QCD at the LHC

Fabrizio Caola

Rudolf Peierls Centre for Theoretical Physics & Wadham College

Lake Louise Winter Institute, February 25, 2022

QCD at the LHC: the big goal

Extract information from a highly-complex environment, from first principles...

 $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$ $+ i F \mathcal{B} F$

Ø

+ X: Yij X3\$ +h.c.

 $+\left|\mathcal{D}_{\mathcal{A}}\varphi\right|^{2}-\bigvee(\phi)$

... and use it to constraint fundamental particles and interactions

Bonus: QCD is a very interesting theory!

QCD at the LHC: the big goal

``It's like try to learn how a Swiss watch works by taking a bunch of them, smashing against each other and see what comes out"

- A complex environment, described by a strongly coupled theory
- We want to understand it from first principles

- A complex environment, described by a strongly coupled theory
- We want to understand it from first principles

Lattice?

- Resolve the full event \rightarrow 2 TeV \sim 10⁻⁴ fm
- Hadronic scale ~ 1fm, boost factor ~ 100 \rightarrow 10⁴ fm

10³² nodes

- A complex environment, described by a strongly coupled theory
- We want to understand it from first principles

Different physics at very different scales, can be TREATED SEPARATELY

Data: per-mill

Theory: few percent

Precision goals

Higgs

ggF Higgs, now

In many interesting cases, physics at the few-percent possible

Higgs couplings, HL-LHC

What does precision buy you

What does precision buy you

Ju	Model	S	ignatur	e ∫.	<i>L dt</i> [fb	<u>'] Ma</u>	ass limit					Reference
,	$\tilde{q}\tilde{q},\tilde{q}{\rightarrow}q\tilde{\chi}^0_1$	0 e,µ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	139 36.1	 <i>q</i> [1×, 8× Degen.] <i>q</i> [8× Degen.] 		1.0 0.9		1.85	m($ ilde{k}_{1}^{0}$)<400 GeV m($ ilde{q}$)-m($ ilde{k}_{1}^{0}$)=5 GeV	2010.14293 2102.10874
	$\tilde{g}\tilde{g},\tilde{g}{ ightarrow}q\bar{q}\tilde{\chi}_{1}^{0}$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	es es		Forbidder		2.3 1.15-1.95	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\chi}_1^0)=1000 \text{ GeV}$	2010.14293 2010.14293
Š	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$	1 <i>e</i> , <i>µ</i>	2-6 jets		139	ĝ			ş	2.2	$m(\tilde{\chi}_1^0)$ <600 GeV	2101.01629
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$ $\tilde{z}\tilde{z}, \tilde{z} \rightarrow aaWZ\tilde{\chi}^0$	ее, µµ 0 е. и	2 jets 7-11 iets	E_T^{miss} F^{miss}	36.1	ĝ ĝ			1.2	1 07	$m(\tilde{g})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$ $m(\tilde{\chi}^0) < 600 \text{ GeV}$	1805.11381
	$gg, g \rightarrow qq w Z \chi_1$	SS <i>e</i> ,μ	6 jets	L_T	139	δ ĝ			15	1.57	$m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	1909.08457
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	E_T^{miss}	79.8 139	185 86			1.25	2.25	$m(\tilde{\chi}_{1}^{0})$ <200 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_{1}^{0})$ =300 GeV	ATLAS-CONF-2018-041 1909.08457
	$ ilde{b}_1 ilde{b}_1$	0 <i>e</i> , <i>µ</i>	2 <i>b</i>	$E_T^{\rm miss}$	139	$egin{array}{c} ilde{b}_1 \ ilde{b}_1 \end{array}$		0.68	.255		$m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ 10 GeV $< \Delta m(\tilde{b}_1, \tilde{\chi}_1^0) < 20 \text{ GeV}$	2101.12527 2101.12527
tion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}^0_2 {\rightarrow} b h \tilde{\chi}^0_1$	0 <i>e</i> ,μ 2 τ	6 <i>b</i> 2 <i>b</i>	E_T^{miss} E_T^{miss}	139 139	$ ilde{b}_1$ Forbidden $ ilde{b}_1$		0.13-0.85	23-1.35	Δm	$(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0})$ =130 GeV, m $(\tilde{\chi}_{1}^{0})$ =100 GeV $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0})$ =130 GeV, m $(\tilde{\chi}_{1}^{0})$ =0 GeV	1908.03122 ATLAS-CONF-2020-031
ono	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ	≥ 1 jet	E_T^{miss}	139				1.25		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	2004.14060,2012.03799
ud 1	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb\chi_1^{\circ}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 by, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	1 e,μ 1-2 τ	3 jets/1 b 2 iets/1 b	E_T^{miss}	139 139	t_1 \tilde{t}_1	Forbidden	0.65 Forbidden	1.4		m(X ₁)=500 GeV m(7₁)=800 GeV	2012.03799 ATLAS-CONF-2021-008
lirec	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow c\tilde{\chi}_1^0 / \tilde{c}\tilde{c}, \tilde{c} \rightarrow c\tilde{\chi}_1^0$	0 <i>e</i> , µ	2 c	$E_{T_{miss}}^{miss}$	36.1	č		0.85			$m(\tilde{\chi}^0_{\lambda})=0 \text{ GeV}$	1805.01649
