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Overview

Lecture 1: Flavour in the SM

I Flavour in the SM

I Quark Model History

I The CKM matrix

Lecture 2: Mixing and CP violation (Today)

I Neutral Meson Mixing (no CPV)

I B-meson production and experiments

I CP violation

Lecture 3: Measuring the CKM parameters

I Measuring CKM elements and phases

I Global CKM fits

I CPT and T -reversal

I Dipole moments

Lecture 4: Flavour Changing Neutral Currents

I Effective Theories

I New Physics in B mixing

I New Physics in rare b→ s processes

I Lepton Flavour Violation
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1. Recap
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Recap

I Last time we introduced the role of flavour in the SM

I We saw how measurements of meson decays led to the predictions and subsequent

discoveries of strange, charm, beauty and top decays

I We saw how various meson and baryon states are built out of the consitituent quarks

I We introduced the CKM matrix (much more on that in the next two lectures)

Discuss any points from the problem sheets

1. Can you explain the 2:1 ratio:

σ(p+ p→ d+ π+) : σ(p+ n→ d+ π0) = 2 : 1?

2. What do the spin-1 and spin-3/2 multiplets look like?
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Higher resonance multiplets
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Let’s talk about these states, their decays and how we detect them

M. Kenzie 5 / 51



Recap

I Recall the CKM matrix which governs quark weak transitions

CKM exhibits a clear hierarchy

V =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 ∼
 1 0.2 0.004

0.2 1 0.04

0.008 0.04 1


experimentally

determined values

Commonly represented in the Wolfenstein parametrisation

V =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


4 O(1) real parameters (A, λ, ρ, η)

+O(λ4)
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Recap

I Wolfenstein parameterisation ensures that

ρ̄+ iη̄ = −(VudV
∗
ub)/(VcdV

∗
cb) (1)

is phase convention independent and CKM matrix written in (A, λ, ρ̄, η̄) is unitary to

all orders in λ

ρ̄ = ρ(1− λ2/2 + . . . ) and η̄ = η(1− λ2/2 + . . . ) (2)

I The amount of CP violation in the SM is equivalent to asking

→ how big is η relative to ρ?
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Checkpoint Reached

2. Weak decays of heavy hadrons
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The free c- and b-quark decays

The heavy hadrons (b and c) decay via the charged weak interaction

free b-quark tree-level decay [i]

2.2 Weak decays of heavy quarks

All these hadrons decay via the charged weak interaction. The dominant
processes are the following tree-level decays:

• free b-quark tree-level decay:

b→
{

c
u

+ W − →
{

c
u

+





ū + d
c̄ + s
ū + s
c̄ + d
e− + ν̄e

µ− + ν̄µ

τ− + ν̄τ

• free c-quark tree-level decay:

c→
{

s
d

+ W+ →
{

s
d

+





d̄ + u
d̄ + s
e+ + νe

µ+ + νµ
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[i]Figures stolen from A. Lenz
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The free c- and b-quark decays

I Final state quarks lead to sizeable QCD-corrections (gluon lines in Feynman diagrams)

trigged by quark transition with W± exchange

I The basic vertex is

W+ : i
g

2
√

2
γµ(1− γ5)Vxy and W− : i

g

2
√

2
γµ(1− γ5)V ∗xy (3)

I The couplings, Vxy, are the CKM elements which as we have seen are hierarchical

(decays between generations are suppressed)

I There is no tree level flavour changing neutral current (FCNC) - can only happen

at loop level

I These loop level processes are called “penguin” decays (we’ll see more later) and if

the tree-level process is heavily CKM suppressed they can be dominant

I In principle it is relatively straightforward for theorists to make predictions for

“inclusive” decays considering only the bare quarks, e.g.b →ccs
I For experimentalists it is much easier to measure “exclusive” modes in which every

final state hadron is identified, e.g.B0 →D+D−

HOMEWORK: Can you think about why? What are the theory / experiment trade-offs?
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Weak decays of heavy hadrons

I In reality we don’t see free quarks

I Meson decays are more (theoretically) complicated because of the (non-perturbative)

strong interactions [ii]

I If we classify some common weak heavy hadron decays we can see what the
phenomenological implications are
I Leptonic decays
I Semileptonic decays
I Hadronic decays

[ii]It is non-perturbative because the exchange of one gluon is as important (as large) as the exchange of many
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Leptonic Decays

I Only leptons in the final states

I Initial state is a hadron bound with gluons

To get a feeling for the arising branching fractions we list the theory value
[22] for b→ c c̄ s, with some measured [9] exclusive branching ratios.

