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QCD at the LHC: the big goal

�26
ATLAS

~up to 2 billion 
collisions/second

ATLAS & CMS  
@LHC 

(+ lower rates at 
LHCb and ALICE)

Extract information from a 
highly-complex environment, 

from first principles…

… and use it to constraint 
fundamental particles and interactions

Bonus: QCD is a very interesting theory!



QCD at the LHC: the big goal

high-pT jet: factorization! 

pQCD: a tool for the most violent collisions 

“soft stuff”: difficult! 

“underlying event”: more than difficult 

18 

H???

``It’s like try to learn how a Swiss watch works by taking a bunch 
of them, smashing against each other and see what comes out’’



The problem

•A complex environment, described by a 
strongly coupled theory 

•We want to understand it from first principles
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The problem

•A complex environment, described by a 
strongly coupled theory 

•We want to understand it from first principles

Lattice?  
•Resolve the full event → 2 TeV ~ 10-4 fm 
•Hadronic scale ~ 1fm, boost factor ~ 100 → 104 fm

1032 nodesQuantum computing?



The solution: factorisation

The ``interesting’’ 
short distance physics

Partons from proton

The experimental world: 
hadrons/jets in the detector

Q ≳ 100 GeV

Different physics at very different scales, can be TREATED SEPARATELY

Q ~ 1 GeV



The solution: factorisation

The interesting short-distance 
perturbative cross section

d� =

Z
dx1dx2f(x1)f(x2)d�part(x1, x2)FJ(1 +O(⇤QCD/Q))

Partons in the proton: PDFs

From parton to hadrons: PS

<latexit sha1_base64="aD5f6R4npla26U0YYZzbxXYsC48="></latexit>

O(⇤QCD/Q) : this whole construction could break 
down at the few-percent level!



Precision goals

Other experiments?

One of the most precise results are 
perhaps for the Z transverse 
momentum (ATLAS) 

➤ normalised to Z fiducal σ 

➤ achieves <1%, from  
pT = 1 to 200 GeV,  
and <0.5% in some regions 

 

Ratio to total cross section cancels 
lumi & some lepton-efficiency 
systematics.
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Figure 6: The Born-level distributions of (1/�) d�/dp``T for the combination of the electron-pair and muon-pair
channels, shown in six m`` regions for |y`` | < 2.4. The central panel of each plot shows the ratios of the values from
the individual channels to the combined values, where the error bars on the individual-channel measurements rep-
resent the total uncertainty uncorrelated between bins. The light-blue band represents the data statistical uncertainty
on the combined value and the dark-blue band represents the total uncertainty (statistical and systematic). The �2

per degree of freedom is given. The lower panel of each plot shows the pull, defined as the di↵erence between the
electron-pair and muon-pair values divided by the uncertainty on that di↵erence.
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±1%

�5

Z-boson transverse momentum 

➤ “unfolded” measurement, i.e. as if 
experiments could directly measure the 
electrons and muons from Z decay.  

➤ The observable is infrared and collinear 
safe (i.e. finite in perturbation theory) 

➤ < 1% uncertainties in the data 

➤ ~2% uncertainty on theory, thanks to 
past 5-years’ advances in fixed-order 
predictions (Z+jet @ NNLO) and 
resummation (N3LL) 

➤ agreement is very good
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Figure 10. Comparison of the normalised transverse momentum distribution for Drell-Yan pair production
at NNLO (green), NNLL+NLO (blue) and N3LL+NNLO (red) at

p
s = 8 TeV integrated over the full

lepton-pair rapidity range (0 < |Y``| < 2.4), in three different lepton-pair invariant-mass windows. For
reference, the ATLAS data is also shown, and the lower panel shows the ratio of each prediction to data.

In Figure 11 we focus our analysis on the central lepton-pair invariant-mass window defined in
Eq. (6.2) and show predictions for the normalised p

Z
t

distribution in six different lepton-pair rapidity
slices:

(a) 0.0 < |Y``| < 0.4, (b) 0.4 < |Y``| < 0.8, (c) 0.8 < |Y``| < 1.2,

(d) 1.2 < |Y``| < 1.6, (e) 1.6 < |Y``| < 2.0, (f) 2.0 < |Y``| < 2.4. (6.3)

The comments relevant to Figure 10 by far and large apply in this case as well, with our
best prediction at N3LL+NNLO affected by an uncertainty that is of order 3–5% in the whole p

Z
t

range, regardless of the considered rapidity slice. It is moreover in very good agreement with the
experimental data, hence significantly improving on both the NNLL+NLO, in the whole p

Z
t

range,
and the pure NNLO, in the p

Z
t
. 20 GeV region.

6.2 Matched predictions for fiducial �
⇤
⌘

distributions

Figure 12 shows the �⇤
⌘

distribution for three different lepton-pair invariant-mass windows as defined
in Eq. (6.2).

– 20 –

Bizon et al, 
arXiv:1805.05916

Key demonstration that 
LHC data & theory can 
successfully achieve high 

precisionNB: two-loop amplitudes date to ~2002
Data: per-mill Theory: few percent

Drell-Yan



Precision goals

Higgs couplings, HL-LHC
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Figure 16. Observed results of the fit to signal strength modifiers of the four principal production
modes. The contributions to the total uncertainty in each parameter from the theoretical systematic,
experimental systematic, and statistical components are shown. The colour scheme is chosen to
match the diagram presented in figure 1. The compatibility of this fit with respect to the SM
prediction, expressed as a p-value, is approximately 50%. Also shown in black is the result of the
fit to the inclusive signal strength modifier, which has a p-value of 17%.
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are shown by the solid (empty) bars. The colour scheme is chosen to match the diagram presented
in figure 1.
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ggF Higgs, now

Higgs

In many interesting cases, physics 
at the few-percent possible



What does precision buy you

SM ~ v.e.v.

ΛNP

direct 
searches

Imagine to have new physics at a 
(heavish) scale ΛNP 

Typical modification to observable w.r.t. 
standard model prediction:  

δO ~ Q2/ΛNP 2 

Search strategies: 
•Direct searches: energy-limited 

•Indirect searches: precision-limited, 
long-run game 



What does precision buy you

February 21, 2022 Arka Santra

Summary 
of mass 
limits from 
ATLAS for 
all 
production 
mode

16

1 TeV

Direct searches: 
probing the TeV 

scale, already now

To be competitive: 
δ=Q2/Λ2,      Λ ≳ 1 TeV

δ: •~ few percent in the bulk (~100 GeV) 

•~ 10%, 20% in the tails (~500 GeV)



•And what about you young man, what are 
you working on?

•Perturbative QCD

•My dear boy, you should change topic: 
QCD was established decades ago! 

•But we don’t want to establish it, we want 
to use it to extract precision information 
from the LHC

•Hadron colliders are messy, you cannot do 
precision physics there

A motivational speech from an old distinguished professor, who pioneered 
the development of quantum field theory and the Standard Model

Precision QCD: an oxymoron?



Physics at the few percent
d� =

Z
dx1dx2f(x1)f(x2)d�part(x1, x2)FJ(1 +O(⇤QCD/Q))

Input parameters (PDFs, αs)

Hard process → th predictions

Framework

Need control over

Non-trivial…



Guido Altarelli Memorial Symposium

June 10, 2016. CERN Main Auditorium
 Speakers 

Organizers L. Alvarez-Gaume, A. De Rujula, J. Ellis, E. Elsen, 
 S. Ferrara, F. Gianotti, G. Giudice,  P. Jenni, M. Mangano, 
 M. Pepe Altarelli, G. Veneziano

Link http://indico.cern.ch/e/AltarelliMemorialSymposium

L. Maiani (Università la Sapienza, Roma, IT)

G. Parisi (Università la Sapienza, Roma, IT)

S. Forte (Università la Statale, Milano, IT)

G. Martinelli (Università la Sapienza, Roma, IT)

L. Di Lella (CERN, EP Department, CH)

R. K.  Ellis (IPPP, Durham, UK)

R. Barbieri (ETH Zürich, CH and SNS, Pisa, IT)

G. Dissertori (ETH Zürich, CH)

I. Masina (Università di Ferrara, IT)

Experimental data

14

The global QCD analysis requires combining different experiments with disparate characteristics

Type of high energy collision (lepton-proton, proton-proton), center-of-mass energy of collision

Whether of not experimental correlated systematics are available, and if so, in which format

Mutually inconsistent datasets and datasets with few points but large constraining power vs 
datasets with many points but moderate constraining power

Juan Rojo                                                                                                          NuTune2016, Liverpool, 12/06/2016

The kinematical coverage of 
the experiments included in 
NNPDF3.0 span several 
orders of magnitude both in 
x and Q2

•Parton content of the proton 
non pert → fitted to data 

•Data at different scales related 
by first-principle computable AP 
evolution → universality •Results consistent over many 

orders of magnitude → great 
test of pQCD 

•A lot of precise data from the 
LHC are already now having 
great impact (tt, jj, Z/W…) 

•We may soon discard `old’ low-Q 
data with limited theoretical 
control (nuclear corrections…) 

•SOLID, ROBUST AND `CLEAN’ 
DETERMINATIONS

LHC (+TEV)

HERA

FT

Input parameters: PDFs in the LHC era



[NNPD
F31]

Figure 5.9: The relative uncertainty on the luminosities of Fig. 5.8, plotted as a function of the invariant
mass MX and the rapidity y of the final state; the left plots show results for NNPDF3.0 and the right
plots for NNPDF3.1 (upper four rows). The bottom row shows results for the up-antidown luminosity.

69

Figure 5.9: The relative uncertainty on the luminosities of Fig. 5.8, plotted as a function of the invariant
mass MX and the rapidity y of the final state; the left plots show results for NNPDF3.0 and the right
plots for NNPDF3.1 (upper four rows). The bottom row shows results for the up-antidown luminosity.

