Result on $B \rightarrow \pi \tau \nu$ at Belle

Analysis performed by Dr. Philipp Hamer Talk by Harrison Schreeck University of Göttingen

February 13, 2016

Harrison Schreeck

Result on $B \to \pi \tau \nu$ at Belle

Motivation

- $B^0
 ightarrow \pi^- au^+
 u_{ au}$ has not been observed yet and no limit has been published
- New physics models like 2HDM predict additional charged Higgs H^{\pm}
- $\mathcal{B}(B \to D^{(*)}\tau\nu)/\mathcal{B}(B \to D^{(*)}\ell\nu)$ shows 3.9 σ deviation from SM prediction d s

SM Prediction

 $R(\pi)=0.641(17)$ (lattice QCD, FNAL/MILC arXiv:1510.02349[hep-ph]) $\mathcal{B}(B o\pi au
u)=9.35(38)\cdot10^{-5}$ h

- located at the KEK in Tsukuba, Japan
- asymmetric electron-positron collider (8 GeV electron, 3.5 GeV positron beam)
- center-of-mass energy of 10.58 GeV $(\Upsilon(4S) \text{ resonance})$
- *BB* boosted into the electron direction to study CP violation

Event Reconstruction

Event Reconstruction

Event Reconstruction

Harrison Schreeck

Result on $B \to \pi \tau \nu$ at Belle

February 13, 2016 5 / 17

Tagside Full Reconstruction

- hierarchical reconstruction
- based on NeuroBayes (neural network)
- 1104 hadronic decay modes used ($\approx 2\%$ of all B^0 decays)
- efficiency of $\approx 0.18\%$ (for B^0)

Continuum Suppression

- significant amount of continuum $(e^+e^- o qar q)$ background (3x larger than Bar B)
- can be suppressed because of different event shape compared to $B\bar{B}$ events
- full reconstruction includes continuum suppression
- continuous output variable from 0 to 1, where events closer to 1 are less likely continuum events and have a higher reconstruction quality

Properties

- $\bullet\,$ two opposite charged tracks, 2-3 $\nu\,$
- au reconstruction modes: $au \to e, \mu, \pi, \rho[\pi^{\pm}\pi^{0}] \ (\approx 71 \ \%)$
- B^0 not fully reconstructed \rightarrow missing momentum/energy

Backgrounds

Most important backgrounds:

- $B^0 \to \pi^- \ell^+ \nu_\ell$
- $B^0 \rightarrow D^{(*)-}\ell^+\nu_\ell$
- $B^0 \rightarrow D^{(*)-}\pi^+$
- $B^0 \rightarrow D^{(*)-}\rho^+$
 - $D \rightarrow K_L X$
- incorrect *B*_{tag} reconstruction Variables used for suppression:
 - $p_{\text{miss}} = 2p_{\text{beam}} p_{B_{\text{tag}}} p_{\pi} p_{ au-\text{daughter}}$
 - $M_{\rm miss}^2 = p_{\rm miss}^2$
 - K_L veto (without energy deposition in the ECL)

Boosted Decision Trees (BDTs)

Settings

- one BDT for each τ decay mode
- 10-15 kinematic variables
- 200-1000 trees

• $B^0 \rightarrow X_c$ as background sample

Best Cut Selection

Settings

- expected significance used as figure of merit
- scan over 3 variables

- *m*_{miss}
 BDT output
- μ mode does not improve result and is not used in the further analysis

Discriminating Variable:

 E_{ECL} : All energy in the ECL that is not associated with B_{tag} or B_{sig}

Fit of scaling factors

Fit

- $\bullet~\mathsf{E}_{\mathsf{ECL}}$ distribution used for the fit
- For the fit all background Monte Carlo samples fixed except for $B^0 \to X_c$ and the signal sample

$$\mathcal{L}\left(\mu,\vec{\theta}\right) = \prod_{c} \prod_{b} \mathsf{Pois}\left(n_{cb}|\nu_{cb}(\mu,\vec{\theta})\right) \prod_{p} f_{p}\left(\hat{\theta}_{p}|\theta_{p}\right)$$

