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Accelerators - A Window on Nature

 Particle accelerators provide the source for most high 
energy physics experiments

 Provide high luminosity, high energy beams for colliders
 Provide high brightness beams for secondary particle 

production
 Also key technology for life sciences, engineering, chemistry

 How do they work?
 How can we get to high energy?
 How can we keep the beam in the accelerator?
 How can we get to high luminosity?

 What are the main HEP facilities in the world today?
 What might HEP facilities look like in the future?



  3

Accelerator Components

 Most accelerators share similar components
 Main components of an accelerator

 Bending – dipoles
 Focussing – quadrupoles
 Acceleration - RF cavities

 Also
 Vacuum
 Diagnostics
 Targets for secondary particle production

 First Lecture: Derive basic theory of accelerator physics
 Second Lecture: Discuss accelerator equipment and 

techniques
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Lorentz force law

 Fundamental equation for particles moving through fields 

F⃗=q v⃗×B⃗+q E⃗

Force Charge Velocity
Magnetic
Field

Electric
Field

 Magnetic force is perpendicular to velocity
 Magnetic field conserves energy

 Electric force is weaker by factor velocity
 Magnets are better for bending and focussing

(eq. 1)
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Magnetic Rigidity and Bending

 Simplest magnet - “dipole”
 Uniform magnetic field perpendicular to beam direction

v⃗
F⃗

B⃗

 Constant force → constant curvature → circular motion
 Magnetic rigidity parameterises momentum
 Charge-to-mass ratio important when accelerating multiple 

particle species

qvB=
pv
ρ

Bρ=
p
q

Radius

Magnetic Rigidity
}

Lorentz force (eq. 1) + centripetal motion:

Rearranging:



  6

Worked example – LHC

 If we wanted to accelerate, say, 7 TeV particles, what 
bending radius is required?

 Maximum dipole field around 8.3 T

Bρ=
p
q

ρ=
p
qB

=
7

0.3×8.3
=2.8 km

 Nb: LHC radius ~ 4.1 km
 Need space for detectors, etc
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Quadrupole magnets

F⃗
B⃗

 If we only had bending magnets, particles would soon be 
lost from the accelerator

 Need to keep the particles in the accelerator using 
focussing elements

 Usually use quadrupoles
 Field stronger away from 

beam centre
 Like a spring or pendulum
 Simple harmonic motion

 Overall focussing by 
alternating the gradient

B⃗=(k y , k x ,0) x

y
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Quadrupole field – horizontal (1)

 For a particle moving near to the z-axis

 Considering only px for now
B⃗=(b0 y ,b0 x ,0)F⃗=q v⃗×B⃗+q E⃗

dpx
dt

=q
dz
dt
B y

dpx
dt

=
dpx
dz
dz
dt

 Combining these equations:

dpx
dt

=q
dz
dt
B y

 Use the chain rule

dpx
dz

=qb0 x
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Quadrupole field – horizontal (2)

 Definition of x-component of momentum

px=mγ v x=m γ
dz
dt
dx
dz

=pz
dx
dz

dpx
dz

=qb0 x

 Substitute this definition into       gives

pz
d2 x

dz2
=q b0 x

d2 x

dz2
−k x=0

 Rearrange and wrap up constant terms in focussing 
strength k
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Quadrupole field – vertical

dp y
dt

=−q b0 v z y

 Use chain rule and eliminate v
z

d2 y

dz2
+k y=0

 Rearrange and wrap up constant terms in defocussing 
strength k

 Lorentz force law with quadrupole field definition

pz
d2 y

dz2
=−q b0 y
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Solutions

 This is simple harmonic motion – solutions are of form

 Taking derivative

d2 x

dz2
−k x=0

d2 y

dz2
+k y=0

 Motion is governed by

x=x0 cos(√k z)+
dx0

dz
1

√k
sin (√k z)

y= y0 cosh(√k z)+
dy 0

dz
1

√k
sinh (√k z)

