

Results on reconstructed jets with the PHENIX detector at RHIC

Arbin Timilsina (Iowa State University)
for the PHENIX Collaboration

Relativistic Heavy Ion Collider (RHIC)

- Two independent intersecting storage rings, 3.8 km circumference
- Accelerates polarized p up to 250 GeV
- Accelerates d, ³He, Cu,
 Al, Au, U up to 100 GeV

The PHENIX Detector

PHENIX central arms: $|\eta| < 0.35$, $\Delta \phi = \pi$

- Charged particle tracks are reconstructed using the Drift Chamber (DC), the Pad Chamber (PC), and the collision point.
- Neutral clusters are measured in the Electromagnetic Calorimeter (EMCal). EMCals (PbSc & PbGl) measures π^0 , γ , and some hadrons (with lower efficiency).

Jet measurements in heavy ion collisions -> quantify the energy loss of hard-scattered partons

Jets in PHENIX

- Jets reconstructed using the anti- k_t algorithm
 - EMCal cluster energy + charged particle tracks
- Jet-level requirements
 - number of constituents ≥ 3
 - restriction on contribution of charged constituents
 - jet axis required to be away from detector edge
- Centrality-dependent response matrices generated by embedding PYTHIA p+p jets into real heavy ion events
 - Due to missing neutral hadronic energy and tracking inefficiency,
 on average, PHENIX gets ≈ 70% of the true jet energy
 - Spectra corrected for detector effects and underlying event fluctuations with unfolding procedure

Jet results from PHENIX

Cu+Au and p+p jet spectra (2012 data)

• Preliminary measurement, R=0.2 anti- k_t algorithm, stronger underlying event contribution -> choice of smaller cone size

d+Au and p+p jet spectra (2008 data)

- R=0.3 anti- k_t algorithm
- Submitted to PRL, nucl-ex/1509.04657

Cu+Au collisions

$$R_{ ext{AA}}^{ ext{cent}} = rac{\left(rac{1}{N_{ ext{evts}}^{ ext{cent}}}rac{ ext{d}N}{ ext{d}p_{ ext{T}}}
ight)_{ ext{CuAu}}}{T_{ ext{AB}}^{ ext{cent}} imes rac{ ext{d}\sigma}{ ext{d}p_{ ext{T}}}}$$

Suppression shows centrality dependence

- Suppression shows centrality dependence
- No p_{T} dependence

Comparison to theory

- Quantitatively in line with jet quenching calculations
- Calculations done for 2 different couplings between the jet and the medium (g=2.0 and g=2.2). arXiv:1509.07257 [hep-ph], arXiv:1509.02936 [hep-ph]

15

d+Au collisions

Minimum bias jet rate

- In centrality-integrated collisions, R_{dAu} = 1
- Compares favorably to nuclear PDF analyses (EPS09)

Centrality-selected jet rate

- Suppression of jet rate in central 0-20% events, enhancement in 40-60% and 60-88% events
- Suppression in the most central case is comparable to models including initial-state energy loss effects, but enhancement in peripheral is very challenging to understand within these models

Summary

- Progress on jet measurements with PHENIX detector in both large and small systems
- Jets are found to be suppressed by approximately a factor of two in central Cu+Au collisions as compared to p+p collisions. Suppression shows no p_{T} dependence.
- Surprising, unexpected centrality dependence in d+Au collisions