Br(b→ cc̄s) = (23 ± 2)% , (5)

Br(D∗− D∗+
s ) = (1.77 ± 0.14)% , (6)

Br(D∗− D+
s ) = (8.0 ± 1.1) · 10−3 , (7)

Br(D− D∗+
s ) = (7.4 ± 1.6) · 10−3 , (8)

Br(D− D+
s ) = (7.2 ± 0.8) · 10−3 , (9)

Br(J/Ψ KS) = (8.73 ± 0.32) · 10−4 . (10)

Here one can already guess that quite some number of exclusive decay chan-
nels has to be summed up in order to obtain the inclusive branching ratio.
We will find later that the free quark decay can be a very good approxi-
mation for inclusive hadron decays, if the decaying quark is heavy enough.
This can be shown within the framework of the Heavy Quark Expansion
(HQE), see, e.g., [24] for a review and references therein. For the b-hadrons
this approximation works quite well; it is currently discussed whether it also
works for c-hadrons.

2.3.2 Leptonic decays

Leptonic decays have only leptons in the final state, e.g. the tree-level decay
B− → τ− ν̄τ .

Such decays have the simplest hadronic structure. Gluons bind the quark of
the initial state into a hadron. All non-perturbative effects are described by
a decay constant, fB− , which is defined for general B mesons as

〈0|b̄γµγ5u|Bq(p)〉 = ifBqp
µ , (11)

19

I Non-perturbative effects described by a decay constant, fB , where

ifBqp
µ = 〈0|bγµγ5u|Bq(p)〉 (4)

I Lattice QCD can make very precise predictions of leptonic decay constants
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Semileptonic Decays

I Leptons and hadrons in the final state (gluon lines in initial and final state)

where b and u are the spinors of the bottom and up quark and pµ is the
Bq-meson four-momentum. Decay constants can nowadays be precisely de-
termined by lattice QCD simulations. Leptonic decays can also proceed via
loop-level in the SM, an example is the decay Bs → µ+µ−.

2.3.3 Semi-leptonic decays

Semi-leptonic decays have leptons and hadrons in the final state, e.g. B− →
D0 e− ν̄e.

Now the hadronic structure is more complicated. We have the binding of
hadrons in the initial state and in the final states. Moreover there is the
possibility of having strong interactions between the initial and final states.
The non-perturbative physics is in this case described by form factors
fB−→D0

+ (q2) and fB−→D0

0 (q2) that depend on the momemntum transfer q2.
They are defined as

〈D0(pD)|c̄γµb|B−(pB)〉 = fB−→D0

+ (q2)

(
pµ

B + pµ
D −

m2
B −m2

D

q2
qµ

)

+fB−→D0

0 (q2)
m2

B −m2
D

q2
. (12)

20

I Non-perturbative effects described by

form factors, f+(q2) and f0(q2) which

depend on the momentum transfer, q2

I Predictions can be made by either QCD

sum rules or Lattice QCD (but

generally in different domains of q2 and

not always in agreement)

[iii]

〈D0(pD)|cγµγ5b|B−(pB)〉 = f+(q2)

(
pµB + pµD −

m2
B −m2

D

q2
qµ
)

+ f0(q2)
m2
B −m2

D

q2
(5)

[iii]The description becomes more complex when there are > 0-spin final states
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Hadronic (non-leptonic) Decays

I Only hadrons in the final state (gluon lines in initial and final state)

Form factors can be determined by sum rules or Lattice QCD calculations.
There are again semi-leptonic decays than can only appear on the loop-level
in the SM, e.g. B → K∗µ+µ−.

2.3.4 Non-leptonic decays

Non-leptonic decays have only hadrons in the final state, e.g. B− → D0 π−.

These are the most complicated decays and they can only be treated by
making additional assumptions that allow then for a factorisation, e.g.