69

Figure 5.9: The relative uncertainty on the luminosities of Fig. 5.8, plotted as a function of the invariant
mass MX and the rapidity y of the final state; the left plots show results for NNPDF3.0 and the right
plots for NNPDF3.1 (upper four rows). The bottom row shows results for the up-antidown luminosity.

69

Figure 5.9: The relative uncertainty on the luminosities of Fig. 5.8, plotted as a function of the invariant
mass MX and the rapidity y of the final state; the left plots show results for NNPDF3.0 and the right
plots for NNPDF3.1 (upper four rows). The bottom row shows results for the up-antidown luminosity.
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• Big improvement w.r.t. few years ago 
• FOR CENTRAL EW PRODUCTION: PERCENT PRECISION 
• Although be careful to take these uncertainties at face value

GG QG

QQ QQb

PDFs: the overall precision



•Fits are stable under inclusion/
exclusion of extra data-set 

•Effect of new data: mostly 
reduction in uncertainty, small 
change in the central value

•With more and more data, can also try to fit ``safest’’ PDFs from kinematic 
regions which should be free from BSM contaminations (e.g. forward jets…)

PDFs: sanity check
How do we make sure we are not fitting new physics away?

34

Impact on the gluon
 In NNPDF3.1 we have three groups of processes that provide direct information on the gluon: 

inclusive jets, top pair differential, and the Z transverse momentum

 Are the constraints from each of these groups consistent among them? Yes!
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d� =

Z
dx1dx2f(x1)f(x2)d�part(x1, x2)FJ(1 +O(⇤QCD/Q))

THE ``INTERESTING’’ SHORT 
DISTANCE CROSS-SECTION

•Asymptotic freedom → at high 
scale QCD is perturbative 

•Still, for typical EW scales αS ~ 0.1 

•The path to precision:               
NLO ~ 10%, NNLO ~ 1%.    
Gluonic processes (e.g. Higgs): 
large color charges αS CA~ 0.3. 
Even higher orders may be 
required (N3LO…)

The hard process: precision calculations



•In a perfect world (= large luminosities, good S/B control, large energy 
coverages):  
•find simple high-Q observables, where contamination by IR physics is 

minimal 
•``cut-and-count’’ like analysis, in the fiducial region → very clean data / 

theory comparison 

•Whenever this is possible: very good theoretical control on our predictions. 
If the process is simple enough, we can obtain very accurate reliable results 
via Higher Order Perturbative Computations 

•Fixed order (differential) computations: 
•very solid framework 
•they give direct access to the actual fiducial region (i.e. we can put cuts on 

the final state)

The hard process: an ideal world



αS2

αS3

αS4

αS5

N3LO results needed to establish 
perturbative convergence / reduce  

residual theoretical uncertainty

HIGGS BOSON

▸ Precise measurement 

▸ 3.8 sigma deviation 

▸ 1500 papers about new 
physics on the arXiv 

▸ SM fails

Data Theory

[p
b]

 
H

→
pp
σ

20
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90
Preliminary data

 combinedl4→*ZZ→H, γγ→H

 = 125 GeVHm = 13 TeV,  s,  H→pp
Hbb + Htt + VH  =  VBF + XH

QCD scale uncertainty
)sα PDF+⊕(scale, Tot. uncert. 

LO

COMPARE DATA TO PREDICTION

�exp = 59± 9.5 pb

�N3LO = 55.5± 2.9 pb

[Anastasiou, Melnikov; 
Harlander, Kilgore]

[Anastasiou et al]

The need for higher orders: Higgs



Higher order calculations: amplitudes
A crucial ingredient: multi-loop scattering amplitudes

3

where we are using an “all-outgoing” convention
for the momentum (pi) and helicity (λi) labeling.
The Mandelstam variables are s = (p1 + p2)2,
t = (p1 + p4)2, and u = (p1 + p3)2.

We consider both QCD corrections with inter-
nal gluon lines and QED corrections with internal
photons. For the QCD corrections, the depen-
dence of the finite remainder in eq. (1) on quark
charges, N , Nf and the renormalization scale µ,
may be extracted as,

M(2)fin
gg→γγ = 2 δa1a2

( Nf
∑

j=1

Q2
j

)

Sλ1λ2λ3λ4

×

[

11N − 2Nf

6

(

ln(µ2/s) + iπ
)

M (1)
λ1λ2λ3λ4

+ NF L

λ1λ2λ3λ4
−

1

N
F SL

λ1λ2λ3λ4

]

. (2)

The two-loop renormalized QED corrections are
a little simpler, since in this case the amplitudes
are free of infrared divergences,

M(2)QED
gg→γγ = 4 δa1a2

( Nf
∑

j=1

Q4
j

)

×Sλ1λ2λ3λ4
F SL

λ1λ2λ3λ4
. (3)

We quote our results in the physical s-channel
(s > 0; t, u < 0). In order to reduce the size of
the expressions we define

x =
t

s
, y =

u

s
, X = ln(−x), Y = ln(−y),

X̃ = X + iπ, Ỹ = Y + iπ,

Ξ = X̃2 + π2, Υ = Ỹ 2 + π2,

Z± = X ± Y, Z̃ = (X − Y )2 + π2,

A±
n = Lin(−x) ± ζn, B = Li2(−x) −

π2

6
,

C±
n (x, y) = Lin(−x) ± Lin(−y).

The explicit forms for the F L

λ1λ2λ3λ4
appearing

in eq. (2) are

F L

++++ =
1

2
,

F L

−+++ =
1

8

[

−(1 − xy)Z̃ + 2

(
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gg→γγ

The problem: complexity grows very fast with number of scales (#legs/masses)

[Bern, De Freitas, Dixon (2002)]



Higher order calculations: amplitudes
A crucial ingredient: multi-loop scattering amplitudes

gg→ZZ

The problem: complexity grows very fast with number of scales (#legs/masses)

[FC, Henn, Melnikov, Smirnov2; Tancredi, 
von Manteuffel, Weihs, Gehrmann (2015)]



Higher order calculations: amplitudes
A crucial ingredient: multi-loop scattering amplitudes

gg→ZZ

The problem: complexity grows very fast with number of scales (#legs/masses)

[FC, Henn, Melnikov, Smirnov2; Tancredi, 
von Manteuffel, Weihs, Gehrmann (2015)]

10 MB expression, complex transcendental functions

Massive tops (crucial for high energy): only known numerically



Amplitudes: a lot of recent progress

Analytical / theoretical investigations: 
•New structures / symmetries 
•Interesting mathematical objects 

Numerical / implementation: 
•Finite-field reconstruction 
•Fast numerical evaluation

[Abreu, Badger, Brønnum-Hansen, Bargiela, Borowka, Buccioni, FC, Chawdhry, Chen, Chicherin, Czakon, de Laurentis, 
Dormans, Duhr, Dunbar, Febres-Cordero, Frellesvig, Gambuti, Gehrmann, Hartanto, Heinrich, Henn, Ita, Jones, Jehu, Liu, Lo 
Presti, Manteuffel, Ma, Maître, Mitev, Mitov, Page, Peraro, Perkins,  Poncelet, Schabinger,  Sotnikov, Tancredi, Wasser, 
Weinzierl, Zhang…]

State of the art: 2→2@2L, some 2→3@2L, first results for 2→2@3L



From amplitudes to physics
Quantum mechanics: you should only deal with observables

If 2nd gluon soft/collinear:  
same final state of 

∞ ∞
Only the sum is well-defined. Proper regulation / 
combination of the IR effects very complicated



From amplitudes to physics

``qt’’ [Catani, Grazzini]

``N-jettiness’’ [Boughezal et al, Gaunt et al]

``Antenna’’ [Gehrmann-de Ridder, Gehrmann, Glover]

``Sector decomposition+FKS’’ [Binoth, Heinrich; Anastasiou, Melnikov, Petriello; 

Czakon; Czakon, Heymes; Asteriadis, FC, Melnikov, Röntsch]

``Projection to Born’’ [Cacciari, Dreyer, Karlberg, Zanderighi, Salam]

``Colorful NNLO’’ [Del Duca, Duhr, Kardos, Somogyi, Trocsanyi]

``Local analytic’’ [Magnea, Maina, Pelliccioli, Signorile-Signorile, Torrielli]]



NNLO (relative αs2) is becoming today’s state of the art
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explosion of calculations  
in past 18 months

timeline of calculations as of mid June

[G
. Salam

]
new ideas/techniques for multi-

loop amplitude calculation

IR organisation for arbitrary processes

The NNLO timeline
1st 2L amplitudes



Physics: 2→2 NNLO is well-understood
NNLO: from proof of concept to detailed phenomenology
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Figure 16. Re-evaluation of figure 5 from [17] showing the effects of the modified scale choice and
isolation criteria on the prediction.
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3

ition of the distance measure of this algorithm (which
determines the clustering outcome) depends on the fla-
vour of the pseudojet being clustered. These steps are
necessary to avoid situations where soft quarks can alter
the flavour of a jet, as described above. In addition, the
net flavour criterion also ensures that jets which contain
(quasi)collinear quark pairs are not assigned an overall
flavour based on such splittings. More details can be
found in [10, 19].

