ψ 's and ψ (2S) through their decays to $\mu^+\mu^-$. At least one muon must have $p_T > 52.5$ GeV.
- Compute dilepton mass $m(\mu\mu)$ and pseudo-proper decay time τ for each event.
- Sort data into (12 intervals in p_T^{muon}) × (3 intervals in $|y|^{muon}$). Correct each bin for efficiencies, apply 2-dimensional [in $m(\mu\mu)$, τ] unbinned max likelihood fit to each bin.
- Extract yields N^{prompt} and N^{non-prompt} from fits.
- Compute double-differential cross section (A is acceptance, C is correction):

$$\frac{d^{2}\sigma^{P,NP}(pp \to \psi)}{dp_{T}dy} \times B(\psi \to \mu^{+}\mu^{-}) = \frac{1}{A(\psi)}C_{bin-migration}C_{\substack{pileup \ and \ angular \ correlations}} \frac{N_{\psi}^{P,NP}}{\Delta p_{T}\Delta y \int L \, dt}$$

Method, continued -

Compute non-prompt fractions:

$$F^{NP}(p_T, y) = \frac{N_{\psi}^{NP}}{N_{\psi}^{P} + N_{\psi}^{NP}}$$

• Compute production ratios of $\psi(2S)$ relative to J/ψ :

$$R^{P,NP}(p_T,y) = \left(\frac{A(\psi(2S))}{A(J/\psi)}\right)^{-1} \frac{N_{\psi(2S)}^{P,NP}}{N_{J/\psi}^{P,NP}}$$

Example results:

- Similar p_T dependence for prompt and non-prompt cross sections
- Non-prompt fraction close to constant in this p_T range

Excellent agreement between this ATLAS result for prompt J/ ψ in the central rapidity range, and the CMS measurement in the closest-matching rapidity range. Both sets of data are fitted to \sim (b+p_T)-n for b = 4.40 \pm 2.33 and n = 5.91 \pm 0.27,

Study of $B_c^+ \to J/\psi D_c^{(*)+}$ Decays at 13 TeV*

Message: Branching fractions of the decays $B_c^+ \to J/\psi D_s^+$ and $B_c^+ \to J/\psi D_s^{*+}$ are measured relative to that of $B_c^+ \to J/\psi \pi^+$ and relative to each other.

The motivation: B_c^+ provides a unique laboratory for testing theoretical approaches to weak decays, because it is the only weakly decaying meson consisting of 2 heavy quarks. Examples of its decay modes include:

color-favored spectator:

color-suppressed spectator: annihilation topology:

Outcome: The precision of the measurements exceeds that of all previous studies of these decays. The measurements are compared with 9 theoretical predictions and with LHCb† and ATLAS Run 1** results.

^{*}ATLAS-CONF-2021-046.

[†] Phys. Rev. D 87 (2013) 112012 and Phys. Rev. D 89 (2014) 019901.

^{**}Eur. Phys. J. C 76 (2016) 4.

The method:

- Use the full Run 2 pp dataset: 139 fb⁻¹.
- Find the $J/\psi \rightarrow \mu^+\mu^-$. Refit muon tracks to a common vertex.
- **Reconstruct** $D_s^+ \to \phi(\to K^+K^-)\pi^+$. All oppositely-charged pairs are considered for the kaon mass hypothesis. Any additional track is assigned the pion mass. Keep candidates with good vertex and masses consistent with ϕ [1019±7 MeV] and D_s^+ [1930-2010 MeV]
- Combine the J/ ψ and D_s^+ candidates. The J/ ψ and the B_c^+ share the common secondary vertex, and the D_s^+ tertiary vertex is distinct. Require the D_s^+ momentum to point back to the B_c^+ vertex. Constrain the J/ ψ and D_s^+ candidates to world-average masses.
- Apply p_T and $|\eta|$ selections to refitted μ , K, and π tracks. Suppress combinatorial bkg with selections on B_c^+ vertex χ^2/N_{DOF} ; transverse impact parameters of D_s^+ and B_c^+ vertices; transverse and longitudinal impact parameters of B_c^+ relative to the primary vertex; p_T cut to select hard fragmentation.
- Suppress fake B_c^+ from $B_s^0 \rightarrow J/\psi \phi$ combined with a random track: Exclude range $m(B_s^0) \pm 30$ MeV.
- Further suppress combinatoric bkg: Apply boosted decision tree multivariate classifier in TMVA, trained on D_s^+ spectrum of p_T and L_{xy} and 4 angular variables. Training uses BCVEGPY* simulation for signal and $J/\psi D_s^+$ sidebands for bkg.