〈D0π−|c̄γµ(1− γ5)b · ūγµ(1− γ5)d|B−〉
≈ 〈D0|c̄γµ(1− γ5)b|B−〉 · 〈π−|ūγµ(1− γ5)d|0〉

≈ fB−→D0

(q2) · fπ . (13)

Later on, when investigating these decays in more theoretical detail, we will
see, when the factorisation assumption is justified and when not. Moreover
we will find that besides decay constants and form factors, also new non-
perturbative objects, called distribution amplitudes will arise.

21

I Can only be treated with additional

assumptions that allow for a

factorisation (a decay constant fπ and

a form factor, f(q2) )

I Sometimes the factorisation assumption

works, sometimes not (depends on

mass)

I New non-perturbative objects arise

called distribution amplitudes

〈D0π−|cγµ(1− γ5)b · uγmu(1− γ5)d|B−〉

≈ 〈D0|cγµ(1− γ5)b|B−〉 · 〈π−|uγµ(1− γ5)d|0〉

≈ fB→D(q2) · fπ (6)
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3. Neutral Meson Mixing (no CPV)
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Neutral Meson Mixing

I In 1987 the ARGUS experiment coherently produced B0 −B0 pairs and observed

them decaying to same sign leptons [1]

I How is this possible?
I Semileptonic decays “tag” the flavour of the initial state
I i.e. the charge of the lepton (and hadrons from the D±) tag the flavour of the b-quark

in the B0

𝑑̅

𝑑̅

𝑏

𝑐

𝜇!

𝜈̅"'𝑏

̅𝑐
𝑑

𝑑

𝜇#

𝜈"

𝐵!

𝐷" 𝐷#

#𝐵!

T. Blake

Observation of B “mixing”
• The ARGUS experiment observed that 

pair of              mesons could decay to a 
final-state with like-sign leptons. 

• How is this possible? 

13

Observation of B0-B0 mixing

● Same sign leptons

⇒ same flavour B mesons

● Mixing probability is large

⇒ top quark is heavy

● Mixing probability

r = 0.21 ± 0.08

● PDG 2006: 

“r” (χ
d
) = 0.188 ± 0.003

● From 103/pb of data

ARGUS experiment (1987)

B0B0

I The only explanation is that B0–B0 can oscillate

I Rate of mixing is large → top quark must be heavy
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Neutral Meson Mixing

I In the SM occurs via box diagrams involving a charged current (W±) interaction

I Weak eigenstates are not the same as the physical mass eigenstates
I The particle and antiparticle flavour states (via CPT theorem) have equal and opposite

charge, identical mass and identical lifetimes
I But the mixed states (i.e. the physical B0

L and B0
H) can have ∆m,∆Γ 6= 0

�
B0 B0

u, c, t

W± W±

u, c, t

d b

b d

�
B0 B0

W−

u, c, t

W+

u, c, t

d b

b d

I In the SM we have four possible neutral meson states
I K0, D0, B0, B0

s (mixing has been observed in all four)
I Although they all have rather different properties (as we will see in a second)
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Coupled meson systems

I A single particle system evolves according to the time-dependent Schrödinger equation

i
∂

∂t
|X(t)〉 = H|X(t)〉 =

(
M − iΓ

2

)
|X(t)〉 (7)

I For neutral mesons, mixing leads to a coupled system

i
∂

∂t

(
|B0〉
|B0〉

)
= H

(
|B0〉
|B0〉

)
=

(
M − iΓ

2

)(
|B0〉
|B0〉

)
(8)

=

(
M11 − iΓ11/2 M12 − iΓ12/2

M21 − iΓ21/2 M22 − iΓ22/2

)(
|B0〉
|B0〉

)
(9)

I The off-diagonal terms arise because of mixing
I Flavour eigenstates are not mass eigenstates

I Not all the parameters are independent

M11 = M22 and Γ11 = Γ22 (CPT invariance)

M21 = M∗21 and Γ21 = Γ∗12 (Hermicity) (10)
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Coupled meson system

I To obtain the mass states we diagonalise the matrix

I To start with we will neglect CP -violation in mixing (approximately the case for all

four neutral meson species)