COMPARISON WITH 8 TeV CMS DATA

In this Section we perform a comparison of the Z+b-jet
CMS data at 8 TeV provided in [8], and validate our im-
plementation of Eq. (1). Before doing so we summarise
the numerical set-up, and present details on the unfolding
procedure which is applied to this data to make a consist-
ent comparison with our theoretical predictions possible.
Numerical inputs. All predictions are provided with
the NNPDF3.1 NNLO PDF set [57] with ↵s(MZ) = 0.118
and nmax

f = 5, where both the PDF and ↵s values
are accessed via LHAPDF [58]. The results are ob-
tained using the Gµ-scheme with the following values
for the input parameters Mos

Z
= 91.1876 GeV, �os

Z
=

2.4952 GeV, Mos

W
= 80.385 GeV, �os

W
= 2.085 GeV,

and Gµ = 1.16638 ⇥ 10�5 GeV�2. Including also the
universal corrections to the ⇢ parameter when determ-
ining the numerical values of ↵ and sin2 ✓W as in [59],
leads to ↵e↵. = 0.007779 and sin2 ✓W,e↵. = 0.2293. An
uncertainty due to the impact of missing higher-order
corrections is assessed in the predictions by varying the
values of µF and µR by a factor of two around the cent-
ral scale µ0 ⌘ ET,Z, with the additional constraint that
1

2
 µF /µR  2. The scales are treated as correlated

between the coe�cients appearing in Eq. (1). We fol-
low the specific setup of the flavour-kT algorithm adop-
ted in [48], where a value of ↵ = 2 is used and a beam
distance measure that includes a sum over both QCD
partons as well as the reconstructed gauge boson is in-
troduced.
Unfolding. As already highlighted, the fixed-order pre-
diction for a flavoured-jet cross-section as defined in
Eq. (1) must be performed with an infrared-safe defin-
ition of jet flavour. However, there is no data available
for the process pp ! Z + b-jet [8, 60–65] (or in fact any
process) which uses such a definition of jet flavour. To
address this issue, we have computed a correction to the
CMS data [8] as described below.
This data has been presented for anti-kT b-jets, with

a flavour assignment based on whether the jet contains
B-hadron decay products and the additional requirement
that �R(B, jet) < 0.5. To correct this data to the level
of partonic flavour-kT jets, we apply an unfolding pro-
cedure with the RooUnfold [66] package using the iter-
ative Bayes method [67]. The input to this procedure is

a theoretical model for the original data using both the
anti-kT algorithm (which is measured) and the flavour-kT
algorithm (which we wish to unfold to).

This model is provided with an NLO+PS predic-
tion for Z + b-jet using aMC@NLO [5] interfaced to
Pythia8.243 [68]. The parton-level flavour-kT predic-
tion is obtained using the input QCD partons which are
identical to those which enter the hadronisation process.
For the central value, we use a 5fs prediction of Z + jet,
where the b-jet contribution of this sample is extracted.
The benefit of this approach is that the fragmentation
component (e.g. g ! bb̄) is resummed by the PS. To
assess the uncertainty of this procedure, the unfolding
is repeated taking into account the impact of scale vari-
ations in the model. Additionally, the whole procedure
is repeated with a 4fs prediction, and the envelope of all
of these results is assigned as an uncertainty. Finally,
the unfolding procedure was also performed with a bin-
by-bin unfolding method, which led to almost identical
results for the considered distributions.
Fiducial cross-section. In Fig. 1, the cross-section
predictions for the process pp ! Z + b-jet are shown
within the fiducial region defined according to: pT,b >
30 GeV, |⌘b| < 2.4, pT,` > 20 GeV, |⌘`| < 2.4, and
M`¯̀ 2 [71, 111] GeV. The b-jets are reconstructed with
the flavour-kT algorithm with R = 0.5, with the addi-
tional constraint of �R(b, `) > 0.5. As discussed above,
this matches the fiducial region of the data [8] with the
exception of the choice of the jet clustering algorithm.
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Figure 1: Fiducial cross-section for the process pp ! Z +
b-jet + X at

p
s = 8 TeV. The FONLL predictions are

provided as a function of mb, and are compared to the 5fs
predictions.

The cross-section defined according to Eq. (1) is la-
belled as ‘FONLL’, and predictions are shown at both
O(↵2

s
) and O(↵3

s
) as a function of mb (as it arises expli-

citly in the parenthesis on the r.h.s. of Eq. (1)). The
filled band indicates the uncertainty due to scale vari-
ation alone, the small error bars on the FONLL predic-
tions indicate numerical uncertainties, and these predic-
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NNLLO + PS becoming a reality
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Figure 5: Same as figure 3, for the transverse momentum of the electron (left) and of the
leading lepton (right).

of the electron (pT,e�) and of the leading lepton (pT,`1). For the pT,e� distribution we
observe excellent agreement over the whole range between the MiNNLOPS and the nNNLO
results, which is fully expected since this distribution should be affected very mildly by
resummation/shower effects. We have explicitly checked that a similar level of agreement
is obtained when considering the same comparison at NNLOqq̄ accuracy, as opposed to the
Geneva calculation in ref. [103], where differences between the Geneva and fixed-order
results are observed for pT,e� > 40GeV. When comparing the MiNNLOPS and the MiNLO0

predictions for the pT,e� spectrum we observe that the effect of both the NNLOqq̄ corrections
and the loop-induced gg contribution is particularly pronounced in the bulk region of the
distribution, where the MiNLO0 result is more than 20% smaller than the nNNLO result.
On the other hand, the transverse momentum of the leading lepton is subject to shower
effects, especially at low pT,`1 , and indeed we observe a difference between the Matrix
results and the MiNNLOPS predictions below 40GeV, which become increasingly larger the
more steeply the distribution falls when pT,`1 approaches zero. Above this value, the shower
effects are less pronounced and the two predictions are in good agreement. By comparing
the nNNLO+PS predictions to the NNLO+PS and NNLOqq̄+PS results we can see that
the impact of the loop-induced gg contribution is particularly relevant below 40 GeV, and
it is also predominantly responsible for the relatively large shower effects that we observe.
In fact, we have checked that for the NNLOqq̄+PS result the relative impact of the shower
is smaller than for the NLO+PS result in the gg channel, which is expected considering
the higher perturbative accuracy (and thereby logarithmic terms) already included at fixed
order in the qq̄ channel.
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FIG. 1. Distribution in the rapidity di↵erence between the tt̄ pair and the leading jet (�ytt̄,j1), in the rapidity (ytav ) and the
average transverse-momentum (pT,tav ) of the top and the anti-top, as well as in the rapidity (ytt̄), in the invariant mass (mtt̄)
and in the transverse momentum (pT,tt̄) of the tt̄ system. Predictions are shown for MiNNLOPS (blue, solid), MiNLO0 (black,
dashed) and at NNLO (red, dashed). The black data points represent the CMS measurement at 13TeV of Ref. [98], where the
ytav and pT,tav distributions have been obtained with leptonically decaying top quarks.
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First steps toward more complex processes
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Figure 4. As in fig. 1 but for the following rapidity distributions: �y(��) (left) and |y(��)| (right).

Based on the above observations one may question the presence of perturbative stability

in these variables. As a first step towards analyzing this we consider the behavior of the

NNLO prediction without the loop-induced contribution (in the following we refer to it as

NNLO-minus-LI). The numerical impact of the loop-induced contribution for each di↵erential

distribution can be seen in fig. 6 and fig. 7. We observe the following. For the �CS distribution

the NNLO-minus-LI scale uncertainty band is mostly within the NLO one or the two bands

overlap. This is not the case for the first and last bins of this distribution, however, the

behavior of the �CS distribution in these two bins is strongly a↵ected by the kinematic cuts.

The NNLO-minus-LI band for the �y(��) distribution overlaps in all bins with the NLO one.

Same can be observed for the case of the |y(��)| distribution. In fact, the only distribution

for which the NNLO-minus-LI and NLO scale uncertainty bands do not mostly overlap is

the ��(��) one. For this distribution we observe that the NNLO-minus-LI and NLO scale

uncertainty bands overlap for ��(��)/⇡ > 0.6 while below this value they are not very far

apart, see fig. 7. Given that the NLO/LO K-factor in this region is more than a factor of two

it seems that such a non-overlap is not too concerning.

From the above discussion it seems reasonable to conclude that the non-overlap between

NNLO and NLO scale uncertainty bands observed in the angular and rapidity diphoton

distributions is somewhat a↵ected by the loop-induced contribution. It is therefore plausible

to assume that the inclusion of this contribution’s NLO correction may alleviate this non-

overlap. Other factors that may be a↵ecting this behavior is the choice of scale as well as

resummation e↵ects which are relevant at low pT (��). A detailed investigation of those is

however outside the scope of this work. On the other hand, as can also be seen from fig. 6,

the two-loop finite remainder has a rather small contribution and, therefore, we do not expect

these distributions to be significantly a↵ected by two-loop subleading color corrections.

– 7 –
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FIG. 4: The top two panels show R3/2(pT (j1)) (in absolute
and as ratio to NLO) and the bottom two panels R3/2(HT ).
The colours are the same as in fig. 1.

factor slightly decreases for large momenta, however, it
is always fully contained within the NLO scale band. An
important observation is that the NNLO scale band is
very small in comparison to NLO, reducing it from about
10% down to 3%.

Next we consider the lower two panels in fig. 4, where
we show the ratio R3/2(HT ) for a central scale µ0 =
HT /2. This observable behaves similarly to R3/2(pT (j1))
albeit with a slightly larger scale dependence. The re-
duction in the scale uncertainty when going from NLO
to NNLO is of particular importance since this observ-
able is used experimentally for measurements of ↵S [5].
The leading source of perturbative uncertainty in this
data–theory comparison is the scale dependence. The
pdf dependence, which is not computed in this work, is
expected to largely cancel out in the ratio.

Jet rates are typically measured in slices of jet rapidity.
To demonstrate how our calculation performs in this sit-
uation, we divide the phase space in slices of the rapidity
di↵erence between the two leading jets

y
⇤ = |y(j1) � y(j2)|/2 , (8)

0.5

1.0

1.5
LHC 13 TeV0.0  y� < 0.4

0.5

1.0

1.5
0.4  y� < 1.2

R
3/

2/
R

N
L
O

3/
2

(µ
0)

NLO NNLO

500 1000 1500 2000 2500 3000 3500 4000

HT [GeV]

0.5

1.0

1.5
1.2  y� < 2.4

R3/2, Scale: µ0 = ĤT/2

FIG. 5: The three panels show R3/2(HT , y
⇤), in each panel a

di↵erent slice in y
⇤ as ratio to NLO. The colours are the same

as in fig. 1.

and define the ratio of the two- and three-jet rates as

R3/2(HT , y
⇤) =

d2
�3/dHT /dy

⇤

d2�2/dHT /dy⇤ . (9)

The NNLO prediction for this cross section ratio can
be found in fig. 5 . The prediction is shown relative to the
NLO one. The NNLO correction is negative across the
full kinematic range and, overall, behaves very similarly
to the one for the rapidity-inclusive ratio R3/2(HT ). This
remains the case as y

⇤ increases, at least in the range of
rapidities considered here.

