

Rare decays at LHCb

Lake Louise Winter Institute - February 7-13 2016

Guido Andreassi On behalf of the LHCb collaboration

- New particles may appear in loops of rare FCNC decays, affecting **branching ratios** and **angular distributions**;
- these particles wouldn't need to be produced on mass shell in such diagrams
 ⇒ access to very large masses.

FCNC effective hamiltonian described as operator product expansion, C_i being the Wilson coefficients, that encode the short-distance physics, and O_i the corresponding operators.

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \underbrace{\left[\mathcal{C}_i(\mu) \mathcal{O}_i(\mu) \right]}_{\text{left-handed part}} + \underbrace{\mathcal{C}'_i(\mu) \mathcal{O}'_i(\mu)}_{\text{right-handed part}} \begin{bmatrix} i=1,2 & \text{Tree} \\ i=3-6,8 & \text{Gluon penguin} \\ i=9,10 & \text{Electroweak penguin} \\ i=9,10 & \text{Electroweak penguin} \\ i=9 & \text{Pseudoscalar penguin} \\ \text{Pseudoscalar penguin} \end{bmatrix}$$

• Decay described by q^2 (i.e. $m^2_{\mu\mu}$) and three helicity angles $\vec{\Omega} = (\theta_I, \theta_K, \phi)$:

$$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2 \mathrm{d}\bar{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1-F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K \\ + \frac{1}{4} (1-F_L) \sin^2 \theta_K \cos 2\theta_I \\ - F_L \cos^2 \theta_K \cos 2\theta_I + S_3 \sin^2 \theta_K \sin^2 \theta_I \cos 2\phi \\ + \frac{5}{4} \sin 2\theta_K \sin 2\theta_I \cos \phi + S_5 \sin 2\theta_K \sin \theta_I \cos \phi \\ + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_I + S_7 \sin 2\theta_K \sin \theta_I \sin \phi \\ + S_8 \sin 2\theta_K \sin 2\theta_I \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_I \sin 2\phi \Big]$$

$$F_L, A_{FB}, \text{ and } S_i \text{ depend} on C_7, C_9 \text{ and } C_{10} \text{ and} hadronic form factors form$$

- Additional observables, for which the leading form factor uncertainties cancel, e.g.: $P'_5 = S_5 / \sqrt{F_{\rm L}(1 F_{\rm L})}$;
- S-wave pollution is also taken into account \Rightarrow one more observable.

- Veto of $B^0
 ightarrow J/\psi K^{*0}$ and $B^0
 ightarrow \psi(2S) K^{*0}$;
- signal mass model obtained from high statistics $B^0 \rightarrow J/\psi K^{*0}$;
- events are then binned in eight q^2 intervals.

- Tension seen in P'_5 (and S_5): 2.8 σ deviation in [4,6] GeV^2/c^4 and 3 σ in [6,8] $GeV^2/c^4 q^2$ intervals.
- compatible with 1 *fb*⁻¹ analysis [PRL 111, 191801 (2013)];
- corresponds to a 3.4 σ shift of $\mathcal{R}e(\mathcal{C}_9)$ w.r.t. SM...
- ...or just hadronic effect?

 $[\]label{eq:DHMV} \begin{array}{l} \mathsf{DHMV} = \mathsf{S}. \ \mathsf{Descotes}\text{-}\mathsf{Genon}, \ \mathsf{L}. \ \mathsf{Hofer}, \ \mathsf{J}. \ \mathsf{Matias}, \ \mathsf{and} \ \mathsf{J}. \ \mathsf{Virto}, \ \mathsf{JHEP} \ 12 \ (2014) \ 125 \\ \\ \mathsf{Guido} \ \mathsf{Andreassi} \end{array}$

- \mathcal{B} measured as a function of q^2 ;
- $f_s/f_d \simeq 1/4$ but ϕ is narrow, allowing clean selection; furthermore, low contamination from S-wave K^+K^- ;
- K⁺K[−]μ⁺μ[−] final state is not flavour-specific ⇒ reduced number of angular observables: F_L, S_{3,4.7}, A_{5,6,8.9}.