I Neglecting CP -violation, the physical states are an equal mixture of the flavour states

|B0
L〉 =

|B0〉+ |B0〉
2

, |B0
H〉 =

|B0〉 − |B0〉
2

with mass and width differences

∆Γ = ΓH − ΓL = 2|Γ12|, ∆M = MH −ML = 2|M12|

so that the physical system evolves as

i
∂

∂t

(
|B0
L〉

|B0
H〉

)
= H

(
|B0
L〉

|B0
H〉

)
=

(
M − iΓ

2

)(
|B0
L〉

|B0
H〉

)
(11)

=

(
ML − iΓL/2 0

0 MH − iΓH/2

)(
|B0
L〉

|B0
H〉

)
(12)
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Time evolution

I The time evolution of the mass eigenstates (either |B0
H〉 or |B0

L〉 at t = 0) is trivial

|B0
H,L(t)〉 = e−iMH,Le−iΓH,L |B0

H,L〉 (13)

I Time evolution of the flavour eigenstates comes from solving the Schrödinger

equation, Eq. 7 (a useful homework exercise)

I For a pure flavour state |B0〉 or |B0〉 at time t = 0

|B0(t)〉 = g+(t)|B0〉+ g−(t)|B0〉

|B0(t)〉 = g+(t)|B0〉+ g−(t)|B0〉 (14)

where

g+(t) = e−iMte−Γt/2

[
cosh

(
∆Γt

4

)
cos

(
∆mt

2

)
− i sinh

(
∆Γt

4

)
sin

(
∆mt

2

)]
g−(t) = e−iMte−Γt/2

[
− sinh

(
∆Γt

4

)
cos

(
∆mt

2

)
+ i cosh

(
∆Γt

4

)
sin

(
∆mt

2

)]
(15)

and M = (ML +MH)/2 and Γ = (ΓL + ΓH)/2

I We will see these equations again when we discuss CP -violation in mixing
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Time evolution

I Using Eq. (15) flavour remains unchanged (+) or will oscillate (−) with probability

|g±(t)|2 =
e−Γt

2

[
cosh

(
∆Γt

2

)
± cos(∆mt)

]
(16)

I With no CP violation in the mixing, the time-integrated mixing probability is∫
|g−(t)|2dt∫

|g−(t)|2dt+
∫
|g+(t)|2dt

=
x2 + y2

2(x2 + 1)
(17)

where

x =
∆m

Γ
and y =

∆Γ

2Γ
(18)

I The four different neutral meson species which mix have very different values of (x, y)

and therefore very different looking time evolution properties
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Neutral Meson Mixing

|g±(t)|2 =
e−Γt

2

[
cosh

(
∆Γt

2

)
± cos(∆mt)

]
(19)
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Neutral Meson Mixing

I Mass and width differences of the neutral meson mixing systems
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Neutral Meson Mixing

I Very nice demonstration of the B0
s oscillation from the LHCb experiment [2]

I Seen in B0
s →D−s π+ decays

I Tag the flavour of the initial state at production and compare to the flavour at decay

(the D−s π
+ final state tags the decaying flavour)

I HOMEWORK: Why is this so different from the plot on the previous slide (damped

oscillation and turn on at low values)?

2 4 6 8
𝑡 [ps]

0

1000

2000

D
ec

ay
s

/
(0

.0
4

ps
)
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[arXiv:2104.04421]
M. Kenzie 24 / 51

http://arxiv.org/abs/2104.04421


Checkpoint Reached

4. B-meson production and experiments

M. Kenzie 25 / 51



B-factories at the Υ(4S)

I Asymmetric e+e− colliders

I Produce excited Υ(4S) resonance (10.58 GeV) which decays strongly and produces a
coherent pair of B0B0 (50%) or B+B− pair (50%) moving in the lab frame
I BaBar produced ∼ 500M BB pairs in ∼ 530 fb−1 of data from 9 GeV and 3.1 GeV

beams at SLAC [3]
I Belle produced ∼ 770M BB pairs in ∼ 710 fb−1 of data from 8 GeV and 3.5 GeV

beams at KEK [4]
I Belle-II expected to produce up to ∼ 50B BB pairs in ∼ 50 ab−1 of data [5]

I Very clean environments but notice that the B0
s is not in range of the Υ(4S)

resonance. This requires specific running at the Υ(5S).
I In comparison to LHCb, BB pairs are not produced at high boost which makes

resolution of B0
s oscillations impossible at B-factories

I Because B mesons are produced in pairs from a known resonance you get very high

flavour tagging power and very good resolution for missing energy (i.e. final state

neutrals)