IV. CONCLUSIONS

In this work we present for the first time NNLO-
accurate predictions for three-jet rates at the LHC. We
compute di↵erential distributions for typical jet observ-
ables like HT and the transverse momentum of the ith
leading jet, i = 1, 2, 3, as well as di↵erential three-to-two
jet ratios. Scale dependence is the main source of theoret-
ical uncertainty for this process at NLO, and it gets sig-
nificantly reduced after the inclusion of the NNLO QCD
corrections. Notably, the three-to-two jet ratios stabilize
once the second-order QCD corrections are accounted for.

A central goal of the present work is to demonstrate
the feasibility of three-jet hadron collider computations
with NNLO precision. With this proof-of-principle goal
attained, one can now turn one’s attention to the broad
landscape of phenomenological applications for three-
jet production at the LHC. Examples include studies of
event-shapes [6, 39, 40], determination of the running
of the strong coupling constant ↵s through TeV scales
and resolving the question of scale setting in multi-jet
production. Another major benefit from having NNLO–
accurate predictions is the reliability of the theory uncer-
tainty estimates.

jjj

[Czakon, M
itov, Poncelet (2021)]

• jjj: ``Tour de force in QCD’’. 

• still very much in the exploratory phase 

• Gives access e.g. to αs in the TeV region

γγj



Even more precise: N3LO for standard candles
[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger (2016-…); 

Duhr, Dulat, Mistlberger (2020-21)]
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FIG. 2 The cross section as a function of the invariant mass Q2 of the lepton pair for small (left) and large (right)
values of Q.

the central scales). We note that this behaviour does not
depend on our choice of the central scale, but we observe
the same behaviour when the central scale is chosen as
Q/2. Since this is a new feature which has not been ob-
served so far for inclusive N3LO cross section, we analyse
it in some detail.

Fig. 3 shows the dependence of the cross section for an
invariant mass Q = 100 GeV on one scale with the other
held fixed at the central scale Q = 100 GeV. The bands
are again obtained by varying the scale by a factor of
two up and down around the central scale. We see that
in both cases the NNLO and N3LO bands do not over-
lap. Furthermore, we see that for the µR dependence the
width of the band is substantially reduced when going
from NNLO to N3LO. For the µF dependence, however,
the width of the band is increasing from NNLO to N3LO.
We note that this statement depends on the choice of the
value of Q2 considered as well as the centre-of-mass en-
ergy of the hadron collider. It would be interesting in
how far this observation is related to the missing N3LO
PDFs (keeping in mind that in that case one could not
disentangle completely the PDF-TH and scale uncertain-
ties anymore).

Fig. 4 shows the relative contribution of the di↵erent
partonic channels as a function of the invariant mass Q2

to the N3LO correction of the DY cross section. We see
that the cross section is dominated by the qq̄, qg and gg
channels. While the qg channel gives a large and pos-
itive contribution, the qq̄ channel (and to a lesser ex-
tend also the gg channel) gives a negative contribution
which largely cancels the contribution from the qg chan-
nel. The same cancellation happens already in the case
of the NNLO corrections to an even larger extent. Given
the sizeable cancellation of di↵erent partonic initial state
contributions, small numerical changes in the parton dis-
tribution functions will have an enhanced e↵ect on the
prediction of the DY cross section. Consequently, esti-
mating and improving on the sources of uncertainties re-
lated to parton distribution functions considered in Fig. 1
is of great importance.

CONCLUSIONS

We have presented for the first time the complete com-
putation of the N3LO corrections in QCD for the pro-
duction of a lepton pair from a virtual photon. Our main
findings are percent level corrections to the hadronic cross
section and an overall reduction of dependence on the
perturbative scales. The size of this corrections is con-
sistent with N3LO corrections to Higgs boson production
in gluon-fusion [17–19] and bottom-quark-fusion [20] and
indicates the importance of N3LO corrections to LHC
processes for phenomenology conducted at the percent
level.

In the region of small invariant masses where the con-
tribution from the Z boson is small, Q . 50 GeV, the
photon contribution computed here is the dominant part
of the cross section. For other kinematic regions we ex-
pect the K-factor of the Z boson contribution to behave
qualitatively very similarly to the photon contribution
and our results provide essential information. We see
from Fig. 2 that our computation substantially reduces
the dependence of the cross section on the renormalisa-
tion and factorisation scales. In contrast to the correc-
tions to Higgs boson production, however, the shift of
the predicted value of the DY cross section due to the in-
clusion of N3LO corrections is not contained in the naive
scale variation bands of NNLO predictions for all values
of Q. We emphasise that this should not be interpreted
as an indication of a breakdown of perturbative QCD,
but rather as a sign that uncertainty estimates based on
a purely conventional variation of the scales should be
taken with a grain of salt. Moreover, we observe an intri-
cate pattern of large cancellations of contributions from
di↵erent partonic initial states at NNLO and N3LO. This
implies a large sensitivity of the cross section on rela-
tively small shifts in parton distribution functions. In
combination with the fact that the DY process is a key
ingredient for the determination of PDFs, this motivates
to push for parton distributions determined from N3LO
cross sections in the future. It also hints at am intri-
cate entanglement of PDFs and the structure of QCD
cross sections, so that the uncertainty estimate obtained
from scale variation cannot be completely disentangled
from the PDF-TH uncertainties. The perturbative un-
certainty should rather be seen as the combination of

Figure 3: The cross sections for producing a W+ (left) or W� (right) as a function of the

virtuality Q normalised to the N3LO prediction. The uncertainty bands are obtained by

varying µF and µR around the central scale µcent = Q. The dashed magenta line indicates

the physical W boson mass, Q = mW .

virtual photon production in ref. [10], hinting once more towards a universality of the

QCD corrections to these processes.
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Figure 4: The cross sections for producing a W+ (left) or W� (right) as a function of

the virtuality Q. The uncertainty bands are obtained by varying µF and µR around the

central scale µcent = Q/2. The dashed magenta line indicates the physical W boson mass,

Q = mW .

Figure 4 shows the scale variation of the cross section with a di↵erent choice for the

central scale, µcent = Q/2. It is known that for Higgs production a smaller choice of the

factorisation scale leads to an improved convergence pattern and the bands from scale

variations are strictly contained in one another. We observe here that the two scale choices

share the same qualitative features.

The fact that the scale variation bands do not overlap puts some doubt on whether

it gives a reliable estimate of the missing higher orders in perturbation theory, or whether

other approaches should be explored (cf., e.g., refs. [85, 86]). In ref. [10] it was noted that

for virtual photon production there is a particularly large cancellation between di↵erent

initial state configurations. We observe here the same in the case of W boson production.

This cancellation may contribute to the particularly small NNLO corrections and scale

variation bands, and it may be a consequence of the somewhat arbitrary split of the content
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top-quark is infinitely heavy and can be integrated out,
see eq. (2). Moreover, we assumed that all other quarks
have a zero Yukawa coupling. Finite quark mass e↵ects
are important, but it is su�cient that they are inlcuded
through NLO or NNLO. Indeed, finite quark-mass e↵ects
have been computed fully through NLO in QCD [30],
while subleading top-quark mass corrections have been
computed at NNLO systematically as an expansion in
the inverse top-quark mass [34]. In these references it
was observed that through NLO finite quark mass ef-
fects amount to about 8% of the K-factor. At NNLO,
the known 1

mtop
corrections a↵ect the cross-section at

the ⇠ 1% level. A potentially significant contribution
at NNLO which has not yet been computed in the lit-
erature originates from diagrams with both a top and
bottom quark Yukawa coupling. Assuming a similar per-
turbative pattern as for top-quark only diagrams in the
e↵ective theory, eq. (2), higher-order e↵ects could be of
the order of 2%. We thus conclude that the computation
of the top-bottom interference through NNLO is highly
desired in the near future.

Finally, the computation of the hadronic cross-section
relies crucially on the knowledge of the strong coupling
constant and the parton densities. After our calculation,
the uncertainty coming from these quantities has become
dominant. Further progress in the determination of par-
ton densities must be anticipated in the next few years
due to the inclusion of LHC data in the global fits and the
impressive advances in NNLO computations, improving
the theoretical accuracy of many standard candle pro-
cesses.

To conclude, we have presented in this Letter the
computation of the gluon-fusion Higgs production cross-
section through N3LO in perturbative QCD. While a
thorough study of the impact of electroweak and quark
mass e↵ects is left for future work, we expect that the re-
maining theoretical uncertainty on the inclusive Higgs
production cross-section is expected to be reduced to
roughly half, which will bring important benefits in the
study of the properties of the Higgs boson at the LHC
Run 2. Besides its direct phenomenological impact, we
believe that our result is also a major advance in our un-
derstanding of perturbative QCD, as it opens the door to
push the theoretical predictions for large classes of inclu-
sive processes to N3LO accuracy, like Drell-Yan produc-
tion, associated Higgs production and Higgs production
via bottom fusion. Moreover, on the more technical side,
our result constitutes the first independent validation of
the gluon splitting function at NNLO [14], because the
latter is required to cancel all the infrared poles in the
inclusive cross-section. In addition, we expect that the
techniques developed throughout this work are not re-
stricted to inclusive cross-sections, but it should be pos-
sible to extend them to certain classes of di↵erential dis-
tributions, like rapidity distributions for Drell-Yan and
Higgs production, thereby paving the way to a new era
of precision QCD.
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FIG. 1 Variation of the hadronic cross section with the
hadronic centre-of-mass energy. The upper figure shows
nominal values, in the lower figure all predictions are nor-
malised to the central value of the N3LO prediction. LO,
NLO, NNLO and N3LO corrections are shown in green,
yellow, blue and red respectively. The bands correspond
to scale variation uncertainties as described in the text.

counterterm for the strong coupling constant has been de-
termined through five loops in Refs. [58–62]. The renor-
malisation constant for the Yukawa coupling is identical
to the quark mass renormalisation constant of QCD in
the MS-scheme [19, 60, 63–65]. IR divergences are ab-
sorbed into the definition of the PDFs using mass factori-
sation at N3LO [66–68]. The mass factorisation involves
convoluting lower-order partonic cross sections with the
three-loop splitting functions of Refs. [69–71]. We have
computed all the convolutions analytically in z space us-
ing the PolyLogTools package [72]. We observe that
all divergences cancel after UV renormalisation and mass
factorisation. We emphasise that this is not only a strong
cross check of our result, but, together with the results of
Ref. [28] for gluon-initiated processes, this is the first time
that the complete set of three-loop splitting functions of
Refs. [69, 70] has been confirmed by an independent an-
alytic computation. Moreover, this is the first time that
the universality of QCD factorisation has been confirmed
for hadron collisions for all partonic initial states.