5	~~~ .	0 e,μ	mono-jet	E_T^{miss}	139	<i>t</i> ₁ <i>z</i>	0.5	5	10		$m(\tilde{t}_1, \tilde{c}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	2102.10874
	$t_1 t_1, t_1 \rightarrow t \chi_2, \chi_2 \rightarrow Z/h \chi_1$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e,μ	1-4 <i>b</i> 1 <i>b</i>	E_T E_T^{miss}	139	\tilde{i}_1 \tilde{i}_2	Forbidden	0.86	. 10	m(Å	$m(\chi_2)=500 \text{ GeV}$ $\tilde{\chi}_1^0)=360 \text{ GeV}, m(\tilde{t}_1)-m(\tilde{\chi}_1^0)=40 \text{ GeV}$	2006.05880
Ī	${ ilde \chi}_1^\pm { ilde \chi}_2^0$ via WZ	Multiple ℓ/jet	s ≥1 jet	E ^{miss} E ^{miss}	139 139	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ 0.205		0.96			$m(\tilde{\chi}_1^0)=0$, wino-bino $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5$ GeV wino-bino	2106.01676, ATLAS-CONF-2021-022 1911.12606
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW	2 e,µ		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$	0.42		Į –		$m(\tilde{\chi}_1^0)=0$, wino-bino	1908.08215
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via Wh	Multiple ℓ /jet	s	E_T^{miss}	139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Forbidden		1.0			$m(\tilde{\chi}_1^0)$ =70 GeV, wino-bino	2004.10894, ATLAS-CONF-2021-022
20	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\pm}$ via $\tilde{\ell}_{L}/\tilde{\nu}$	2 e, µ		E_T^{miss} E^{miss}	139	$\tilde{\chi}_1^{\pm}$	0 12 0 20	1.0	5		$m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$	1908.08215
5	$\tau\tau, \tau \rightarrow \tau\chi_1$ $\tilde{\ell}_1 R \tilde{\ell}_1 R, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e,µ	0 jets	E_T E_T^{miss}	139	l (1, K,L) (1, 0, 10-0.3	0.12-0.39	0.7	ę.		$m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\chi}_{1}^{0})=0$	1908.08215
		ee, µµ	≥ 1 jet	E_T^{fmiss}	139	ĩ 0.256					$m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1911.12606
	$HH, H \rightarrow hG/ZG$	0 e,μ 4 e,μ	≥ 3 <i>b</i> 0 jets	E_T^{miss} E_T^{miss}	36.1 139	Н 0.13-0.23 Н	0.5	0.29-0.88 5			$BR(\tilde{\chi}_{1}^{0} \rightarrow h\bar{G})=1$ $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\bar{G})=1$	1806.04030 2103.11684
		0 <i>e</i> , <i>µ</i>	≥ 2 large jet	$ E_T^{\rm fmiss} $	139	Ĥ		0.45-0.93			$BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$	ATLAS-CONF-2021-022
	$\operatorname{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	139	$ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} $ 0.21		0.66			Pure Wino Pure higgsino	ATLAS-CONF-2021-015 ATLAS-CONF-2021-015
5	Stable g R-hadron		Multiple		36.1	ĝ				2.0		1902.01636,1808.04095
	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$			ţ –	2.05 2.4	$m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1710.04901,1808.04095
2	$\ell\ell, \ell {\rightarrow} \ell G$	Displ. lep		E_T^{miss}	139	$\tilde{e}, \tilde{\mu}$ $\tilde{\tau}$ ().34	0.7			$\begin{aligned} \tau(\tilde{\ell}) &= 0.1 \text{ ns} \\ \tau(\tilde{\ell}) &= 0.1 \text{ ns} \end{aligned}$	2011.07812 2011.07812
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell$	3 e,µ			139	$\tilde{\chi}_{1}^{\tau}/\tilde{\chi}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1]	(). <u>625</u> 1.0			Pure Wino	2011.10543
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 <i>e</i> , <i>µ</i>	0 jets	E_T^{miss}	139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$		0.95	1	.55	m(X ⁰ ₁)=200 GeV	2103.11684
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\chi_1^{\vee}, \chi_1^{\vee} \rightarrow qqq$ $\tilde{u}, \tilde{\iota} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow ths$		4-5 large jet: Multiple	s	36.1 36.1	$\tilde{g} = [m(\chi_1^-)=200 \text{ GeV}, 1100 \text{ GeV}]$ $\tilde{t} = [\lambda_{111}^{\prime\prime}=2e-4, 1e-2]$	0.5	5 1.0	1.3	1.9	$m(\tilde{\chi}_1^0)=200 \text{ GeV bino-like}$	1804.03568 ATLAS-CONF-2018-003
	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$		$\geq 4b$		139	325 Ĩ	Forbidden	0.95			m($\tilde{\chi}_1^{\pm}$)=500 GeV	2010.01015
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	c	2 jets + 2 b		36.7	$\tilde{t}_1 [qq, bs]$	0.42	0.61	Ě.		200	1710.07171
	$t_1t_1, t_1 \rightarrow q\ell$	2 e,μ 1 μ	2 <i>b</i> DV		36.1 136	\vec{t}_1 \vec{t}_1 [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_2		1.0	0.4-1.4	5 1.6	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ $BR(\tilde{t}_1 \rightarrow q\mu) = 100\%$, $cos\theta_r = 1$	1710.05544 2003.11956
	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$	1-2 e, µ	≥6 jets		139	$\tilde{\chi}_{1}^{0}$ 0.2-0.3	32		d.		Pure higgsino	ATLAS-CONF-2021-007