I For Belle-II to acheieve desired luminosity requires incredible squeezing of the beam

(target is 8× 1035cm−2s−1 which is 40 × Belle)
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Belle-II Experiment
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B-production at the LHC

I The LHC is predominantly a gluon collider

I b-quarks are produced in pairs and
predominantly in the forward region with a
very large boost
I Hence the very forward geometry of LHCb

I The very large boost and very high quality
vertexing makes decay time measurements
much easier
I Can resolve the very rapid B0

s oscillations

T. Blake

b-production at the LHC
• LHC is predominantly a 

gluon collider.  

• b-quarks produced in the 
forward direction with large 
boost → forward geometry 
of LHCb. 

• Large boost and excellent 
vertexing makes decay time 
measurements much easier 
at the LHC → can resolve 
the fast Bs oscillations. 

24

b

b

b

b

b

b

b

b

b

b

b

b
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The LHCb detector

IP resolution
⇡ 200µm

⌧ resolution
⇡ 45 fs

Particle ID: ✏(K) ⇡ 95%
Mis-ID: p(⇡ ! K) ⇡ 5%

p resolution
⇡ 0.5%
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The LHCb upgrades

Ru
n 

1

Ru
n 

2

Ru
n 

3

Ru
n 

4

Ru
n 

5

• x10 luminosity

Current LHCb Upgrade Ia Upgrade Ib Upgrade II

Belle II

• x5 luminosity
• x2 remove 

hardware trigger

LHC HL-LHC

2010 2015 2020 2025 2030 2035

I COVID has pushed back future schedule by one year and extended Run 3 by one year
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Flavour Tagging at the LHC

PV

SV

u� → u�
u� → u�u�−

SV

u� → u�

same side

opposite side

u�

u�

u�/u�

u�∗0

u�

u�u�
u�+

u�

u�−

u�+

u�0

ℎu�

SS pion

SS proton

SS kaon (for 𝘉0
𝘴 )

OS muon

OS electron

OS kaon

OS vertex charge

OS Charm
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Dalitz plot formalism

I For a nice overview of this, take a look at Sec. 2 of [arXiv:1711.09854] [6]

I Provides a nice method and visualisation of 3-body decays, e.g. B → XY Z

I The n-body decay rate is

dΓ =
(2π)4

2M
|M|2dφ(p1, p2, . . . , pn) (20)

I So for a 3-body decay

dΓ =
1

(2π)3

1

32M3
|M|

2
dm2

12dm
2
23 (21)

I Note how 3-body phase-space is flat in the Dalitz plot

I Resonances appear as bands in the Dalitz plot where The number of “lobes” in the
Dalitz plot is related to the particle spin
I Spin-0 “scalar” contributions have 1 lobe
I Spin-1 “vector” contributions have 2 lobes
I Spin-2 “tensor” contributions have 3 lobes
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Dalitz plot formalism

I Example shown for a B0 →D0K−π+ decay
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Checkpoint Reached

5. CP violation

M. Kenzie 34 / 51



Measuring CP violation

1. Need at least two interfering amplitudes

2. Need two phase differences between them
I One CP conserving (“strong”) phase difference (δ)
I One CP violating (“weak”) phase difference (φ)

I If there is only a single path to a final state, f , then we cannot get direct CP violation

I If there is only one path we can write the amplitudes for decay as

A(B → f) = A1e
i(δ1+φ1)

A(B̄ → f̄) = A1e
i(δ1−φ1)

I Which gives an asymmetry of

ACP =
|A(B → f)|2 − |A(B → f)|2

|A(B → f)|2 + |A(B → f)|2
= 0 (22)

I In order to observe CP -violation we need a second amplitude.