- Signal strength
 - Nuisance parameter
 - au channel
 - bin

 $\mu \\ \theta_{P}$

С

b

S

р

- MC sample
- n/ν N observed/predicted
 - Systematic

Likelihood

- significance calculated using binned maximum likelihood
- systematics included as nuisance parameters

Harrison Schreeck

Result on $B \to \pi \tau \nu$ at Belle

Fit Result

Harrison Schreeck

Result on $B \rightarrow \pi \tau \nu$ at Belle

February 13, 2016 14 / 17

systematic	relative uncertainty [%]
e ID	1.4
π ID	1.6
π^0 ID	1.0
Track efficiency	0.7
N(<i>BĒ</i>)	1.4
<i>K_L</i> veto	3.2
BG ${\cal B}$	2.8
$D^{(*)}\ell u$ model	0.5
Tagside	4.6
$ V_{ub} $	2.8
Rare MC	2.0
$B ightarrow X_u au u$	2.2
Background Fit	0.2
Signal model	1.8
total	8.3

systematic	relative uncertainty [%]
e ID	1.4
π ID	1.6
π^0 ID	1.0
Track efficiency	0.7
N(<i>BĒ</i>)	1.4
<i>K_L</i> veto	3.2
BG ${\cal B}$	2.8
$D^{(*)}\ell u$ model	0.5
Tagside	4.6
$ V_{ub} $	2.8
Rare MC	2.0
$B \rightarrow X_u \tau \nu$	2.2
Background Fit	0.2
Signal model	1.8
total	8.3

Conclusion

- first published search for $B^0 \to \pi^- \tau^+ \nu_\tau$ (arXiv:1509.06521, accepted by PRD)
- $B^0
 ightarrow \pi^- au^+
 u_ au$ is experimentally accessible
- obtained limit $\mathcal{B}(B^0 \to \pi^- \tau^+ \nu_\tau) < 2.5 \cdot 10^{-4}$ compatible with SM prediction (9.35(38) $\cdot 10^{-5}$)

Outlook

- analysis with semileptonic tag is being worked on, combination of both analyses possible
- Belle II will improve statistics and the decay will become observable

BACKUP

au Reconstruction Modes

All tracks are identified using the Belle Particle-ID systems ([0,1]) in the following order:

Track identification

- Electron: $p_{lab} > 400 \text{ MeV}$ and Electron-ID > 0.9
- 2 Muon: $p_{lab} > 800 \text{ MeV}$ and Muon-ID > 0.9
- Pion: Pion-Kaon-ID > 0.6

au modes

- au
 ightarrow e : 2 tracks identified as electron and pion
- $au
 ightarrow \mu$: 2 tracks identified as electron and muon
- $\tau \to \rho$: 2 Tracks identified as pions and successful mass-vertex-fit with an additional π^0 ($\chi^2 < 20$)
- $au
 ightarrow \pi: 2$ Tracks identified as pions and no successful mass-vertex-fit

Momentum Distribution of τ Daughter Particles

Branching Fraction Calculation

$$\mathcal{M}\left(B^{0}\to\pi^{-}\tau^{+}\nu_{\tau}\right)=-i\frac{G_{F}}{\sqrt{2}}V_{ub}L^{\mu}H_{\mu}$$

$$egin{aligned} & L^{\mu} = u_{ au} \gamma^{\mu} (1-\gamma^5) ar{v}_{
u} \ & H_{\mu} = \langle \pi^- | u \gamma_{\mu} (1-\gamma_5) ar{b} | B
angle \ & = f^+ (q^2) \left[2 p_{\mu} + \left(1 - rac{m_B^2 - m_{\pi}^2}{q^2}
ight) q_{\mu}
ight] + f^0 (q^2) rac{m_B^2 - m_{\pi}^2}{q^2} q_{\mu} \end{aligned}$$

$$\begin{aligned} \frac{d\mathcal{B}(B \to \pi \tau \nu_{\tau})/\mathrm{d}q^2}{d\mathcal{B}(B \to \pi \ell \nu_{\ell})/\mathrm{d}q^2} &= \frac{(q^2 - m_{\tau}^2)^2}{(q^2)^2} \left(1 + \frac{m_{\tau}^2}{2q^2}\right) \\ &\times \left\{1 + \frac{3m_{\tau}^2(m_B^2 - m_{\pi}^2)^2}{4(m_{\tau}^2 + 2q^2)m_B^2 p_{\pi}^2} \frac{|f^0(q^2)|^2}{|f^+(q^2)|^2}\right\}\end{aligned}$$