Direct searches: probing the TeV scale, already now

To be competitive: $\delta = Q^2 / \Lambda^2$, $\Lambda \ge 1 \text{ TeV}$

δ: ~ few percent in the bulk (~100 GeV)
~ 10%, 20% in the tails (~500 GeV)

Precision QCD: an oxymoron?

A motivational speech from an old distinguished professor, who pioneered the development of quantum field theory and the Standard Model

- And what about you young man, what are you working on?
- Perturbative QCD
- My dear boy, you should change topic: QCD was established decades ago!
- But we don't want to establish it, we want to use it to extract precision information from the LHC
- Hadron colliders are messy, you cannot do precision physics there

Input parameters: PDFs in the LHC era

- Parton content of the proton
 non pert → fitted to data
- Data at different scales related by first-principle computable AP

evolution \rightarrow universality

- Results consistent over many orders of magnitude → great test of pQCD
- A lot of precise data from the LHC are already now having great impact (tt, jj, Z/W...)
- We may soon discard `old' low-Q data with limited theoretical control (nuclear corrections...)
- Solid, Robust and `Clean' Determinations

PDFs: the overall precision

• Big improvement w.r.t. few years ago

- FOR CENTRAL EW PRODUCTION: PERCENT PRECISION
- Although be careful to take these uncertainties at face value

[NNPDF31]

PDFs: sanity check

How do we make sure we are not fitting new physics away?

- Fits are stable under inclusion/ exclusion of extra data-set
- Effect of new data: mostly reduction in uncertainty, small change in the central value

• With more and more data, can also try to fit ``safest" PDFs from kinematic regions which should be free from BSM contaminations (e.g. forward jets...)