I This is often realised by having interefering tree and penguin amplitudes
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Measuring CP -violation

I We measure quark couplings which have a complex phase

I This is only visible when there are two amplitudes

CKM matrix
• Up-type to down-type (or vice-versa) transition probability 

governed by the elements of the CKM matrix

05/07/2017 16

Marseille, March 2015 T.M. Karbach / CERN / LHCb 12

CP Violation in the SM: CKM matrix

Cabibbo
Kobayashi
Maskawa

mass 
eigenstates

flavor
eigenstates

matrix elements determine transition probabilities:

Marseille, March 2015 T.M. Karbach / CERN / LHCb 12

CP Violation in the SM: CKM matrix

Cabibbo
Kobayashi
Maskawa

mass 
eigenstates

flavor
eigenstates

matrix elements determine transition probabilities:

gp
2
ūLiVij�µWµ+dLj

VCKM =

0
@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1
A

We will return to the CKM matrix later!

𝑒!" 𝑒#!"

matter anti-matter

I Below we represent two amplitudes (red and blue) with the same magnitude = 1
I The strong phase difference is, δ = π/2
I The weak phase difference is, φ = π/4

𝛿 + 𝜙

si
n
𝛿
+
𝜙

1 − cos 𝛿 + 𝜙

𝛿 − 𝜙 si
n
𝛿
−
𝜙

1 + cos 𝛿 + 𝜙

Γ(B → f) = |A1 +A2e
i(δ+φ)|2 Γ(B̄ → f̄) = |A1 +A2e

i(δ−φ)|2
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Measuring (direct) CP -violation

I Introducing the second amplitude we now have

A(B → f) = A1e
i(δ1+φ1) +A2e

i(δ2+φ2) (23)

A(B̄ → f̄) = A1e
i(δ1−φ1) +A2e

i(δ2−φ2) (24)

I Which gives an asymmetry of

ACP =
|A(B → f)|2 − |A(B → f)|2

|A(B → f)|2 + |A(B → f)|2
(25)

=
4A1A2 sin(δ1 − δ2) sin(φ1 − φ2)

2A2
1 + 2A2

2 + 4A1A2 cos(δ1 − δ2) cos(φ1 − φ2)
(26)

=
2r sin(δ) sin(φ)

1 + r2 + 2r cos(δ) cos(φ)
(27)

where r = A1/A2, δ = δ1 − δ2 and φ = φ1 − φ2

I This is only non-zero if the amplitudes have different weak and strong phases
I This is CP -violation in decay (often called “direct” CP violation).

I This is the only possible route of CP violation for a charged initial state
I For a neutral initial state there are also other ways of realising CP violation
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Neutral meson mixing with CP violation

I Let’s extend our formalism of neutral mixing, Eqs. (14–18), to include CP violation

I Allowing for CP violation, M12 6= M∗12 and Γ12 6= Γ∗12

I The physical states can now be unequal mixtures of the weak states

|B0
L〉 = p|B0〉+ q|B0〉

|B0
H〉 = p|B0〉 − q|B0〉 (28)

where
|p|2 + |q|2 = 1

I The states now have mass and width differences

|∆M | ≈ 2|M12|, |∆Γ| ≈ 2|Γ12| cos(φ), φ = arg(−M12/Γ12) (29)

I The g±(t), Eq. (15), are as before but the probabilities to remain / change flavour are

Remain:
|〈B0|B0(t)〉|2 = |g+(t)|2

|〈B0|B0(t)〉|2 = |g+(t)|2
(30)

Change:
|〈B0|B0(t)〉|2 =

∣∣∣ qp ∣∣∣2 |g−(t)|2

|〈B0|B0(t)〉|2 =
∣∣∣ pq ∣∣∣2 |g−(t)|2

(31)
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Classification of CP violation

I In addition to CPV in decay and CPV in mixing we must now also consider CPV in

the interference between mixing and decay

I First let’s consider a generalised form of a neutral meson, X0, decaying to a final

state, f

I There are four possible amplitudes to consider

Af = A(X0 → f) = 〈f |X0〉 Āf = A(X̄0 → f) = 〈f |X̄0〉

Af̄ = A(X0 → f̄) = 〈f̄ |X0〉 Āf̄ = A(X̄0 → f̄) = 〈f̄ |X̄0〉

I Define a complex parameter, λf (not the Wolfenstein parameter, λ) which

encapsulates CPV in the whole process

λf =
q

p

Āf
Af

, λ̄f =
1

λf
, λf̄ =

q

p

Āf̄
Af̄

, λ̄f̄ =
1

λf̄
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Generalised Meson Decay Formalism