• $B^0_s
ightarrow \psi(2S)\phi$ and $B^0_s
ightarrow J/\psi\phi$ (control mode) vetoed;

- ${\cal B}\,$ more than 3σ below SM in $1 < q^2 < 6 GeV^2/c^4;$
- total $\mathcal{B}: \mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-) = (7.97^{+0.45}_{-0.43} \pm 0.22 \pm 0.23 \pm 0.60) \times 10^{-7};$ (errors: stat., syst., extrapolation to full q^2 region, norm.)
- All angular observables in agreement with SM.

SM predictions from arXiv:1411.3161 and arXiv:1503.05534

- Baryon ⇒ access to different information (non-integer spin, different hadronic physics);
- B compatible with SM in the high-q² region and below predictions in the low-q² region (first observation).

$$\Lambda_b^0 \to \Lambda[\to p\pi] \mu^+ \mu^-$$

- Asymmetries only computed in the bins where a statistically significant signal yield is found;
- first measurement of the forward-backward asymmetries in the dimuon $(A_{\rm FB}^{\ell})$ and hadron $(A_{\rm FB}^{h})$ system;
- A_{FB}^{ℓ} is consistently above SM, but compatible at 2σ level; A_{FB}^{h} is fully compatible.

- $b \rightarrow d\mu^+\mu^-$ suppressed wrt $b \rightarrow s\mu^+\mu^$ because of $\left|\frac{V_{td}}{V_{ts}}\right|^2 \simeq \frac{1}{25}$;
- B(q²) in good agreement with but slightly lower than SM;
- $\mathcal{B} = (1.83 \pm 0.24 \pm 0.05) \times 10^{-8}$;
- $A_{C\!P} = 0.11 \pm 0.12 \pm 0.01;$
- $\left| \frac{V_{td}}{V_{ts}} \right| = 0.24^{+0.05}_{-0.04}$.

predictions from Phys. Rev. D89 (2014) 094021, arXiv:1506.07760, arXiv:1507.01618

- Dark matter is expected to interact feebly with all known particles, thus it has always escaped detection;
- coupling between the SM and hidden-sector particles may arise via mixing between the hidden-sector field and any SM field whose particle does not carry electromagnetic charge (Z, H, γ, ν);
- many theories predict that TeV-scale dark matter particles interact via GeV-scale bosons.

• Scan $m(\mu^+\mu^-)$ for an excess;

- accessible m(χ) in [214, 4350] MeV;
- prompt & displ. χ vertices considered;
- $\omega, \phi, J/\psi, \psi(2S)$ and $\psi(3770)$ vetoed;
- normalization: prompt events in $1.1 < m^2(\mu^+\mu^-) < 6.0 GeV^2$;
- no significant signal observed \Rightarrow set 95% CL upper limits.

Rare decays at LHCb

Lepton flavour violation

- LFV predicted in various extensions of the SM (heavy-neutrino), or scenarios beyond SM as the Pati-Salam model or SUSY;
- predictions can vary strongly depending on the model;
- recently renewed interest for LFV after LHCb measurement of ¹

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})} = 0.745^{+0.090}_{-0.074} (\text{stat}) \pm 0.036 (\text{syst})$$

which hints for existence of LFV at accessible BR.²

¹[LHCB, PHYS. REV. LETT. 113 (2014) 151601] ²S. L. Glashow, D. Guadagnoli and K. Lane, PHYS. REV. LETT. 114 (2015) 091801 $D^0
ightarrow e^{\pm} \mu^{\mp}$

[LHCb, arXiv:1512.00322]

Neni

Most signal-like BDT bin. Thick grey: signal, thin purple: misidentified D^0 \rightarrow $\pi^-\pi^-$, dashed grey: combinatorial bkg.