The hard process: precision calculations $d\sigma = \int dx_1 dx_2 f(x_1) f(x_2) d\sigma_{\text{part}}(x_1, x_2) F_J(1 + \mathcal{O}(\Lambda_{\text{QCD}}/Q))$

THE ``INTERESTING" SHORT DISTANCE CROSS-SECTION

- Asymptotic freedom → at high scale QCD is perturbative
- Still, for typical EW scales $\alpha_s \sim 0.1$
- The path to precision:
 NLO ~ 10%, NNLO ~ 1%.
 Gluonic processes (e.g. Higgs):
 large color charges as C_A~ 0.3.
 Even higher orders may be required (N³LO...)

The hard process: an ideal world

- In a perfect world (= large luminosities, good S/B control, large energy coverages):
 - find simple high-Q observables, where contamination by IR physics is minimal
 - ``cut-and-count" like analysis, in the fiducial region → very clean data / theory comparison
- Whenever this is possible: very good theoretical control on our predictions. If the process is simple enough, we can obtain very accurate reliable results via Higher Order Perturbative Computations
- Fixed order (differential) computations:
 - very solid framework
 - they give direct access to the actual fiducial region (i.e. we can put cuts on the final state)

The need for higher orders: Higgs

 αs^5

[Anastasiou et al]

perturbative convergence / reduce residual theoretical uncertainty

Higher order calculations: amplitudes

A crucial ingredient: multi-loop scattering amplitudes

The problem: complexity grows very fast with number of scales (#legs/masses)

$$\begin{split} F_{--++}^{\mathrm{L}} &= -(x^2 + y^2) \left[4\mathrm{Li}_4(-x) + \frac{1}{48} Z_+^4 \right. \\ &\quad + (\tilde{Y} - 3\tilde{X}) \mathrm{Li}_3(-x) + \Xi \mathrm{Li}_2(-x) \\ &\quad + i \frac{\pi}{12} Z_+^3 + i \frac{\pi^3}{2} X - \frac{\pi^2}{12} X^2 - \frac{109}{720} \pi^4 \right] \\ &\quad + \frac{1}{2} x (1 - 3y) \left[\mathrm{Li}_3(-x/y) - Z_- \mathrm{Li}_2(-x/y) \right. \\ &\quad - \zeta_3 + \frac{1}{2} Y \tilde{Z} \right] + \frac{1}{8} \left(14(x - y) - \frac{8}{y} + \frac{9}{y^2} \right) \Xi \\ &\quad + \frac{1}{16} (38xy - 13) \tilde{Z} - \frac{\pi^2}{12} - \frac{9}{4} \left(\frac{1}{y} + 2x \right) \tilde{X} \\ &\quad + \frac{1}{4} x^2 \left[Z_-^3 + 3\tilde{Y} \tilde{Z} \right] + \frac{1}{4} + \left\{ t \leftrightarrow u \right\}, \end{split}$$

[Bern, De Freitas, Dixon (2002)]

Higher order calculations: amplitudes

A crucial ingredient: multi-loop scattering amplitudes

The problem: complexity grows very fast with number of scales (#legs/masses)

gg→ZZ

[766]+n(-13,2)»	<pr[771]+n(19< pr<="" th=""><th>,2)*r[772]+n</th><th>(43,2)*r[773];</th></pr[771]+n(19<>	,2)*r[772]+n	(43,2)*r[773];

r[12412] = n(-23,2)*r[750]+n(-12)*r[754]+n(2)*r[758]+n(-11,4)*r[759]+n(-11,4)*r[760]+n(17,2)*r[761]+n(-11,4)*r[765]+n(-11,4)*r[766];

r[12413] = n(-1,4)*r[750]+n(-2)*r[760]+n(2)*r[766]+r[771]+n(-1)*r[772]+n(-2)*r[8 + 19]+n(5)*r[820]+n(2)*r[821];

$$\begin{split} r[12414] &= n(3,2)*r[750]+n(3,2)*r[984]+n(-3)*r[1333]+n(3)*r[1350]+n(3)*r[1351]+n\\ (3)*r[1356]+n(3)*r[1520]+n(3)*r[1529]; \end{split}$$