The time-dependent decay rate, ΓX0→f (t) = |〈f |X0(t)〉|2

I contains terms for CPV in decay, mixing and the interference between the two

ΓX0→f (t) = |Af |2
(
|g+(t)|2 + |λf |2 |g−(t)|2 + 2Re [λfg

∗
+(t)g−(t)]

)
(32)

ΓX0→f̄ (t) = |Āf̄ |
2

∣∣∣∣ qp
∣∣∣∣2 ( |g−(t)|2 + |λ̄f̄ |

2 |g+(t)|2 + 2Re
[
λ̄f̄g+(t)g∗−(t)

] )
(33)

Γ
X

0→f (t) = |Af |2
∣∣∣∣pq
∣∣∣∣2 ( |g−(t)|2 + |λf |2 |g+(t)|2 + 2Re [λfg+(t)g∗−(t)]

)
(34)

Γ
X

0→f̄ (t) = |Āf̄ |
2

(
|g+(t)|2 + |λ̄f̄ |

2 |g−(t)|2 + 2Re
[
λ̄f̄g

∗
+(t)g−(t)

] )
(35)

where the mixing probabilities are as before

|g±(t)|2 =
e−Γt

2

[
cosh

(
∆Γt

2

)
± cos(∆mt)

]
(36)

g∗+g− =
e−Γt

2

[
sinh

(
∆Γt

2

)
+ i sin(∆mt)

]
(37)

g+g
∗
− =

e−Γt

2

[
sinh

(
∆Γt

2

)
− i sin(∆mt)

]
(38)
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Generalised Meson Decay Formalism

The “master equations” for neutral meson decays

ΓX0→f (t) = |Af |2 (1 + |λf |2)
e−Γt

2

[
cosh( 1

2
∆Γt) + Cf cos(∆mt)

+Df sinh( 1
2
∆Γt)− Sf sin(∆mt)

]
(39)

Γ
X

0→f (t) = |Af |2
∣∣∣∣pq
∣∣∣∣2(1 + |λf |2)

e−Γt

2

[
cosh( 1

2
∆Γt)− Cf cos(∆mt)

+Df sinh( 1
2
∆Γt) + Sf sin(∆mt)

]
(40)

ΓX0→f̄ (t) = |Āf̄ |
2

∣∣∣∣ qp
∣∣∣∣2(1 + |λ̄f̄ |

2)
e−Γt

2

[
cosh( 1

2
∆Γt)− Cf̄ cos(∆mt)

+Df̄ sinh( 1
2
∆Γt) + Sf̄ sin(∆mt)

]
(41)

Γ
X

0→f̄ (t) = |Āf̄ |
2 (1 + |λ̄f̄ |

2)
e−Γt

2

[
cosh( 1

2
∆Γt) + Cf̄ cos(∆mt)

+Df̄ sinh( 1
2
∆Γt)− Sf̄ sin(∆mt)

]
(42)

where
Cf =

1− |λf |2

1 + |λf |2
, Df =

2Re(λf )

1 + |λf |2
, Sf =

2Im(λf )

1 + |λf |2
(43)
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Classification of CP violation

Can realise CP violation in three ways:

1. CP violation in decay
I For a charged initial state this is only the type possible

Γ(X0 → f) 6= Γ(X̄0 → f̄) =⇒
∣∣∣∣ Āf̄Af

∣∣∣∣ 6= 1 (44)

2. CP violation in mixing

Γ(X0 → X̄0) 6= Γ(X̄0 → X0) =⇒
∣∣∣∣pq
∣∣∣∣ 6= 1 (45)

3. CP violation in the interference between mixing and decay

Γ([X0 → f ] + [X0 → X̄0 → f ])

6=
Γ([X̄0 → f̄ ] + [X̄0 → X0 → f̄ ])

=⇒ arg(λf ) = arg

(
q

p

Āf
Af

)
6= 0 (46)
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Time-dependent CP asymmetries

I If CPV in mixing is very small which is the case for the D0, B0 and B0
s systems

I Then the time-dependent CP asymmetry is

ACP (t) =
ΓX0→f (t)− Γ

X
0→f (t)

ΓX0→f (t) + Γ
X

0→f (t)
=

2Cf cos(∆mt)− 2Sf sin(∆mt)