The method, continued –

- Reconstruct the reference channel $B_c^+ \to J/\psi \pi^+$ (selections similar to those of the signal channels.) Exclude $B_c^+ \to J/\psi \mu^+ v_\mu X$ by excluding from the pion candidates tracks identified as low- p_T muons.
- Dataset is split to accommodate various trigger conditions.
- Apply an **extended unbinned maximum likelihood fit** to the 2D distribution of $m(J/\psi D_s^+)$ and $|\cos\theta'(\mu^+)|$. The $\theta'(\mu^+)$ is the helicity angle: the angle between the μ^+ and the D_s^+ momenta in the rest frame of the $\mu^+\mu^-$.
- The D_s^{*+} decays to D_s and π^0/γ which is not reconstructed, but the mass difference between D_s^{*+} and D_s leads to **2 distinct structures** in the mass plot.
- As the $B_c^+ \to J/\psi D_s^{*+}$ channel is a transition of a pseudoscalar meson into 2 vector states, it **involves 3 helicity amplitudes** $(A_{J/\psi Ds^*})$ given as A_{++} , A_{00} , A_{--} . The combination of A_{++} and A_{--} is called $A_{\pm\pm}$ and corresponds to transverse polarization. The contributions to the signal PDF for the helicity components are produced with adaptive kernel estimation technique.[†]

^{*}Comput. Phys. Commun. 197 (2015) 335, arXiv: 1507.05176 [hep-ph]

[†]Comput. Phys. Commun. 136 (2001) 198, arXiv:hep-ex/0011057.

Results:

$$R_{D_s^+/\pi^+} \equiv \frac{B(B_c^+ \to J/\psi D_s^+)}{B(B_c^+ \to J/\psi \pi^+)} = 2.76 \pm 0.33 \pm 0.29 \pm 0.16$$

$$R_{D_s^{*+}/\pi^+} \equiv \frac{B(B_c^+ \to J/\psi D_s^{*+})}{B(B_c^+ \to J/\psi \pi^+)} = 5.33 \pm 0.61 \pm 0.67 \pm 0.32$$

$$R_{D_s^{*+}/D_s^+} \equiv \frac{B(B_c^+ \to J/\psi D_s^{*+})}{B(B_c^+ \to J/\psi D_s^+)} = 1.93 \pm 0.24 \pm 0.10$$

The third error derives from the uncertainty on the branching fraction of $D_s^+ \rightarrow \phi(K^+K^-)\pi^+$.

$$\Gamma_{\pm\pm}/\Gamma$$
 = (fraction of transverse polarization in $B_c^+ \rightarrow J/\psi D_s^{*+}$) = 0.70 ± 0.10 ± 0.04

- QCD PM: rel. potential model (P. Colangelo et al., arXiv:hep-h/9909423)
- QCD SR: sum rules (V. Kiselev, arXiv:hep-ph/0211021)
- RCQM: rel. constituent quark model (M. Ivanov et al., arXiv:hep-ph/0602050)
- CCQM: covariant confined quark model (S. Dubnicka et al., arXiv:1708.09607[hep-ph])
- BSW: rel. quark model (R. Dhir et al,., arXiv:0810.4284[hep-ph])
- LFQM: light-front quark model (H.W. Ke et al., arXiv:1307.5925[hep-ph])
- pQCD: pert. QCD (Z. Rui et al., arXiv:1407.5550[hep-ph])
- RIQM: rel. independent quark model (S. Kar et al., PRD 88 (2013) 094014.
- FNCM: factorization approach (B. Mohammadi, Int. J. Mod. Phys. A 33 (2018) 1850044.

Summary

ATLAS presents 4 recent results on charmonium production and B_c production and decay:

- Measurement of J/ ψ production in association with a W $^{\pm}$ boson to assess the agreement of data with a Color Octet model; while there is reasonable agreement at low p_T , some inclusion of Color Singlet may be needed to improve the agreement at high p_T .
- Measurement of the production cross section of B_c mesons relative to B^{\pm} mesons new data in an energy and fiducial volume regime for which no prediction exists, and some indication of p_T dependence in the ratio.
- Measurement of the production cross section of J/ ψ and ψ (2S) mesons at high p_T The p_T range extends far beyond previous studies and may help discriminate among models; but the non-prompt production fraction diverges from the prediction increasingly with growing p_T .
- Study of $B_c^+ \to J/\psi D_s^{(*)+}$ decays The precision exceeds that of all previous studies of these decays. The QCD relativistic potential model describes all three branching ratios well. Comparisons to 8 other models are also provided.