r[12415] = n(5)*r[750]+n(1,2)*r[759]+n(-1,2)*r[760]+n(-7,2)*r[765]+n(-5,2)*r[766] +n(7,2)*r[771]+n(-1,2)*r[772]+n(3,2)*r[773];

r[12416] = n(34)*r[750]+n(-5,2)*r[759]+n(-5,2)*r[760]+n(-89,2)*r[765]+n(-89,2)*r[766]+n(59,2)*r[771]+n(35,2)*r[772]+n(59,2)*r[773];

r[12417] = n(-4)*r[753]+n(-3,2)*r[759]+n(-3,2)*r[760]+n(17,2)*r[762]+n(-3,2)*r[765]+n(-3,2)*r[766]+n(-17,2)*r[768]+n(3,2)*r[771];

r[12418] = n(-1)*r[755]+n(115,12)*r[759]+n(-81,4)*r[760]+n(17,2)*r[764]+n(-13,12)*r[765]+n(71,4)*r[766]+n(-17,2)*r[770]+n(25,4)*r[771];

r[12419] = n(-2,3)*r[755]+n(-605,12)*r[759]+n(15,4)*r[760]+n(-17,2)*r[764]+n(59, 12)*r[765]+n(-161,4)*r[766]+n(17,2)*r[770]+n(73,4)*r[771];

r[12420] = n(-1)*r[756]+n(-565,24)*r[759]+n(7,24)*r[760]+n(17,2)*r[762]+n(347,24)*r[765]+n(-83,8)*r[766]+n(-17,2)*r[768]+n(721,24)*r[771];

[FC, Henn, Melnikov, Smirnov²; Tancredi, von Manteuffel, Weihs, Gehrmann (2015)]

Higher order calculations: amplitudes

A crucial ingredient: multi-loop scattering amplitudes

The problem: complexity grows very fast with number of scales (#legs/masses)

gg→ZZ

$$\begin{bmatrix} 766 \end{bmatrix} + n(-13, 2) * r[771] + n(19, 2) * r[772] + n(43, 2) * r[773]; \\ r[12412] = n(-23, 2) * r[750] + n(-12) * r[754] + n(2) * r[758] + n(-11, 4) * r[759] + n(-11, 4) * r[760] + n(17, 2) * r[761] + n(-11, 4) * r[760] + n(2) * r[760] + n(2) * r[760] + n(2) * r[771] + n(-1) * r[772] + n(-2) * r[8 19] + n(5) * r[820] + n(2) * r[821]; \\ r[12414] = n(3, 2) * r[750] + n(3, 2) * r[984] + n(-3) * r[1333] + n(3) * r[1350] + n(3) * r[1351] + n \\ (3) * r[1356] + n(3) * r[1520] + n(3) * r[1529]; \\ r[12415] = n(5) * r[750] + n(1, 2) * r[759] + n(-1, 2) * r[760] + n(-7, 2) * r[765] + n(-5, 2) * r[766] \\ 1 + n(7, 2) * r[771] + n(-1, 2) * r[772] + n(3, 2) * r[773]; \\ r[12416] = n(34) * r[750] + n(-5, 2) * r[759] + n(-5, 2) * r[760] + n(-89, 2) * r[765] + n(-89, 2) * r[766] + n(-3, 2) * r[760] + n(-3, 2) * r[760] + n(-3, 2) * r[762] + n(-3, 2) * r[763] + n(-3, 2) * r[763] + n(-3, 2) * r[760] + n(17, 2) * r[762] + n(-3, 2) * r[76] + n(-17, 2) * r[763] + n(-3, 2) * r[760] + n(17, 2) * r[764] + n(-13, 12) * r[765] + n(71, 4) * r[766] + n(-17, 2) * r[770] + n(25, 4) * r[770] ; \\ r[12419] = n(-2, 3) * r[755] + n(-605, 12) * r[779] + n(15, 4) * r[760] + n(-17, 2) * r[764] + n(-13, 12) * r[765] + n(-161, 4) * r[766] + n(-17, 2) * r[770] + n(73, 4) * r[760] + n(-17, 2) * r[762] + n(347, 24) * r[765] + n(-83, 8) * r[766] + n(-17, 2) * r[768] + n(721, 24) * r[770] ; \\ r[12420] = n(-1) * r[756] + n(-55, 24) * r[779] + n(73, 4) * r[760] + n(17, 2) * r[762] + n(347, 24) * r[765] + n(-83, 8) * r[766] + n(-17, 2) * r[768] + n(721, 24) * r[770] ; \\ r[12420] = n(-1) * r[756] + n(-165, 24) * r[759] + n(721, 24) * r[760] + n(17, 2) * r[762] + n(347, 24) * r[765] + n(-83, 8) * r[766] + n(-17, 2) * r[768] + n(721, 24) * r[771]; \\ r[12420] = n(-1) * r[756] + n(-565, 24) * r[759] + n(721, 24) * r[770] ; \\ r[765] + n(-83, 8) * r[766] + n(-17, 2) * r[768] + n(721, 24) * r[771]; \\ r[765] + n(-83, 8) * r[766] + n(-17, 2) * r[768] + n(721, 24) * r[771]; \\ r[770] + n(-83, 8) * r[766] + n(-17, 2) * r[768] + n(721, 24) * r[771]; \\ r[12420] = n(-1) * r[7$$