- Select D^0 from $D^{*+}
 ightarrow D^0 \pi^+$ decays;
- $D^0 \rightarrow K^- \pi^+$ as normalization channel;
- $D^0 \rightarrow \pi^+\pi^-$ misID dominant bkg;
- data splitted in 3 bins of BDT output;
- No evidence for any signal, set world's best upper limit (*CL_S* method):

$$\mathcal{B}(D^0
ightarrow e^{\pm} \mu^{\mp}) < 1.3 imes 10^{-8}$$

- Rare decays constitute an excellent laboratory to search for BSM effects;
- LHCb is an ideal environment for these searches;
- most measurements in good agreement with SM predictions, setting strong constraints on NP;
- some puzzling deviations, though, are appearing: new physics or hadronic effects?
- $3 fb^{-1}$ data $@\sqrt{s} = 7$ and 8 TeV (Run I) are still under study, new analyses are about to come;
- Run II has started; expected $\sim 5 fb^{-1}$ @ $\sqrt{s} = 13 TeV$...

- Rare decays constitute an excellent laboratory to search for BSM effects;
- LHCb is an ideal environment for these searches;
- most measurements in good agreement with SM predictions, setting strong constraints on NP;
- some puzzling deviations, though, are appearing: new physics or hadronic effects?
- $3 fb^{-1}$ data @ $\sqrt{s} = 7$ and 8 TeV (Run I) are still under study, new analyses are about to come;
- Run II has started; expected $\sim 5 fb^{-1}$ @ $\sqrt{s} = 13 TeV$...

Exciting times ahead!

The End

The LHCb experiment

- designed to study b and c quarks physics;
- single arm spectrometer

- high resolution on vertices and momenta - vertex detector, tracker;
- particle identification RICH, calorimeters, muon chambers.

- ${\bf B^0} \to {\bf K^{*0}} [\to {\bf K^{+}} \pi^{-}] \mu^{+} \mu^{-}$, the observables.
 - Differential decay rates of $\overline{B}{}^0 \to \overline{K}{}^{*0}\mu^+\mu^-$ and $B^0 \to K^{*0}\mu^+\mu^-$ decays given by

$$\begin{split} \frac{\mathrm{d}^4 \Gamma[\bar{B}^0 \to \bar{K}^{*0} \mu^+ \mu^-]}{\mathrm{d}q^2 \, \mathrm{d}\vec{\Omega}} = & \frac{9}{32\pi} \sum_i I_i(q^2) f_i(\vec{\Omega}) \\ \frac{\mathrm{d}^4 \bar{\Gamma}[B^0 \to K^{*0} \mu^+ \mu^-]}{\mathrm{d}q^2 \, \mathrm{d}\vec{\Omega}} = & \frac{9}{32\pi} \sum_i \bar{I}_i(q^2) f_i(\vec{\Omega}) \;, \end{split}$$

• q^2 -dependent *CP* averages, S_i , and *CP* asymmetries, A_i , can be defined as

$$S_i = \frac{\left(I_i + \bar{I}_i\right)}{\left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^2}\right)}, \qquad A_i = \frac{\left(I_i - \bar{I}_i\right)}{\left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^2}\right)}.$$

Conventionally replace: $S_{1c} = F_{\rm L}$ and $S_{6s} \rightarrow A_{\rm FB} = \frac{3}{4}S_{6s}$ (c, s = sin^2 or cos^2 dep.) • additional observables, for which the leading $B^0 \to K^{*0}$ form-factor uncertainties cancel, e.g.:

$$P_5' = \frac{S_5}{\sqrt{F_{\rm L}(1-F_{\rm L})}};$$

S-wave pollution: K⁺π[−] not in resonant P-wave K^{*0} but in spin 0 configuration ⇒ more observables; angular distribution modified:

$$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \left. \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} \right|_{\mathrm{S+P}} = (1-F_{\mathrm{S}}) \left. \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \left. \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} \right|_{\mathrm{P}} + \frac{3}{16\pi} F_{\mathrm{S}} \sin^2\theta_l + \text{S-P interference}$$

• $F_{\rm S}$ scales P-wave observables \Rightarrow needs to be determined \Rightarrow fit on $m_{K\pi}$.