2 cosh( 1
2
∆Γt) + 2Df sinh( 1

2
∆Γt)

(47)

I Often we exploit final states which are themselves CP -even eigenstates, i.e. f = f̄

(e.g. B0
s → J/ψφ and B0 → J/ψK0

S)

I In these cases there is one CP asymmetry (the one above), otherwise there are two

I The CP asymmetry simplifies if the transition is dominated by only one amplitude

(like B0
s → J/ψφ and B0 → J/ψK0

S)

ACP (t) =
−=(λf ) sin(∆mt)

cosh( 1
2
∆Γt) + <(λf ) sinh( 1

2
∆Γt)

(48)

I Note that CPV can still occur even if both |q/p| = 1 and |A(f)| = |Āf |, i.e. when

=(λf ) 6= 0
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Specific Meson Formalism

I In the B0 system ∆Γ ∼ 0

ΓX0→f (t) = |Af |2 (1 + |λf |2)
e−iΓt

2

[
��

���
�:1

cosh( 1
2
∆Γt) + Cf cos(∆mt)

+
��

���
��:0

Df sinh( 1
2
∆Γt)− Sf sin(∆mt)

]
(49)

Γ
X

0→f (t) = |Af |2
∣∣∣∣pq
∣∣∣∣(1 + |λf |2)

e−iΓt

2

[
���

���:
1

cosh( 1
2
∆Γt)− Cf cos(∆mt)

+
���

���
�:0

Df sinh( 1
2
∆Γt) + Sf sin(∆mt)

]
(50)

I The time-dependent CP asymmetry is

ACP (t) =
ΓX0→f (t)− Γ

X
0→f (t)

ΓX0→f (t) + Γ
X

0→f (t)
= Cf cos(∆mt)− Sf sin(∆mt) (51)
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Specific Meson Formalism

I In the D0 system ∆m and ∆Γ are both small

ΓX0→f (t) = |Af |2 (1 + |λf |2)
e−iΓt

2

[
1 + Cf

+Df
1
2
∆Γt − Sf∆mt

]
(52)

Γ
X

0→f (t) = |Af |2
∣∣∣∣pq
∣∣∣∣(1 + |λf |2)

e−iΓt

2

[
1 − Cf

+Df
1
2
∆Γt + Sf∆mt

]
(53)

I The time-dependent CP asymmetry is

ACP (t) =
ΓX0→f (t)− Γ

X
0→f (t)

ΓX0→f (t) + Γ
X

0→f (t)
=

Cf − Sf∆mt

1 + 1
2
Df∆Γt

(54)
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Specific Meson Decay Formalism

I With no tagging of flavour and no CPV in mixing we see no asymmetry (just get the

sum)

ΓX0→f (t) = |Af |2(1 + |λf |2)
e−iΓt

2

[
cosh( 1

2
∆Γt)

+Df sinh( 1
2
∆Γt)

]
(55)

Γ
X

0→f (t) = |Af |2(1 + |λf |2)
e−iΓt

2

[
cosh( 1

2
∆Γt)

+Df sinh( 1
2
∆Γt)

]
(56)

I The time-dependent CP asymmetry is

ACP (t) =
ΓX0→f (t)− Γ

X
0→f (t)

ΓX0→f (t) + Γ
X

0→f (t)
= 0 (57)
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CP violation status

K0 K+ Λ0 D0 D+ D+
s Λ+

c B0 B+ B0
s Λ0

b

CP violation in mixing 33 - - 7 - - - 7 - 7 -

CP violation in interference 3 - - 7 - - - 33 - 33 -

CP violation in decay 3 7 7 33 7 7 7 33 33 3 3

KEY:
33 Strong evidence (> 5σ)

3 Some evidence (> 3σ)

7 Not seen

- Not possible
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Checkpoint Reached

6. Recap
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Recap

In this lecture we have covered

I Neutral Meson Mixing (without CPV)
I Time evolution of coupled systems
I Differences in mixing parameters between neutral meson states

I B-meson production and experiments / techniques
I B-factories and Belle 2
I LHCb
I Flavour Tagging
I Dalitz analysis

I CP violation
I CP violation types
I The “master” equations for generalised meson decays
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Checkpoint Reached

End of Lecture 2
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