[FC, Henn, Melnikov, Smirnov²; Tancredi, von Manteuffel, Weihs, Gehrmann (2015)]

10 MB expression, complex transcendental functions

Massive tops (crucial for high energy): only known numerically

Amplitudes: a lot of recent progress

[Abreu, Badger, Brønnum–Hansen, Bargiela, Borowka, Buccioni, FC, Chawdhry, Chen, Chicherin, Czakon, de Laurentis, Dormans, Duhr, Dunbar, Febres–Cordero, Frellesvig, Gambuti, Gehrmann, Hartanto, Heinrich, Henn, Ita, Jones, Jehu, Liu, Lo Presti, Manteuffel, Ma, Maître, Mitev, Mitov, Page, Peraro, Perkins, Poncelet, Schabinger, Sotnikov, Tancredi, Wasser, Weinzierl, Zhang...]

Analytical / theoretical investigations:

- New structures / symmetries
- Interesting mathematical objects

Numerical / implementation:

- Finite-field reconstruction
- Fast numerical evaluation

P PentagonMI Project ID: 1658428	⊕ ⊨3 ₿	☆ Star 0
≻ 55 Commits 🖇 2 Branche	.s 🖉 2 Tags 👌 82.8 MB Files 🗔 82.8 MB Storage	
master v Pent	tagonMI History	Find file
Show error message Vasily Sotnikov autho	when PentagonMI cannot find PentagonFunctionsM ured 10 months ago	236a907d [t
README	se	
Name	Last commit	Last update
🗅 datafiles	Add arxiv link in datafiles/README.md	1 year ago
🗅 test	Minor changes in printing in tests	1 year ago
C LICENSE	Add LICENSE	1 year ago
	Add a possibility to get master integrals in	1 year ago
C PentagonFunctionsM.m		
C PentagonFunctionsM.m C PentagonMl.m	Show error message when PentagonMI ca	10 months ago

State of the art: $2 \rightarrow 2@2L$, some $2 \rightarrow 3@2L$, first results for $2 \rightarrow 2@3L$

From amplitudes to physics

Quantum mechanics: you should only deal with observables

Only the sum is well-defined. Proper regulation / combination of the IR effects very complicated

From amplitudes to physics

The NNLO timeline

1st 2L amplitudes

new ideas/techniques for multiloop amplitude calculation

IR organisation for arbitrary processes

Physics: $2 \rightarrow 2$ NNLO is well-understood

NNLO: from proof of concept to detailed phenomenology

 $m_{t\bar{t}}$ [GeV]

First steps toward more complex processes

- jjj: ``Tour de force in QCD".
- still very much in the exploratory phase
- Gives access e.g. to $\alpha_{\!\scriptscriptstyle S}$ in the TeV region

Even more precise: N³LO for standard candles

Precision studies: lessons learned

<u>Higgs fiducial:</u> $p_{t,\gamma 1} > 0.35 m_{H,} p_{t,\gamma 2} > 0.25 m_{H,}$