• Additional observables, for which the leading $B^0 \to K^{*0}$ form-factor uncertainties cancel:

$$\begin{split} P_1 &= \frac{2\,S_3}{(1-F_{\rm L})} = A_{\rm T}^{(2)} \,, \\ P_2 &= \frac{2}{3} \frac{A_{\rm FB}}{(1-F_{\rm L})} \,, \\ P_3 &= \frac{-S_9}{(1-F_{\rm L})} \,, \\ P_{4,5,8}' &= \frac{S_{4,5,8}}{\sqrt{F_{\rm L}(1-F_{\rm L})}} \,, \\ P_6' &= \frac{S_7}{\sqrt{F_{\rm L}(1-F_{\rm L})}} \,. \end{split}$$

• ...and even other observables introduced by the $K^+\pi^-$ S-wave, present in addition to the resonant P-wave K^{*0} !

$$\mathbf{B^0} \rightarrow \mathbf{K^{*0}} [\rightarrow \mathbf{K^+} \pi^-] \mu^+ \mu^-$$

S-wave pollution:

 K⁺π[−] not in resonant P-wave K^{*0} but in spin 0 configuration ⇒ more observables; angular distribution modified:

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \left. \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} \right|_{\mathrm{S+P}} = (1 - F_{\mathrm{S}}) \left. \frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \left. \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} \right|_{\mathrm{P}} \\ + \frac{3}{16\pi} F_{\mathrm{S}} \sin^2 \theta_l + \mathrm{S-P} \text{ interference}$$

 $F_{\rm S}$ scales P-wave observables \Rightarrow needs to be determined \Rightarrow fit on $m_{K\pi}$.

 acceptance effects: trigger, reconstruction and selection distorts decay angles and q² distribution ⇒ obtain parametrization of efficiency from MC, cross-checked with data and correct data for this efficiency.

- χ^2 fit of measured CP-averaged observables using [EOS] software;
- varying $\mathcal{R}e(\mathcal{C}_9)$ and associated nuisances parameters according;
- $\Delta \mathcal{R}e(\mathcal{C}_9) = 1.04 \pm 0.25$ with global significance of 3.4σ .

Systematic uncertainties:

Source	$F_{\rm L}$	$S_3 - S_9$	$A_{3} - A_{9}$	$P_1 – P'_8$	$q_0^2~{ m GeV^2\!/}c^4$
Acceptance stat. uncertainty	< 0.01	< 0.01	< 0.01	< 0.01	0.01
Acceptance polynomial order	< 0.01	< 0.02	< 0.02	< 0.04	0.01 – 0.03
Data-simulation differences	0.01 - 0.02	< 0.01	< 0.01	< 0.01	< 0.02
Acceptance variation with q^2	< 0.01	< 0.01	< 0.01	< 0.01	—
$m(K^+\pi^-)$ model	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01
Background model	< 0.01	< 0.01	< 0.01	< 0.02	0.01 – 0.05
Peaking backgrounds	< 0.01	< 0.01	< 0.01	< 0.01	0.01 – 0.04
$m(K^+\pi^-\mu^+\mu^-)$ model	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01
Det. and prod. asymmetries	_	_	< 0.01	< 0.02	_

All angular observables in agreement with SM.

Rare decays at LHCb

All angular observables in agreement with SM.

Guido Andreassi

- Axion model (left)[M. Freytsis et al., PRD 81 (2010) 034001] Exclusion regions for large tanβ, large m(h);
- Inflaton model (right)[F. Bezrukov et al., PLB 736 (2014) 494] Constraints on mixing angle θ between Higgs and inflaton fields.

- Scan $m(\mu^+\mu^-)$ distribution for an excess;
- both prompt and displaced χ vertices are considered;
- $\omega, \phi, J/\psi, \psi(2S)$ and $\psi(3770)$ vetoed;
- prompt events in $1.1 < m^2(\mu^+\mu^-) < 6.0 \, GeV^2 \mbox{ used for normalization;}$
- accessible χ mass in [214, 4350] MeV.

 no significant signal observed ⇒ set 95% CL upper limits (and thus implied limits on theoretical models)

$D^0 ightarrow e^{\pm} \mu^{\mp}$

- No evidence for any signal;
- World's best upper limit, obtained from CL_S method:

$$\mathcal{B}(D^0
ightarrow e^{\pm} \mu^{\mp}) < 1.3 imes 10^{-8}$$