The analytic cancellation of all ultraviolet and infrared
singularities provides a strong check of our results. In ad-
dition, we have reproduced the soft-virtual N3LO cross
section of Ref. [73] and the physical kernel constraints
of Ref. [74–76] for the next-to-soft term of the bottom-
quark-initiated cross section. We have also checked that
all logarithmic terms in the renormalisation and factori-
sation scales produced from the cancellation of the UV

and IR poles satisfy the DGLAP evolution equation. Fi-
nally, we have also recomputed the NLO and NNLO cross
sections, and we have checked that through NNLO our re-
sults are in perfect agreement with the literature results
implemented in the code Sushi [77]. Analytic results
for the partonic coe�cient functions will be presented in
ref. [78].

BOTTOM-QUARK FUSION AT N3LO IN QCD

In this section we present our phenomenological re-
sults for inclusive cross section for bottom-quark fusion
at N3LO in QCD. We assume a Higgs mass of mH =
125.09 GeV. The strong coupling is ↵s(m2

Z
) = 0.118 and

is evolved to the renormalisation scale µr using the four-
loop QCD beta function in the MS-scheme assuming five
massless quark flavours. The Yukawa coupling between
the Higgs boson and the bottom quark is proportional to
the bottom-quark mass in the MS-scheme, and we evolve
it from mb(mb) = 4.18 GeV [79] to the same renormali-
sation scale µr using four-loop running [65].

Fig. 1 shows the inclusive cross section at a proton-
proton collider as a function of the hadronic centre-of-
mass energy. The predictions are obtained by convolut-
ing the partonic cross sections with the PDF4LHC15

NNLO PDFs in the 5FS [80]1 as in eq. (1). The cen-
tral value corresponds to the commonly used choice of
the renormalisation and factorisation scales (µr, µf ) =
(mH ,mH/4) following for example refs. [19, 83]. The
band is obtained by varying µr and µf indepen-
dently within the intervals µr 2 [mh, 2mh] and µf 2
[mh/8,mh/2] with the restriction that 1/2  4µf/µr 
2. We observe that cross section predictions based on
successive perturbative orders are contained within the
bands of the lower order predictions over a wide range
of hadronic centre of mass energies. The dependence
on the renormalisation and factorisation scales of the
hadronic cross section is reduced as the perturbative or-
der is increased. We therefore believe that the resid-
ual scale dependence provides a reliable estimate of the
missing higher orders beyond N3LO. Let us comment
on the unconventionally small choice of the factorisation
scale, µf = mH/4. At NLO it was observed [83–86]

1
It was pointed out in Ref. [24] that multiple di↵erent values for

the bottom quark mass were used in the construction of the

PDF4LHC15 sets and an alternative PDF was derived. A PDF

set where bottom mass e↵ects are consistently included into the

pdf4lhc nnlo mc set is avilable from Ref. [81] (see also Ref. [82]).

We find that using the PDF set of Ref. [81] introduces a O(1%)

shift of the central value of our cross section. Since the modifi-

cation using the alternative PDF set is small we choose to use

the o�cial PDF4LHC15 sets of Ref. [80] in our predictions for

generality. For further discussion of bottom quark mass e↵ects

we refer to Ref. [78].
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channel at N3LO. The fully di↵erential prediction is as-
sembled according to Eq. (1), which requires:

1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [38, 39] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 39] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [40] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,
an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [41] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that
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channel at N3LO. The fully di↵erential prediction is as-
sembled according to Eq. (1), which requires:

1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [38, 39] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 39] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [40] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,
an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [41] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that
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•In a perfect world (= large luminosities, good S/B control, large energy 
coverages):  
•find simple high-Q observables, where contamination by IR physics is 

minimal 
•``cut-and-count’’ like analysis, in the fiducial region → very clean data / 

theory comparison 

•Whenever this is possible: very good theoretical control on our predictions. 
If the process is simple enough, we can obtain very accurate reliable results 
via Higher Order Perturbative Computations 

•Fixed order (differential) computations: 
•very solid framework 
•they give direct access to the actual fiducial region (i.e. we can put cuts on 

the final state)

The hard process: an ideal world
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Higgs fiducial: pt,γ1 > 0.35 mH, pt,γ2 > 0.25 mH, 

Fermilab “wine and cheese” seminar, Feb. 2022Gavin P. Salam

Standard pt,γ cuts →  Higgs pt dependence of acceptance

31

HHiggs with zero 
transverse mom.

γ+
❌ 0.35pt,+ > mH

✅ 0.25pt,− > mHγ–

Fails cuts

HHiggs with non-zero 
transverse mom.

γ+ ✅ 0.35pt,+ > mH

✅ 0.25pt,− > mHγ–

Passes cuts

Numbers are for ATLAS H→ γγ pt cuts, CMS cuts are similar

Let us place the Higgs, of mass mh, at zero rapidity, yh = 1

2
ln E+pz

E�pz
= 0. When the

Higgs boson has transverse momentum pt,h, we can parameterise the momenta of the two

photons (labelled + and �) as a function of polar and azimuthal angles ✓ and �,

p±(pt,h, ✓,�) =
1

2

n
±

q
m2

h + p
2
t,h

sin ✓ cos�+ pt,h , ±mh sin ✓ sin� , ±mh cos ✓ ,
q

m2
h + p

2
t,h

± pt,h sin ✓ cos�
o
, (2.1)

where the components are given in the order x, y, z, E, the beams are along the ±z

directions and, without loss of generality, we have taken the Higgs boson transverse mo-

mentum to be along the x direction. In this parametrisation, ✓ and � are simply the usual

Collins–Soper angles [40]. When discussing pt cuts, it is su�cient to consider the domain

0  ✓ 
⇡

2
, �

⇡

2
 � 

⇡

2
, (2.2)

where we have pt,+ � pt,�. We will refer to the higher (lower)-pt photon as the harder

(softer) one. In this domain, an identical (“symmetric”) transverse momentum cut on both

photons, pt,+, pt,� � pt,cut, reduces to a requirement on the softer photon, pt,� � pt,cut.

For other regions of ✓ and �, the argument would remain identical, simply taking care as

to which of the two photons has the smaller transverse momentum.

For a given pt,h, the fraction f(pt,h) of Higgs boson decays where both photons pass

the cut is given by

f(pt,h) =

Z
⇡/2

�⇡/2

d�

⇡

Z
⇡/2

0

sin ✓d✓⇥(pt,� > pt,cut) . (2.3)

We can perform a simple integration over phase space, independently of the Higgs produc-

tion matrix element, because of the spin-0 nature of the Higgs boson. To evaluate f(pt,h),

it is convenient to work in the small-pt,h limit, where we have

pt,±(pt,h, ✓,�) =
mh

2
sin ✓ ±

1

2
pt,h cos�+

p
2
t,h

4mh

�
sin ✓ cos2 �+ csc ✓ sin2 �

�
+O3 , (2.4)

where the notation On is a shorthand that we introduce to indicate that we neglect terms

p
n
t,h and higher (and, later, the n

th power of any other factor in which we expand). In

Eq. (2.4), we have retained terms up to order p
2
t,h/m

2
h because we will make use of the

second-order term later. However, to keep the rest of this section as simple as possible, we

will now work with just the first two terms, and the requirement pt,� > pt,cut translates to

sin ✓ >
2pt,cut
mh

+ cos�
pt,h

mh

+O2 , (2.5)

or equivalently

cos ✓ < f0 �
2

f0

pt,cut

mh

cos�
pt,h

mh

+O2 , f0 =

s

1�
4p2

t,cut

m2
h

. (2.6)
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Expect acceptance to increase with increasing pt,H

IR-sensitivity makes the perturbative expansion factorially divergent →  
the more you compute, the worse it gets [Salam, Slade]

numbers we will take ✏ ! 0, however we will also plot the ✏ dependence of the result to

gauge the e↵ect of a pt,h cuto↵ in a projection-to-Born type [53] subtraction approach for

perturbative calculations, as used in Ref. [11]. (In practice, such calculations impose a

cuto↵ m
2

min
on the invariant mass of parton pairs, and a cut m2

min
. ✏

2 is required to fully

cover transverse momenta down to a scale ✏.)

For asymmetric cuts with the ATLAS thresholds of pt,+ > 0.35mh and pt,� > 0.25mh

(using not just the f1 part of the acceptance, but its full structure), we obtain the following

results for the acceptances for each of the perturbative models,

�asym � f0�inc

�0f0
' 0.15↵s � 0.29↵2

s
+ 0.71↵3

s
� 2.39↵4

s
+ 10.31↵5

s
+ . . . ' 0.06 @DL,

' 0.15↵s � 0.23↵2
s
+ 0.44↵3

s
� 1.15↵4

s
+ 3.86↵5

s
+ . . . ' 0.06 @LL,

' 0.18↵s � 0.15↵2
s
+ 0.29↵3

s
+ . . . ' 0.10 @NNLL,

' 0.18↵s � 0.15↵2
s
+ 0.31↵3

s
+ . . . ' 0.12 @N3LL.