- Inclusive: flat K-factor (as for inclusive), tiny error, no structure
- Fiducial: large corrections, large error, non-trivial shapes

The hard process: an ideal world

- In a perfect world (= large luminosities, good S/B control, large energy coverages):
 - find simple high-Q observables, where contamination by IR physics is minimal
 - ``cut-and-count" like analysis, in the fiducial region → very clean data / theory comparison
- Whenever this is possible: very good theoretical control on our predictions. If the process is simple enough, we can obtain very accurate reliable results via Higher Order Perturbative Computations
- Fixed order (differential) computations:
 - very solid framework
 - they give direct access to the actual fiducial region (i.e. we can put cuts on the final state)

Sensitive to IR physics [Salam, Slade; Billis, Dehnadi, Ebert, Michel, Tackmann (2021)] e can perform a simple integration over phase space, independently of the Higgs n matrix element, because of the spin-0 nature of the Higgs boson. To evaluate $\sigma_{asym} - f_0 \sigma_{inc}$ in the snall $g_{t,H}$ finit, which $\sigma_{asym} + 0.06$ s convenient to work in the snall $g_{t,H}$ finit, which $\sigma_{asym} + 0.06$

 $\begin{array}{l} p_{t,\pm}(p_{t,\mathrm{H}}^{\mathrm{R}};\theta,\xi)) \neq m_{\mathrm{H}}^{\mathrm{H}}(p_{t,\mathrm{H}}) \neq m_{\mathrm{H}}^{\mathrm{H}}(p_{t,\mathrm{H}$

ere the notation \mathcal{O}_n is a shorthand that we introduce to indicate that we negled \mathcal{O}_1 and higher (and, later, the n^{th} power of any other factor in which we expa

e can pensitive to shappy integration dove is placed placet, in the pendoneny (2021) Higgs n matrix element, because of the spin-0 nature of the Higgs boson. To evaluate is conventent to work in the small- $p_{t,H}$ limit, where we have

• Resum all-order IR effects [Billis, Dehnadi, Ebert, Michel, Tackmann (2021)]

 $p_{t,\pm}(p_{t,\mathrm{H}},\theta,\phi) c \underline{\mathrm{uts}}_{\mathrm{Sin}} \underline{\mathcal{B}}_{\mathrm{Sin}} b \underline{\mathrm{sin}}_{\mathrm{Sin}} \underline{\mathcal{B}}_{\mathrm{p}_{t,\mathrm{H}}} c \underline{\mathrm{os}}_{\mathrm{f}} \underline{\mathcal{A}}_{\mathrm{f}} \underline{\mathrm{sin}}_{\mathrm{f}} \underline{\mathcal{B}}_{\mathrm{c}} \underline{\mathrm{os}}_{\mathrm{f}} \underline{\mathrm{sin}}_{\mathrm{f}} \underline{\mathcal{B}}_{\mathrm{c}} \underline{\mathrm{sin}}_{\mathrm{f}} \underline{\mathrm{sin}} \underline{\mathrm{sin}}_{\mathrm{f}} \underline{\mathrm{sin}}_{\mathrm{f}} \underline{\mathrm{sin}}_{\mathrm{f}} \underline{\mathrm{sin}} \underline{\mathrm{sin}}_{\mathrm{f}} \underline{\mathrm{sin}} \underline{\mathrm{sin}}$

ere the notation \mathcal{O}_n is a shorthand that we introduce to indicate that we negled and higher (and, later, the n^{th} power of any other factor in which we expa

and higher (and, later, the n^{th} power of any other factor in which we expa

Taming IR physics: all-order resummation

In some cases, we can extend the range of validity of the perturbative approach by doing RGE-improved perturbation theory → resum large class of soft/collinear terms

Taming IR physics: all-order resummation

From parton to hadrons: parton showers

- In many cases, we need to connect highenergy scattering to detector reality
- Parton-shower MC, approximate treatment of many-body processes
 - -: lose precision
 - +: gain flexibility
- In many cases: leading TH systematics...

