Study of three-body decays of the η_{c} meson at the BABAR experiment

Racha Cheaib Lake Louise Winter Institute Sat., Feb. 13th, 2016

McGill University Montreal, Canada

On behalf of the BaBar Collaboration

Theoretical Motivation

- Charmonium decays, η_{c} , are an excellent probe for light meson spectroscopy.
- Scalar mesons $(J^{PC}=0^{++})$ are still a puzzle.
 - Too many states: inconsistent with quark model
 - Large decay widths: overlap between resonance and background.
- Structure of I=1/2 K π S-wave is poorly known
 - Introduces large systematic uncertainties in analyses with 3 or 4-body decays of heavy flavour mesons
- Previous measurements of I=1/2 K π S-wave, limited to below D⁺ mass and contamination from I=3/2
 - LASS experiment: Nucl. Phys. B **296**,493 (1988)
 - E791 experiment: Phys. Rev. D **73**, 032004 (2006)

Dalitz plot analysis of η_c

BaBar performed first Dalitz plot analysis of $\eta_c \rightarrow K^+K^-\pi^0$ and $\eta_c \rightarrow K^+K^-\eta$.

Dominance of scalar meson amplitudes:

$$\eta_c \longrightarrow pseudoscalar + scalar$$

200

100

0

2

 $m^{2}(K^{+}\pi^{0})$ (GeV²/c⁴)

6

 $\gamma\gamma \rightarrow K \overline{K} \pi$

- Two photon interactions are used to produce charmonium resonances.
- e+ e⁻ beam particles are scattered at small angles and undetected in the final state.

- Produced resonances can have $J^{PC}=0^{\pm+}$, $2^{\pm+}$, 3^{++} , $4^{\pm+}$, etc ... with the exception that $K\overline{K}\pi$ cannot be in a $J^{P}=0^{+}$ state.
- The following two photon interactions are considered using an integrated luminosity of 519 fb⁻¹:

 $\gamma \gamma \rightarrow K_{s} K^{+} \pi^{-}$, $K_{s} \rightarrow \pi^{+} \pi^{-} \leftarrow$ first time $\gamma \gamma \rightarrow K^{+} K^{-} \pi^{0}$, $\pi^{0} \rightarrow \gamma \gamma$

$\gamma\gamma \rightarrow K \overline{K} \pi$

$\gamma\gamma \rightarrow K_{s} K^{+}\pi^{-}$, $K_{s} \rightarrow \pi^{+}\pi^{-}$

- Exactly 4 charged tracks with loose Kaon and Pion PID.
- Vertex fit of oppositely charged tracks to select K_s candidates.

$\gamma\gamma \rightarrow K^+ K^- \pi^0$

- Exactly 2 charged tracks with loose
 Kaon PID.
- $\gamma\gamma$ pairs fit to a π^0 hypothesis, with E_{γ} >50 MeV.

Signal Efficiency

- MC signal events in which the η_c decays uniformly in phase space.
- Restrict mass regions to η_c signal region.
- Efficiency: N_{reconstructed}/N_{generated}
- Express as a function of $m(K^+K^-)$ and $cos\theta_K^+$

$$\epsilon(\cos\theta) = \sum_{L=0}^{12} a_L(m) Y_L^0(\cos\theta)$$

• $\cos\theta_{K}^{+}$: angle, in K⁺K⁻ rest frame, between the direction of the K⁺ and the boost from K_sK⁻ η or K⁺K⁻ π^{0} rest frame.

Efficiency loss due to low momentum kaons (<200 MeV/c) K_s and π^{\pm} (<100 MeV/c)

Mass Spectra

Clear η_c signal fit with a Breit-Wigner function convolved with the mass resolution function.

Background described with 2nd order polynomial.