Variable	Definition	Description	
$ \vec{p_l} $		Magnitude of the 3-momentur	m of the $ au$ daughter particle
$ \vec{p}_m $		Magnitude of the 3-momentur	m of the <i>B</i> -meson daughter particle π^{\pm}
$p_{B_{vis}}$	$p_{B_{\rm vis}} = p_l + p_m$	4-momentum sum of both cha	arged tracks of the signal side
$ \vec{p}_{B_{\mathrm{vis}}} $		Magnitude of the 3-momentur	m of $p_{B_{\rm vis}}$
$E_{B_{vis}}$		Visible energy on the signal signal	de
$p_{ m beam}$	$p_{ m beam}=rac{1}{2}\left(p_{e^-}+p_{e^+} ight)$	Beam momentum	
$p_{ m miss}$	$p_{\mathrm{miss}} = 2p_{\mathrm{beam}} - p_{B_{\mathrm{tag}}} - p_{B_{\mathrm{vis}}}$		
M_{miss}^2	$M_{miss}^2 = \rho_{miss}^2$	Missing mass squared	
$E_{\rm miss}$		Missing energy, first component	nt of $ ho_{ m miss}$
$P_{(\tau\nu)}$	$p_{(\tau u)} = p_{ au} + p_{ u_{ au}} = p_{B_{ ext{sig}}} - p_{m}$	4-momentum of the lepton pa	ir
$m^{2}_{(\tau \nu)}$		Mass squared of the lepton pa	nir
$ \vec{p}_{(\tau\nu)} $		3-momentum of the lepton pa	ir
N_{π^0}		Number of π^0 candidates on t	he signal side
4-momentum combinations			
$m_4 = (E_{1})^{-1}$	$(E_{\rm beam} - E_m)^2 - (\vec{p}_{\rm beam} - \vec{p}_m)^2$		$m_{\rm max} = (E_{\rm miss} - E_m)^2 - (\vec{p}_{\rm miss} - \vec{p}_m)^2$
$m_5 = (p_1)^2$	$(p_{\rm com} - p_{\rm l})^2$		$(E_l + E_m)^2 + (\vec{p}_l - \vec{p}_m)^2$
m (F	$(\vec{n} - \vec{E})^2 - (\vec{n} - \vec{n})^2 + (\vec{n} - \vec{n})^2$	$(E_1 - E_1)^2 - (\vec{p}_1 - \vec{p}_1)^2$	$m_{57}=(p_{ m beam}-p_m)^2$
1110 - (L	beam $(Pbeam Pm)$	(-beam -1) $(Pbeam -1)$	$E_{\rm miss}$
$m_{11} = \frac{(p)}{(p)}$	$\frac{1}{1} \frac{1}{1} \frac{1}$		$\overline{E_m}$
()	$p_{\text{beam}} - p_l)^2$		$E_{\rm miss}$
$m_{12} = (E$	$f_{miss} + E_I + E_m)^2 - (\vec{p}_{miss} + \vec{p}_I)$	$+ p_m)^2$	$E_{B_{vis}}$

muon mode

pion mode

rho mode

Harrison Schreeck

Deco Transformed, Correlation Matrix S

Deco Transformed, Correlation Matrix B

February 13, 2016 10 / 18

PCA Transformed B

Correlation Matrix (signal)

PCA Transformed S

Harrison Schreeck

Result on $B \rightarrow \pi \tau \nu$ at Belle

PCA Transformed, Correlation Matrix B

Correlation Matrix (signal)

PCA Transformed, Correlation Matrix S

١P.

MÊ.,

N.

ML.