From parton to hadrons: parton showers

- Parton showers have two identities
 - Black boxes with enough handles, to accommodate for data features
 - Predictive tools

Panscales (2020)]

- Predictive tool: need to be reliable
 - Especially crucial in the ML world: virtually all the ML algorithms trained on PS
 - Recent past: first attempts at making PS under theoretical control and systematically improvable!

First demonstrably ``higher order" showers starting to appear

Can we trust factorisation?

 $\mathrm{d}\sigma = \int \mathrm{d}x_1 \mathrm{d}x_2 f(x_1) f(x_2) \mathrm{d}\sigma_{\mathrm{part}}(x_1, x_2) F_J(1 + \mathcal{O}(\Lambda_{\mathrm{QCD}}/Q))$

At the end, we cannot escape some contamination from soft physics

- ∧_{QCD} ~ GeV, Q ~ 100 GeV → can be
 1% effect!
- *Non-perturbative → out of control

Can we trust factorisation?

$$d\sigma = \int dx_1 dx_2 f(x_1) f(x_2) \, d\sigma_{\text{part}}(x_1, x_2) F_J \left(1 + \mathcal{O}(\Lambda_{\text{QCD}}^p / Q^p)\right)$$

Can we at least establish the scaling?

In practice, a very big difference between p=1 (problem) and p > 1 (irrelevant)

- $e^+e^- \rightarrow$ hadrons: $p \ge 4$
- For DIS: solid proof that $p \ge 2$
- Hadron colliders:
 - for inclusive quantities (e.g. DY total xsec): leading NP corrections should have p=2 (non-trivial!)
 - For more exclusive quantities: potential sources of linear power corrections.
 - Top, Jets are known to have linear power corrections. What about colour singlet?

Can we trust factorisation?

Mechanisms that could generate linear power corrections are there...

QCD power corrections ↔ sensitivity to IR physics Basic idea: find good ``probe" of the IR, and ask ``can we generate p=1 terms?"

E.g.: <u>Z transverse momentum distribution</u> (example from G.P. Salam)

$$\sigma \sim \int \frac{dp_{\perp}}{p_{\perp}} \alpha_s(p_{\perp})$$

Because of azimuthally asymmetric color flow: linear terms could be generated

Integrate over soft d.o.f. \rightarrow NP

Beyond pQCD

The obvious problem: at colliders, we cannot deal with QCD non-perturbatively

<u>However</u>: we know one source of NP that ``creeps'' into perturbative results.

When integrating over soft momenta \rightarrow Landau pole ambiguity

Lead to divergent behaviour of perturbative expansion \rightarrow can get info from PT theory itself!

<u>Renormalons</u>, calculations in the $n_f \rightarrow -\infty$ limit

Z pt and linear renormalons

[Ferrario Ravasio, Limatola, Nason (2020)]: Numerical study based on renormalon calculus

Fit consistent with $b=0 \rightarrow$ no linear power corrections

Z pt and linear renormalons

[Ferrario Ravasio, Limatola, Nason (2020)]: Numerical study based on renormalon calculus

Very recently: towards a theoretical understanding.

e

``No linear power corrections for observables inclusive w.r.t. QCD radiation"

Towards strong foundations for the precision program

[FC, Ferrario Ravasio, Limatola, Melnikov, Nason (2021)]

Conclusions and outlook

- Progress in precision QCD phenomenology keeps proceeding at a remarkable pace
 - ✤ N³LO, complex NNLO, QCD-EW, EW...
 - More and more elaborate resummations
 - Parton shower...
 - Computational tools (\rightarrow ingredients for N³LL resummation)
 - SM/BSM interplay: EFTs...
 - ML to extract the most from data
 - This is necessary but not sufficient for physics at the few percent. Many unexpected issues that keep popping up
- A better understanding of NP corrections may be required
- Future ahead: not only computations. Very interesting analysis, from hardcore pheno to subtle QFT...

Precision physics at the LHC and beyond

With the Higgs, the Standard Model may be a complete theory. What is the point of looking at the next decimal digit?

``physics is complete, all we need to do is to measure some known quantities to a great degree of precision"

Lord Kelvin, ca 1900

5 years later: special relativity.

Less than 30 years later: quantum mechanics, general relativity

Thank you very much for your attention!