(2.23)

In these results, the ↵n
s subscript indicates that the corresponding term is the ↵n

s contribu-

tion to the result, while the right-hand side of the equality corresponds to the acceptance

as determined from the resummation (in the case of the LL result, we stop the integration

at the Landau pole). The DL and LL results clearly show how the series start to diverge

towards higher orders. In the LL case, the terms grow a little more slowly, and numerically

fitting the structure of the series to high orders leads to the conclusion that (for nf = 5) the

smallest term in the series scales as (⇤/Q)0.205 rather than the (⇤/Q)23/144 ' (⇤/Q)0.160

seen at DL level. The investigations reported in Appendix C suggest that the (⇤/Q)0.205

scaling may be robust with respect to b-space versus pt space complications, as well as to

other subleading e↵ects.

Next, we examine the NNLL and N3LL results in Eq. (2.23). The all-order results are

twice as large in the NNLL and N3LL cases as compared to the DL and LL cases, which is

a consequence of the fact that the NNLL and N3LL results includes a substantial part of

the K factor for inclusive Higgs production. The NNLL and N3LL results are themselves

close. Examining the fixed-order results, the main feature to note is that up to N3LO there

is no truncation of the series that agrees with the resummed result.

Fig. 3 illustrates the N3LO truncation compared to the resummation, as a function

of the cuto↵ ✏ in Eq. (2.22). First considering the small-✏ limit, the di↵erence of 0.22

between the central N3LO result and the resummation corresponds to a roughly 7% rel-

ative e↵ect on the full cross section (after accounting for an overall K-factor of about 3).

This is significantly larger than the perturbative scale uncertainty on the inclusive N3LO

cross section [6]. The scale variation bands demonstrate a large scale sensitivity for the

fixed-order result, which does not overlap with the resummed result (though contributions

beyond the resummation could modify this aspect, for example by increasing the width of

the resummed scale variation band). The pattern of ✏-dependence in Fig. 3 confirms the

expectation from Eq. (2.20) that the fixed-order result is highly sensitive to unphysically

low pt,h values.8

8One intriguing feature is that setting ✏ in the range of a few hundred MeV to one GeV gives an N3LO
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transverse mom.
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Fails cuts

HHiggs with non-zero 
transverse mom.

γ+ ✅ 0.35pt,+ > mH
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Passes cuts

Numbers are for ATLAS H→ γγ pt cuts, CMS cuts are similar

Let us place the Higgs, of mass mh, at zero rapidity, yh = 1

2
ln E+pz

E�pz
= 0. When the

Higgs boson has transverse momentum pt,h, we can parameterise the momenta of the two

photons (labelled + and �) as a function of polar and azimuthal angles ✓ and �,

p±(pt,h, ✓,�) =
1

2

n
±

q
m2

h + p
2
t,h

sin ✓ cos�+ pt,h , ±mh sin ✓ sin� , ±mh cos ✓ ,
q

m2
h + p

2
t,h

± pt,h sin ✓ cos�
o
, (2.1)

where the components are given in the order x, y, z, E, the beams are along the ±z

directions and, without loss of generality, we have taken the Higgs boson transverse mo-

mentum to be along the x direction. In this parametrisation, ✓ and � are simply the usual

Collins–Soper angles [40]. When discussing pt cuts, it is su�cient to consider the domain

0  ✓ 
⇡

2
, �

⇡

2
 � 

⇡

2
, (2.2)

where we have pt,+ � pt,�. We will refer to the higher (lower)-pt photon as the harder

(softer) one. In this domain, an identical (“symmetric”) transverse momentum cut on both

photons, pt,+, pt,� � pt,cut, reduces to a requirement on the softer photon, pt,� � pt,cut.

For other regions of ✓ and �, the argument would remain identical, simply taking care as

to which of the two photons has the smaller transverse momentum.

For a given pt,h, the fraction f(pt,h) of Higgs boson decays where both photons pass

the cut is given by

f(pt,h) =

Z
⇡/2

�⇡/2

d�

⇡

Z
⇡/2

0

sin ✓d✓⇥(pt,� > pt,cut) . (2.3)

We can perform a simple integration over phase space, independently of the Higgs produc-

tion matrix element, because of the spin-0 nature of the Higgs boson. To evaluate f(pt,h),

it is convenient to work in the small-pt,h limit, where we have

pt,±(pt,h, ✓,�) =
mh

2
sin ✓ ±

1

2
pt,h cos�+

p
2
t,h

4mh

�
sin ✓ cos2 �+ csc ✓ sin2 �

�
+O3 , (2.4)

where the notation On is a shorthand that we introduce to indicate that we neglect terms

p
n
t,h and higher (and, later, the n

th power of any other factor in which we expand). In

Eq. (2.4), we have retained terms up to order p
2
t,h/m

2
h because we will make use of the

second-order term later. However, to keep the rest of this section as simple as possible, we

will now work with just the first two terms, and the requirement pt,� > pt,cut translates to

sin ✓ >
2pt,cut
mh

+ cos�
pt,h

mh

+O2 , (2.5)

or equivalently

cos ✓ < f0 �
2

f0

pt,cut

mh

cos�
pt,h

mh

+O2 , f0 =

s

1�
4p2

t,cut

m2
h

. (2.6)
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Expect acceptance to increase with increasing pt,H
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Way out: 
•Resum all-order IR effects [Billis, Dehnadi, Ebert, Michel, Tackmann (2021)] 

•Design cuts/observables that are insensitive to IR physics, while retaining 
good S/B ratio [Salam, Slade]
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As we get more and more precise, and explore the 
TeV region: careful analysis of common practice 

become crucial

Problems (and in some cases tentative solutions) 
already known for energetic tops (high-invariant 

mass tops are IR-sensitive) and heavy flavour



Taming IR physics: all-order resummation
In some cases, we can extend the range of validity of the perturbative approach by 

doing RGE-improved perturbation theory → resum large class of soft/collinear terms

Introduction: ܪ  ݆ production
2

Introduction

y Shape of ࢀǡࡴ distribution may put stronger constraints on light-quark Yukawa couplings [Bishara, Monni HW�DO�·����
Soreq HW�DO�·��@

y Non-trivial Higgs transverse momentum (ࢀǡࡴ) distribution generated when extra jet is radiated:  ࡴ 

Reliable theoretical predictions for ܪ  ݆ differential cross section required

[Bishara, Monni HW�DO�·��@y Bounds expected from HL-LHC

[Bishara et al (2016)]

3

group equations. The exact solution for the qT distribu-
tion is formally equivalent [67] to the canonical solution
in conjugate (bT ) space, which is the approach we follow
here; see Refs. [46, 67, 68] for details. At N3LL0 (N3LL)
we require the N3LO (NNLO) boundary conditions for
the hard [69–73] and beam and soft functions [49, 74–78],
the 3-loop noncusp anomalous dimensions [49, 74, 75, 79–
82], and the 4-loop � function [83–86] and gluon cusp
anomalous dimension [87–93]. At NNLL, all ingredients
enter at one order lower than at N3LL.

The 3-loop beam function boundary terms have been
computed only recently [77, 78]. They involve a plethora
of harmonic polylogarithms up to weight five with non-
trivial rational prefactors, which must be convolved
against the PDFs. This makes a naive implementation
too slow and numerically unstable. Instead, we obtain
fast numerical implementations for all kernels at close to
double precision using a dedicated algorithm that sepa-
rates an entire kernel into pieces with only single branch
cuts, which then admit suitable, fast-converging logarith-
mic expansions around z = 0 and z = 1.

The hard function H contains timelike logarithms
ln[(�m

2

H
� i0)/µ2)], which are resummed by using an

imaginary boundary scale µH = �imH . This signifi-
cantly improves the perturbative convergence compared
to the spacelike choice µH = mH [94–98]. It is advan-
tageous to apply this timelike resummation not just to
W

(0), which contains H naturally, but also to the full
W (qT , Y ), as demonstrated for the rapidity spectrum in
Ref. [73], or equivalently the nonsingular corrections, as
in similar contexts [81, 99]. To do so, we take [73]

W (qT , Y ) = H(m2

H
, µFO)


W (qT , Y )

H(m2

H
, µFO)

�

FO

, (11)

and analogously for d�nons
/dqT . The ratio in square

brackets is expanded to fixed order in ↵s(µFO), while
H(m2

H
, µFO) in front is evolved from µH to µFO at the

same order as in Eq. (10). This yields substantial im-
provements up to qT ⇠ 200GeV, which is not unex-
pected, as W

(2) will contain H in parts of its factor-
ization. (Beyond qT

>
⇠ 200GeV, a dynamic hard scale

⇠ qT becomes more appropriate and the heavy-top limit
breaks down, indicating that the hard interaction has be-
come completely unrelated to the H+0-parton process.)