For y

dx
dz

=−x0 √k sin(√k z)+
dx0

dz
cos (√k z)

dy
dz

= y0 √k sinh (√k z)+
dy 0

dz
cosh (z)
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Transfer Matrix
 Just thinking about x, the particles move according to

 We can rewrite this as a matrix

 This matrix is known as the quadrupole’s transfer matrix

(
x
dx
dz )=( cos(√k z)

1

√k
sin (√k z)

√k sin(√k z) cos(√k z) )(
x0

dx0

dz )

dx
dz

=−x0 √k sin(√k z)+
dx0

dz
√k cos(√k z)

x=x0 cos(√k z)+
dx0

dz
sin (√k z)

u1=M01u0
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Questions
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Questions
 Exercise – what is the transfer matrix for a drift space, 

that is a region with no fields at all?
 What is the force acting on the particle?
 What is x(z) in terms of dx0/dz and x0

 What is dx/dz in terms of dx0/dz
 Now write that as a matrix
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Questions
 Exercise – what is the transfer matrix for a drift space?

 What is the force acting on the particle?
 No force

 What is x(z) in terms of dx0/dz and x0

 What is dx/dz in terms of dx0/dz

 Now write that as a matrix

x=x0+
dx0

dz
z

dx
dz

=
dx0

dz

(
x
dx
dz )=(1 z

0 1)(
x0

dx0

dz )
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Transfer Lines

 Transfer matrix defines transport through a region
 Transfer matrices can be combined by multiplication
 Say we have transfer matrices like:

 Then

 i.e. we can define a combined transfer matrix like

u1=M01u0

u2=M12u1

M02=M12M01

u2=M12M01u0

0 1 2

u0=(
x0

dx0

dz )
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Phase space

 Another instructive way to look at beam optics is by 
considering the phase space

0 1 2

x

dx
dz drift

Focusing

drift

0

1

2
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Periodic Lattices

 Following n identical cells or turns in a ring with one-turn 
matrix M

un=M
nu0

M=I cosμ+J sinμ

 Rewrite

J=( α β
−γ −α )

J2=−I
 So

 And

with γβ−α
2
=1

Mn
=I cos(nμ)+J sin (nμ)

I=(1 0
0 1)and 
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Periodic Lattices

 What does this mean?

 Particles move around an ellipse in 
phase space if Trace(M) < 2

 µ is the “phase advance”
 α, β and γ are “Twiss parameters”

 Tell us the alignment of the ellipse

Mn
=I cos(nμ)+J sin (nμ)

dx
dz n=0

n=1

n=8

n=5

 Each particle sits on ellipse area ε - the particle’s amplitude
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Periodic Lattices and beams

 Beam is composed of many particles
 Particles occupy a region in phase 

space
 “Emittance” is area occupied by the 

entire beam
 Sometimes classify “RMS emittance”

 Area occupied by ellipse 1 RMS 
distance from beam centre

 Low emittance is crucial for
 High luminosity
 Low losses

dx
dz n=0

n=1

n=8

n=5

Matched 
beam
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Beam ellipse

dx
dz

x√εβ

√ε γ

Cov (x , dxdz )=−√εα
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Emittance Growth

 Ideally emittance is conserved, but this is not always the 
case

 Long list of effects that can cause emittance growth
 Beam mismatch
 Scattering off residual gas
 Scattering off particles in the same beam
 Scattering off particles in other beams (e.g. in collider)
 Space charge
 Resonances:

νx=
μ x
2 π

j νx+k ν y=N
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Mismatch

dx
dz n=0

n=1

n=8

n=5

Matched 
beam

Mismatched 
beam
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Emittance Reduction (Cooling)

 Several techniques to reduce emittance
 Synchrotron radiation cooling
 Stochastic cooling
 Laser cooling
 Electron cooling
 Ionisation cooling

 Fundamental principle is to remove “heat” from the beam 
using a neighbouring heat sink

 Comoving electron beam → electron cooling
 Comoving laser → laser cooling
 Emission of synchrotron radiation