7

Dalitz Plot Analysis of $\eta_c \rightarrow K \overline{K} \pi$

- Unbinned maximum likelihood fit in the η_{c} mass region
- Full interference allowed among amplitudes.
- Fits performed using:
 - Isobar model: Phys. Lett. B 592, 1 (2004)
 - Model Independent Partial Wave Analysis (MIPWA): Phys. Rev. D 73, 032004 (2006)

Model Independent Partial Wave Analysis of $\eta_{c} \rightarrow K \overline{K} \pi$

Amplitude is written as a sum of partial waves with A_i and ϕ_i

$$A = |A_1 + c_2 A_2 e^{\phi^2} + c_3 A_3 e^{\phi^3} + \dots |$$

- $\eta_c=0^+ \longrightarrow$ Interference between (K π) K systems is constructive.
- Kπ amplitude is symmetrized

$$\begin{aligned} \eta_{c} = K_{s} K^{+} \pi^{-} \\ A_{S-\text{wave}} &= \frac{1}{\sqrt{2}} \left(a_{j}^{K^{+} \pi^{-}} e^{i\phi_{j}^{K^{+} \pi^{-}}} + a_{j}^{\overline{K}^{0} \pi^{-}} e^{i\phi_{j}^{\overline{K}^{0} \pi^{-}}} \right) \\ \text{where } a^{K^{+} \pi^{-}} (m) = a^{K_{S}^{0} \pi^{-}} (m) \text{ and } \phi^{K^{+} \pi^{-}} (m) = \phi^{K_{S}^{0} \pi^{-}} (m) \end{aligned} \qquad \begin{aligned} \eta_{c} = K^{+} K^{-} \pi^{0} \\ A_{S-\text{wave}} &= \frac{1}{\sqrt{2}} \left(a_{j}^{K^{+} \pi^{0}} e^{i\phi_{j}^{K^{+} \pi^{0}}} + a_{j}^{K^{-} \pi^{0}} e^{i\phi_{j}^{K^{-} \pi^{0}}} \right) \\ \text{where } a^{K^{+} \pi^{0}} (m) = a^{K^{-} \pi^{0}} (m) \text{ and } \phi^{K^{+} \pi^{0}} (m) = \phi^{K^{-} \pi^{0}} (m) \end{aligned}$$

- Mass spectrum is divided into 30 equally spaced mass intervals 60 MeV wide.
- Each interval has 2 new free parameters, A_i and $\varphi_{i.}$ with a total of 58
- Fix A=1 and $\phi = \pi/2$ in one arbitrary bin (bin 11 with mass=1.45 GeV/c²)
- Other resonance contributions, A₂, A₃, etc..., are parameterized as Breit-Wigner amplitudes multiplied by their corresponding angular functions.
- Backgrounds are interpolated from sideband regions: K*(892) entirely background.

MIPWA of $\eta_c \rightarrow K_s K^+ \pi^-$

- Dominance of $K\pi$ S-wave with contributions from $a_0\pi$ and K*(1430)K.
 - New resonance $a_0(1950)$ with 2.5 σ significance.

• Good description of the data!

	$\eta_c \to K^0_S K^{\pm} \pi^{\mp}$					
Amplitude	Fraction $(\%)$	Phase (rad)				
$(K\pi \ \mathcal{S}\text{-wave}) \ \overline{K}$	$107.3 \pm 2.6 \pm 17.9$	fixed				
$a_0(980)\pi$	$0.8 \pm 0.5 \pm 0.8$	$1.08 \pm 0.18 \pm 0.18$				
$a_0(1450)\pi$	$0.7 \pm 0.2 \pm 1.4$	$2.63 \pm 0.13 \pm 0.17$				
$a_0(1950)\pi$	$3.1 \pm 0.4 \pm 1.2$	$-1.04 \pm 0.08 \pm 0.77$				
$a_2(1320)\pi$	$0.2 \pm 0.1 \pm 0.1$	$1.85 \pm 0.20 \pm 0.20$				
$K_2^*(1430)\overline{K}$	$4.7 \pm 0.9 \pm 1.4$	$4.92 \pm 0.05 \pm 0.10$				
Total	$116.8 \pm 2.8 \pm 18.1$	Interference effects				
$-2\log \mathcal{L}$	-4314.2					
$\chi^2/N_{ m cells}$	301/254 €1.17					

Racha Cheaib, McGill University

MIPWA of $\eta_c \rightarrow K^+ K^- \pi^0$

- Dominance of K π S-wave with contributions from $a_0\pi$ and K*(1430)K.
 - New resonance $a_0(1950)$ with **4.2** σ significance

Good description of the data!

a₀(1950) resonance

MIPWA fit improved with the a₀(1950) resonance in both η_c channels.