The fixed-order coe�cients of d�nons
/dqT for qT > 0

are obtained as

d�nons

FO

dqT
=

d�FO1

dqT
�

d�sing

FO

dqT
. (12)

At NnLO (⌘ NnLO0), or O(↵n

s
) relative to the LO Born

cross section, we need the full spectrum at Nn�1LO1. At
LO1 and NLO1, we integrate our own analytic imple-
mentation of W (qT , Y ) against A(qT , Y ;⇥), allowing us
to reach 10�4 relative precision down to qT = 0.1GeV
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FIG. 1. The gg ! H qT spectrum up to N3LL0+N3LO com-
pared to preliminary ATLAS measurements [26].

at little computational cost. At NLO1, we implement re-
sults from Ref. [100] after performing the necessary renor-
malization. The implementation is checked against the
numerical code from Ref. [29]. At NNLO1, we use exist-
ing results [41, 42] from NNLOjet [30, 34] (see below).
The final resummed qT spectrum is then given by

d�

dqT
=

d�sing

dqT
+

d�nons

dqT
. (13)

While for qT ⌧ mH , the singular and nonsingular con-
tributions can be considered separately, this separation
becomes meaningless for qT ⇠ mH . To obtain a valid pre-
diction there, the qT resummation is switched o↵, only
keeping the timelike resummation, by choosing common
boundary scales µS,B = ⌫S,B = iµH = µFO, such that
singular and nonsingular exactly recombine at fixed or-
der into the full result. We use qT -dependent profile
scales [46, 99, 101] to enforce the correct qT resummation
for qT ⌧ mH and smoothly turn it o↵ toward qT ⇠ mH .
We identify several sources of perturbative uncertain-

ties, namely fixed-order (�FO), qT resummation (�qT ),
timelike resummation (�'), and matching uncertainties
(�match), which are estimated via appropriate scale vari-
ations as detailed in Refs. [46, 73]. They are consid-
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at little computational cost. At NLO1, we implement re-
sults from Ref. [100] after performing the necessary renor-
malization. The implementation is checked against the
numerical code from Ref. [29]. At NNLO1, we use exist-
ing results [41, 42] from NNLOjet [30, 34] (see below).
The final resummed qT spectrum is then given by
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While for qT ⌧ mH , the singular and nonsingular con-
tributions can be considered separately, this separation
becomes meaningless for qT ⇠ mH . To obtain a valid pre-
diction there, the qT resummation is switched o↵, only
keeping the timelike resummation, by choosing common
boundary scales µS,B = ⌫S,B = iµH = µFO, such that
singular and nonsingular exactly recombine at fixed or-
der into the full result. We use qT -dependent profile
scales [46, 99, 101] to enforce the correct qT resummation
for qT ⌧ mH and smoothly turn it o↵ toward qT ⇠ mH .
We identify several sources of perturbative uncertain-

ties, namely fixed-order (�FO), qT resummation (�qT ),
timelike resummation (�'), and matching uncertainties
(�match), which are estimated via appropriate scale vari-
ations as detailed in Refs. [46, 73]. They are consid-
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Many conceptual and phenomenological 
advancements

Higher logarithmic accuracy, next-to-leading 
power, non-global variables…



From parton to hadrons: parton showers
•In many cases, we need to connect high-

energy scattering to detector reality 
•Parton-shower MC, approximate 

treatment of many-body processes 
•-: lose precision 
•+: gain flexibility 

•In many cases: leading TH systematics…

Higgs 2021Gavin P. Salam

(a) (b)

Figure 31: Breakdown of the combined JMS uncertainty shown in Figure 30 as a function of jet transverse momentum
pT for the jet mass bin 50–120 GeV. Contributions are shown for each of the nuisance parameters of the (a) Rtrk and
(b) forward-folding methods. The vertical axis reflects the uncertainty introduced by a given nuisance parameter in
combination, incorporating the weight of the method from which it originates. This weight is dominated at high pT
by the Rtrk method. The lines shown are smoothed using a sliding Gaussian kernel.
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Figure 32: Breakdown of the combined JMS uncertainty shown in Figure 30 as a function of jet transverse momentum
pT for the jet mass bin 120–300 GeV. Contributions are shown for each of the nuisance parameters of the (a) Rtrk and
(b) forward-folding methods. The vertical axis reflects the uncertainty introduced by a given nuisance parameter in
combination, incorporating the weight of the method from which it originates. This weight is dominated at high pT
by the Rtrk method. The lines shown are smoothed using a sliding Gaussian kernel.

47

Take example of ATLAS boosted VH — stat (28%) ~ syst (24%)

28

ATLAS VH: 2008.02508,

For large-R jets, the uncertainties in the energy and mass scales are […] as 
described in [81]

VH



From parton to hadrons: parton showers
•Parton showers have two identities 

•Black boxes with enough handles, to accommodate for data features 
•Predictive tools

•Predictive tool: need to be reliable 
•Especially crucial in the ML world: virtually all the ML algorithms trained on PS

•Recent past: first attempts at making PS under theoretical control and 
systematically improvable! 4

FIG. 2. Left: ratio of the cumulative y23 distribution from several showers divided by the NLL answer, as a function of
↵s ln y23/2, for ↵s ! 0. Right: summary of deviations from NLL for many shower/observable combinations (either ⌃shower(↵s !
0,↵sL = �0.5)/⌃NLL � 1 or (N subjet

shower(↵s ! 0,↵sL
2 = 5)/N subjet

NLL � 1)/
p
↵s). Red squares indicate clear NLL failure; amber

triangles indicate NLL fixed-order failure that is masked at all orders; green circles indicate that all NLL tests passed.

Fig. 1.
The left-hand plot of Fig. 1 shows the Pythia8 dipole

algorithm (not designed as NLL accurate), while the
middle plot shows our PanGlobal shower with � = 0.
The dipole result is clearly not independent of � 12

for ↵s ! 0, with over 60% discrepancies, extending the
fixed-order conclusions of Ref. [37]. The discrepancy is
only ' 30% for gg events (not shown in Fig. 1), and
the di↵erence would, e.g., skew machine learning [67] for
quark/gluon discrimination. PanGlobal is independent
of � 12. The right-hand plot shows the ↵s ! 0 limit
for multiple showers. The overall pattern is as expected:
PanLocal works for � = 0.5, but not � = 0, demon-
strating that with kt ordering it is not su�cient just to
change the dipole partition to get NLL accuracy. Pan-
Global works for � = 0 and � = 0.5. (Showers that
coincide for ↵s ! 0, e.g. Dire v1 and Pythia8, typically
di↵er at finite ↵s, reflecting NNLL di↵erences.)

Next, we consider a range of more standard observ-
ables at NLL accuracy. They include the Cambridgep
y23 resolution scale [68]; two jet broadenings, BT and

BW [69]; fractional moments, FC1��obs , of the energy-
energy correlations [47]; the thrust [70, 71], and the max-
imum ui = kti/Qe��obs|⌘i| among primary Lund declus-
terings i. Each of these is sensitive to soft-collinear ra-
diation as kt/Qe��obs|⌘|, with the �obs values shown in
Fig. 2 (right). Additionally, the scalar sum of the trans-
verse momenta in a rapidity slice [72], of full-width 2, is
useful to test non-global logarithms (NGLs). These ob-
servables all have the property that their distribution at
NLL can be written as [47, 53, 72–74]

⌃(↵s,↵sL) = exp
⇥
↵�1
s g1(↵sL) + g2(↵sL) +O

�
↵n
sL

n�1
�⇤
,

(6)
where ⌃ is the fraction of events where the observable
is smaller than eL (g1 = 0 for the rapidity slice kt).
We also consider the kt-algorithm [75] subjet multiplic-

ity [76], [51]§ 5.
Fig. 2 (left) illustrates our all-order tests of the shower

for one observable,
p
y23. It shows the ratio of the ⌃

as calculated with the shower to the NLL result, as a
function of ↵s ln

p
y23 in the limit of ↵s ! 0. The stan-

dard dipole algorithms disagree with the NLL result, by
up to 20%. This is non-negligible, though smaller than
the disagreement in Fig. 1, because of the azimuthally
averaged nature of the

p
y23 observable. In contrast the

PanGlobal and PanLocal(� = 0.5) showers agree with
the NLL result to within statistical uncertainties.
Fig. 2 (right) shows an overall summary of our

tests. The position of each point shows the result of
⌃shower(↵s ! 0,↵sL = �0.5)/⌃NLL�1 or (N subjet

shower(↵s !
0,↵sL2 = 5)/N subjet

NLL � 1)/
p
↵s. If it di↵ers from 0, the

point is shown as a red square. In some cases (amber tri-
angles) it agrees with 0, though an additional fixed-order
analysis in a fixed-coupling toy shower [37] [51]§ 2 re-
veals issues a↵ecting NLL accuracy, all involving hitherto
undiscovered spurious super-leading logarithmic terms.1

Green circles in Fig. 2 (right) indicate that the
shower/observable combination passes all of our NLL
tests, both at all orders and in fixed-order expansions.
The four shower algorithms designed to be NLL accurate
pass all the tests. These are the PanLocal shower (dipole
and antenna variants) with � = 1

2 and the PanGlobal
shower with � = 0 and � = 1

2 .

1 Such terms, (↵sL)n(↵sL2)p in ln⌃, starting typically for n = 3
(sometimes 2), p � 1, appear for traditional kt ordered dipole
showers for global (�obs > 0) and non-global observables [51]§ 3.
Terms of this kind can generically exist [77–79], but not at
leading-colour or for pure final-state processes with rIRC [47]
safe observables. In many cases, the spurious super-leading log-
arithms appear to resum to mask any disagreement with NLL.

First demonstrably 
``higher order’’ showers 

starting to appear
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Can we trust factorisation?
d� =

Z
dx1dx2f(x1)f(x2)d�part(x1, x2)FJ(1 +O(⇤QCD/Q))

At the end, we cannot escape some 
contamination from soft physics 
•ΛQCD ~ GeV, Q ~ 100 GeV → can be 

1% effect! 
•Non-perturbative → out of control
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d� =

Z
dx1dx2f(x1)f(x2) d�part(x1, x2)FJ (1 +O(⇤p

QCD/Q
p))

In practice, a very big difference between p=1 (problem) and p > 1 (irrelevant)

Can we at least establish the scaling?

•e+e- → hadrons: p ⩾ 4 
•For DIS: solid proof that p ⩾ 2

•Hadron colliders: 
•for inclusive quantities (e.g. DY total xsec): leading NP corrections should have p=2 

(non-trivial!) 
•For more exclusive quantities: potential sources of linear power corrections.  
•Top, Jets are known to have linear power corrections. What about colour singlet? 



Can we trust factorisation?

QCD power corrections ↔ sensitivity to IR physics
Basic idea: find good ``probe’’ of the IR, and ask ``can we generate p=1 terms?’’