E

me

mer

m₅₁₀

m.

 m_{12}

m.,,

Result on $B \rightarrow \pi \tau \nu$ at Belle

Correlation Matrix (signal)

PCA Transformed, Correlation Matrix S

PCA Transformed, Correlation Matrix B

Harrison Schreeck

Result on $B \rightarrow \pi \tau \nu$ at Belle

February 13, 2016 13 / 18

- EvtGen used for $e^+e^-
 ightarrow \Upsilon(4S)$ and $e^+e^-
 ightarrow qar{q}$
- continuum by PYTHIA
- final state radiation by PHOTOS
- semileptonic $P \rightarrow P$ decays with SLPOLE, needs form factors in pole parametrization
- GSIM based on GEANT 3.21
- simulates interaction of generated particles with the detector
- produces data files in real data format

MSSM / 2HDM

• charged Higgs (H^{\pm}) modifies the differential branching fraction by an additional factor: $\left(1 + \frac{\tan^2 \beta}{m_{H^{\pm}}^2} \frac{q^2}{1 - m_u/m_b}\right)$

Hadronic Full Reconstruction Modes

B ⁰ modes	B^- modes
$D^{*+}\pi^{-}$	$D^{*0}\pi^{-}$
$D^{*+}\pi^-\pi^0$	$D^{*0}\pi^{-}\pi^{0}$
$D^{*+}\pi^-\pi^+\pi^-$	$D^{*0}\pi^{-}\pi^{-}\pi^{+}$
$D^+\pi^-$	$D^0\pi^-$
$D^+\pi^-\pi^0$ (with D ^{*+} veto)	$D^0\pi^-\pi^0$ (with D ^{*0} veto)
$D^+\pi^-\pi^+\pi^-$	$D^{0}\pi^{-}\pi^{-}\pi^{+}$
$D^{*+}D^{*-}_{s}$	$D^{*0}D_{s}^{*-}$
$D^{*+}D_{s}^{-}$	$D^{*0}D_{s}^{-}$
$D^{+}D_{s}^{*-}$	$D^0 D_s^{*-}$
$D^+D_s^-$	$D^{0}D_{s}^{-}$
$J/\psi K_S^0$	$J/\psi K^-$
$J/\psi \tilde{K} \pi^+$	$J/\psi K^- \pi^+ \pi^-$
$J/\psi K_S^0 \pi^+ \pi^-$	D^0K^-
$D^{0}\pi^{0}$	$D^+\pi^-\pi^-$
$D^{*+}\pi^{-}\pi^{-}\pi^{+}\pi^{0}$	$D^{*0}\pi^{-}\pi^{-}\pi^{+}\pi^{0}$
	$J/\psi K^-\pi^0$
	$J/\psi K_S^0 \pi^-$

_

D ⁰ modes	D^+ modes	D_s^+ modes				
$K^{-}\pi^{+}$	$K^{-}\pi^{+}\pi^{+}$	$K^+K^-\pi^+$				
$K^-\pi^+\pi^0$	$K^-\pi^+\pi^+\pi^0$	$K_{S}^{0}K^{+}$				
$K^-\pi^+\pi^+\pi^-$	$K_{S}^{0}\pi^{+}$	$\pi^+\pi^+\pi^-$				
$K_{S}^{0}\pi^{0}$	$K_{S}^{0}\pi^{+}\pi^{0}$	$K^+K^-\pi^+\pi^0$	D ^{*0} modes	D^{*+} modes	D_s^{*+} modes	J/ψ modes
$K_{S}^{0}\pi^{+}\pi^{-}$	$K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}$	$K_{S}^{0}K^{-}\pi^{+}\pi^{+}$	$D^{0}\pi^{0}$	$D^0\pi^+$	$D_s^+\gamma$	e^-e^+
$K_{S}^{0}K^{+}K^{-}$	$\check{K^+}K^-\pi^+$	$K_{S}^{0}K^{+}\pi^{+}\pi^{-}$	$D^0\gamma$	$D^+\pi^0$		$\mu^{-}\mu^{+}$
K^+K^-	$K^-K^+\pi^+\pi^0$	$K^+\pi^+\pi^-$				
$\pi^+\pi^-$		$K^+K^-\pi^+\pi^+\pi^-$				
$\pi^+\pi^-\pi^0$						
$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$						

$ au^-$ decay	Relative Occurence (%)
ρ^{-}	29.54
$e^- ar{ u}_e u_ au$	29.43
$\pi^- \nu_{\tau}$	16.70
$\mu^- \bar{\nu}_e \nu_\tau$	13.21
$a_1^- u_{ au}$	8.72
other	2.4