Isobar Model of $\eta_c \rightarrow K_s K^+ \pi^-$

- Resonances are modeled as Breit-Wigner multiplied by their angular functions.
- $K\pi$ S-wave is parametrized as a superposition of interfering $K_0^*(1430)$, $K_0^*(1950)$, and non-resonant amplitude (NR).

Poor description of data!

Compare with **1.17** with MIWPA fit.

Similar result for $K^+K^-\pi^0$

I=1/2 K π S-wave Amplitude

- Amplitude extending up to a mass of 2.5 GeV/c².
- Due to isospin conservation, no contribution from I=3/2. $\eta_c \rightarrow K^+ K^- \pi^0$

 $\eta_c \rightarrow K_s K^+ \pi^-$

I=1/2 K π S-wave Amplitude

Difficulty separating I=1/2 and I=3/2 contributions in LASS and E791 experiments.

Conclusion

- Dalitz plot analysis of $\eta_c \rightarrow K \overline{K} \pi$ using MIPWA and isobar model.
 - **Improved** description with MIPWA.
 - $a_0(1950)$ resonance with m= $1931\pm14\pm22$ MeV/c² and $\Gamma=271\pm22\pm29$ MeV with significance of **2.5** σ and **4.2** σ .
- Extraction of I=1/2 K π S-wave using MIPWA
 - Amplitudes show distinct differences with previous measurements by E791 and LASS.

BACK UP SLIDES

 $\gamma\gamma \rightarrow K_{s} K^{+}\pi^{-}, K_{s} \rightarrow \pi^{+}\pi^{-}$

- Consider only events with 4 charged tracks ۰ and no more than 5 photon candidates with energy >100 MeV.
- Vertex fit of oppositely charged tracks to ۲ select Ks candidates.
 - No PID on daughter π , decay length >0.2 cm.
 - Mass +/-2 σ from Gaussian-fitted $\pi^+\pi^-$ mass spectrum with m=497.24 MeV/ c^2 , σ =2.9 MeV/ c^2 .
- Loose Kaon and Pion PID for remaining two ۲ tracks.
- Background from ISR events with $J^{PC} = 1^{--}$ resonance production suppressed:

 $M_{rec}^2 = (p_{e+e} - p_{rec})^2 > 10 \text{ GeV/c}^2$ 2016-02-12 Racha Cheaib, McGill University

Maximize P•S: $P=N_s/(N_s+N_h)$ $S=N_s/V(N_s+N_h)$

η_{c} sideband regions

- Uniformly distributed resonant structures in multi-channel likelihood.
- Weaker in K⁺π⁻ than in K⁰_sπ⁻ due to interference between I=0 and I=1 configurations.

- Backgrounds from a₀(980), a₀(1450), a₂(1320), K^{*}(892), K^{*}₀(1430), K^{*}₂(1430).
- Spin-1 resonance contributions are entirely from background.

MIPWA of $\eta_c \rightarrow K K \pi$

Systematic uncertainties:

- 1. Fit bias.
 - Generate signal MC starting from fit.
- Replace Kπ S-wave representation with cubic spline
- 3. Remove low significance contributions
- 4. Vary signal purity
- 5. Account for efficiency variation as a function of η_{c} mass.