E.g.: Z transverse momentum distribution (example from G.P. Salam)
Non-perturbative effects in Z pT

29
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� ⇠
Z

dp?
p?

↵s(p?)

Because of azimuthally asymmetric 
color flow: linear terms could be 
generated 

Integrate over soft d.o.f. → NP

Mechanisms that could generate linear power corrections are there…



Beyond pQCD
The obvious problem: at colliders, we cannot deal with QCD non-perturbatively

However: we know one source of NP that ``creeps’’ into perturbative results. 
When integrating over soft momenta → Landau pole ambiguity 

Lead to divergent behaviour of perturbative expansion → can get info from PT 
theory itself!

Renormalons, calculations in the nf → - ∞ limitLarge-nf limit: massive gluon approximation
Contributions to be included For a review Beneke, ’98

Integrating over the gluon decay in the last diagram we may rewrite

d�
d�

=

Z 1

0
d�


1

↵s(Q)

d�(1)(�)

d�

�

| {z }
NLOmassive gluon

d
d�

[↵e� (�)]

Pheno applications:

e+e� ! hardons, ⌧ decays: ⇤4

Q4 corrections;

DIS e DIS sum rules, ⇤2

Q2 corrections;

Drell Yan (inclusive and boson rapidity) ⇤2

Q2

b and c decays;
pole mass ⇤

Q ;
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Z pt and linear renormalons
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Figure 10: As in fig. 9, supplemented with a cut on the Z rapidity 0 < yZ < yc, with

yc = 0.6.

pcT = 20GeV pcT = 40GeV

fit 1 fit 2 fit 1 fit 2

a = 281.68± 0.02 a = 281.68± 0.01 a = 33.595± 0.003 a = 33.596± 0.002

b = �0.001± 0.009 b = 0 b = 0.015± 0.025 b = 0

c = �0.026± 0.018 c = �0.028± 0.006 c = �0.11± 0.09 c = �0.06± 0.03

d = 0.35± 0.01 d = 0.35± 0.01 d = 0.49± 0.11 d = 0.54± 0.06

�2/ndf = 0.39 �2/ndf = 0.32 �2/ndf = 0.89 �2/ndf = 0.77

Table 2: Results of the fit of the T (�) function defined in eq. (2.16) illustrated in Fig. 10.

The fit function is given in eq. 4.2. The first fit corresponds to the blue lines, while in the

second fit the linear coe�cient has been set to 0 and corresponds to the red lines. The last

line corresponds to the associated reduced �2.

momentum is free from linear renormalons.

By looking at the coe�cients reported in Tabs. 1 and 2, we notice that when we set

pcT = 40 GeV instead of 20 GeV we encounter larger errors in the determination of the

coe�cients c and d, since the corresponding contributions are suppressed by two powers of

�/pcT, and thus their relative importance diminishes for higher cuts.

5 Conclusions

The current LHC physics demands high precision theoretical predictions, and has promoted

an unprecedented theoretical e↵ort in pushing perturbative calculations beyond next-to-

leading order, and in some cases even beyond the next-to-next-to-leading order. At the

current level of precision, possible non-perturbative e↵ects that are suppressed by a single

power of the hard scale can sometimes be comparable or larger in size than the current

theoretical uncertainties. Unfortunately, for collider physics observables we lack a theory

of even the most important non-perturbative corrections. This is unlike others frameworks,

– 18 –

the real and virtual contributions of the collinear subtraction, we implemented a

local cancellation of the associated soft divergence by making use of relation (2.25).

• The contribution from region 1, for either � = 0 or � 6= 0, is also implemented in the

POWHEG BOX. In this case the only singular region present is the one associated with

the collinear splitting of the initial state photon into a dd̄ pair. The underlying Born

for this singularity is given by the dd̄ ! Zg process, where the gluon has mass �,

di↵erent from the case of regions 2 and 3. The collinear singularity is treated in the

MS scheme in this case, and the collinear remnant is automatically provided by the

POWHEG BOX.

4 Results

As our benchmark set-up, we have taken two colliding particles with center-of-mass (CM)

energy of 300 GeV. The positive rapidity incoming particle (labelled as (1)) has a parton

density consisting only of down quarks, while the negative rapidity particle (labelled as

(2)) has a parton density consisting only of photons, distributed as

f (1)
d (x) = f (2)

� (x) =
(1� x)3

x
. (4.1)

This totally arbitrary choice is only dictated by simplicity, and is adequate for our purposes.

We compute the cross section for the production of a stable vector boson Z of mass MZ =

91.188GeV, that is only vectorially coupled. The Z and � couplings are both given by

g2Z/� = 4⇡, and the down quark is taken to have charge �1/3.4 The Born diagrams have

been computed supplying the correct colour factor (that is 1), and in the calculation of the

virtual and real corrections we have included the appropriate QCD colour factor CF . We

have chosen the factorization scale µF = MZ . The renormalization scale choice does not

a↵ect T (�).

To begin with, we show in fig. 9 the result for the T (�) function defined in eq. (2.16),

associated to the cross section for the production of a Z boson with a transverse momentum

larger than 20GeV (fig. 9 on the left) and 40GeV (fig. 9 on the right) as a function of the

gluon mass �. In order to extract the slope around � = 0, which is responsible for linear

renormalons (see eq. (2.26)), we fit T (�) using the function

f(�) = a

"
1 + b

✓
�

pcT

◆
+ c

✓
�

pcT

◆2

log2
✓

�

pcT

◆
+ d

✓
�

pcT

◆2

log

✓
�

pcT

◆#
, (4.2)

where the inclusion of the single and double logarithmic terms are motivated by the findings

in the Drell-Yan case [22, 23]. We neglected the point for � = 5 GeV in our fitting

procedure, in order to increase the quality of the fit near � = 0. We performed two

fits, one including b as fit parameter, and the other fixing it to 0, in order to assess its

impact on T (�). In Tab. 1 we report the results of the fits. We observe that the linear

4The actual values of the couplings are irrelevant for our conclusions, and are only presented to give a

well-defined meaning to our numerical results.

– 16 –

[Ferrario Ravasio, Limatola, Nason (2020)]: Numerical study based on renormalon calculus

Fit consistent with b=0 → no linear power corrections

Compute Z pt with massive 
gluons, and extrapolate to 

mg → 0
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the real and virtual contributions of the collinear subtraction, we implemented a

local cancellation of the associated soft divergence by making use of relation (2.25).

• The contribution from region 1, for either � = 0 or � 6= 0, is also implemented in the

POWHEG BOX. In this case the only singular region present is the one associated with

the collinear splitting of the initial state photon into a dd̄ pair. The underlying Born

for this singularity is given by the dd̄ ! Zg process, where the gluon has mass �,

di↵erent from the case of regions 2 and 3. The collinear singularity is treated in the

MS scheme in this case, and the collinear remnant is automatically provided by the

POWHEG BOX.

4 Results

As our benchmark set-up, we have taken two colliding particles with center-of-mass (CM)

energy of 300 GeV. The positive rapidity incoming particle (labelled as (1)) has a parton

density consisting only of down quarks, while the negative rapidity particle (labelled as

(2)) has a parton density consisting only of photons, distributed as

f (1)
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(1� x)3
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This totally arbitrary choice is only dictated by simplicity, and is adequate for our purposes.

We compute the cross section for the production of a stable vector boson Z of mass MZ =

91.188GeV, that is only vectorially coupled. The Z and � couplings are both given by

g2Z/� = 4⇡, and the down quark is taken to have charge �1/3.4 The Born diagrams have

been computed supplying the correct colour factor (that is 1), and in the calculation of the

virtual and real corrections we have included the appropriate QCD colour factor CF . We

have chosen the factorization scale µF = MZ . The renormalization scale choice does not

a↵ect T (�).

To begin with, we show in fig. 9 the result for the T (�) function defined in eq. (2.16),

associated to the cross section for the production of a Z boson with a transverse momentum
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where the inclusion of the single and double logarithmic terms are motivated by the findings

in the Drell-Yan case [22, 23]. We neglected the point for � = 5 GeV in our fitting

procedure, in order to increase the quality of the fit near � = 0. We performed two

fits, one including b as fit parameter, and the other fixing it to 0, in order to assess its

impact on T (�). In Tab. 1 we report the results of the fits. We observe that the linear

4The actual values of the couplings are irrelevant for our conclusions, and are only presented to give a

well-defined meaning to our numerical results.
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[Ferrario Ravasio, Limatola, Nason (2020)]: Numerical study based on renormalon calculus

Fit consistent with b=0 → no linear power corrections

Compute Z pt with massive 
gluons, and extrapolate to 

mg → 0

Very recently: towards a theoretical understanding. 

``No linear power corrections for observables 
inclusive w.r.t. QCD radiation’’ 

Towards strong foundations for the precision 
program

[FC, Ferrario Ravasio, Limatola, Melnikov, Nason (2021)]



Conclusions and outlook
•Progress in precision QCD phenomenology keeps proceeding at a 

remarkable pace 
✤ N3LO, complex NNLO, QCD-EW, EW… 
✤ More and more elaborate resummations 
✤ Parton shower… 
✤ Computational tools (→ ingredients for N3LL resummation) 
✤ SM/BSM interplay: EFTs…  
✤ ML to extract the most from data

•This is necessary but not sufficient for physics at the few percent. Many 
unexpected issues that keep popping up

•A better understanding of NP corrections may be required

•Future ahead: not only computations. Very interesting analysis, from 
hardcore pheno to subtle QFT…



Precision physics at the LHC and beyond
With the Higgs, the Standard Model may be a complete theory. What is the 
point of looking at the next decimal digit?

``physics is complete, all we need to do is to 
measure some known quantities to a great 
degree of precision’’

5 years later: special relativity.  
Less than 30 years later: quantum mechanics, general relativity

Lord Kelvin, ca 1900 



Thank you very much for your attention!
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