 Photon emission caused by (principally) electrons bending in 
magnetic field
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Questions
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Questions

 What is behaviour of particles in phase space if
 Trace(M) < 2
 Trace(M) = 2
 Trace(M) > 2
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Questions

 What is behaviour of particles in phase space if
 Trace(M) < 2

 Motion is an ellipse
 Trace(M) = 2

 x → +/- x
 Trace(M) > 2

 Motion is a hyperbola
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Longitudinal Dynamics

 So much for transverse motion (i.e. x  and y planes)
 What about energy and acceleration?
 Electrostatic acceleration limited by breakdown potential

 Change in energy is given by voltage differential
 High voltage differentials cause breakdown (sparks)
 Practically limits electrostatic acceleration to few MeV

 To accelerate beyond MeV require oscillating electric field
 RF Cavities
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RF cavity field

 RF cavity holds a resonating EM wave
 Recall Lorentz force law

 Force is in direction of motion - energy changes!

beam

E

F⃗=q v⃗×B⃗+q E⃗

g
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RF cavity field

 In RF cavity

 Energy change of synchronous particle crossing at ϕs

 T is factor to allow for phase to vary a bit during crossing
 g is the gap length

E⃗=E0 sin(ω t+ϕ)

δW=qTg E0 sin(ϕs)

E
E0

ϕ[rad ]
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Phase stability

 Particle crossing at phase ϕ 
relative to synchronous 
particle

 Particle arriving early
 Fast
 t negative
 Gets smaller energy kick
 Ends up relatively slower

 Particle arriving late
 Slow 
 t positive
 Gets bigger energy kick
 Ends up relatively faster

 Phase stability!

δW=qT g E0 sin (ϕ+ϕs)

Slow, late particle

Fast, early
 particle

Synchronous
 particle

W
-W

s

ϕϕs
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Dealing with momentum spread

 Momentum spread introduces a few effects
 Dispersion
 Chromaticity
 Momentum compaction

 Dispersion:
 Off-momentum particles follow a different trajectory

 Momentum compaction (rings):
 Different path length yields different time of flight

 Chromaticity:
 Off-momentum particles get a different focussing strength
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Dispersion

 Recall the definition of magnetic rigidity

 Particles having different momentum (p) get different 
radius of curvature

 Introduce dispersion D

 Which is another optical function that we must make 
periodic

Bρ=
p
q

D=p
dx
dp
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Chromaticity

 Chromaticity arises because quadrupoles focus differently 
for different momenta

k=q
b0

p

 This often limits the degree of focussing at a collision 
point

 Limits luminosity
 Can deliberately enhance/reduce chromaticity by

 Introduce a dispersion
 Using a magnet with variable focussing strength across the 

aperture - “sextupole”
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Questions
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Review

 Dipoles are used to bend a beam – rigidity is

 Quadrupoles are used to focus a beam:

 Beam in each of x and y can be characterised by 3 Twiss 
parameters and an emittance

 Lattices can be characterised by a phase advance

 RF cavities are used to accelerate the beam

 Introducing momentum spread, one can also define a 
dispersion (and its derivative with respect to z)

Bρ=
p
q

k=q
b0

p
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Finally… luminosity

 Luminosity defines the number of interactions in a 
collider per unit time for a given cross section

 Luminosity will increase if
 Beam is narrower
 Current is higher

~L=
N 1N 2 f N b

4 πσ xσ y

Number of particles 
in each bunch

Revolution
frequency

Number of
bunches

Width of
Each bunch
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What dictates luminosity?

 Typically
 Number of particles → space charge
 Revolution frequency → ring circumference
 Number of bunches → RF frequency
 Beam width →

 Emittance (cooling?)
 Twiss beta (final focus and chromaticity)

~L=
N 1N 2 f N b

4 πσ xσ y

√εβ
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Next lecture...

 Accelerator equipment
 Types of accelerator
 Current facilities
 Future facilities
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