		$\eta_c \rightarrow K^0_S K^{\pm} \pi^{\mp}$		$\eta_c \rightarrow K^+ K^- \pi^0$	
Ν	$K\pi$ mass	Amplitude	Phase (rad)	Amplitude	Phase (rad)
1	0.67	$0.119 \pm 0.100 \ \pm 0.215$	$0.259 \pm 0.577 \ \pm 1.290$	$0.154 \pm 0.350 \ \pm 0.337$	$3.786 \pm 1.199 \pm 0.857$
2	0.73	$0.103 \pm 0.043 \ \pm 0.113$	$-0.969 \pm 0.757 \ \pm 1.600$	$0.198 \pm 0.124 \ \pm 0.216$	$3.944 \pm 0.321 \pm 0.448$
3	0.79	$0.158 \pm 0.086 \ \pm 0.180$	$0.363 \pm 0.381 \ \pm 1.500$	$0.161 \pm 0.116 \ \pm 0.098$	$1.634 \pm 0.584 \pm 0.448$
4	0.85	$0.232 \pm 0.128 \ \pm 0.214$	$0.448 \pm 0.266 \ \pm 1.500$	$0.125 \pm 0.118 \ \pm 0.031$	$3.094 \pm 0.725 \pm 0.448$
5	0.91	$0.468 \pm 0.075 \ \pm 0.194$	$0.091 \pm 0.191 \ \pm 0.237$	$0.307 \pm 0.213 \ \pm 0.162$	$0.735 \pm 0.326 \ \pm 0.255$
6	0.97	$0.371 \pm 0.083 \ \pm 0.129$	$0.276 \pm 0.156 \ \pm 0.190$	$0.528 \pm 0.121 \ \pm 0.055$	$-0.083 \pm 0.178 \ \pm 0.303$
7	1.03	$0.329 \pm 0.071 \ \pm 0.102$	$0.345 \pm 0.164 \ \pm 0.273$	$0.215 \pm 0.191 \ \pm 0.053$	$0.541 \pm 0.320 \pm 0.638$
8	1.09	$0.343 \pm 0.062 \ \pm 0.062$	$0.449 \pm 0.196 \ \pm 0.213$	$0.390 \pm 0.146 \ \pm 0.046$	$0.254 \pm 0.167 \ \pm 0.144$
9	1.15	$0.330 \pm 0.070 \ \pm 0.081$	$0.687 \pm 0.167 \ \pm 0.221$	$0.490 \pm 0.135 \pm 0.089$	$0.618 \pm 0.155 \ \pm 0.099$
10	1.21	$0.450 \pm 0.059 \ \pm 0.042$	$0.696 \pm 0.156 \ \pm 0.226$	$0.422 \pm 0.092 \ \pm 0.102$	$0.723 \pm 0.242 \pm 0.267$
11	1.27	$0.578 \pm 0.048 \ \pm 0.112$	$0.785 \pm 0.208 \ \pm 0.358$	$0.581 \pm 0.113 \ \pm 0.084$	$0.605 \pm 0.186 \ \pm 0.166$
12	1.33	$0.627 \pm 0.047 \ \pm 0.053$	$0.986 \pm 0.153 \pm 0.166$	$0.643 \pm 0.106 \ \pm 0.039$	$1.330 \pm 0.264 \ \pm 0.130$
13	1.39	$0.826 \pm 0.047 \ \pm 0.105$	$1.334 \pm 0.155 \ \pm 0.288$	$0.920 \pm 0.153 \ \pm 0.056$	$1.528 \pm 0.161 \pm 0.160$
14	1.45	1.000	1.570	1.000	1.570
15	1.51	$0.736 \pm 0.031 \ \pm 0.059$	$1.918 \pm 0.153 \ \pm 0.132$	$0.750 \pm 0.118 \pm 0.076$	$1.844 \pm 0.149 \pm 0.048$
16	1.57	$0.451 \pm 0.025 \ \pm 0.053$	$2.098 \pm 0.202 \ \pm 0.277$	$0.585 \pm 0.099 \ \pm 0.047$	$2.128 \pm 0.182 \ \pm 0.110$
17	1.63	$0.289 \pm 0.029 \ \pm 0.065$	$2.539 \pm 0.292 \ \pm 0.180$	$0.366 \pm 0.079 \ \pm 0.052$	$2.389 \pm 0.230 \ \pm 0.213$
18	1.69	$0.159 \pm 0.036 \ \pm 0.089$	$1.566 \pm 0.308 \ \pm 0.619$	$0.312 \pm 0.074 \ \pm 0.043$	$1.962 \pm 0.195 \pm 0.150$
19	1.75	$0.240 \pm 0.034 \ \pm 0.067$	$1.962 \pm 0.331 \ \pm 0.655$	$0.427 \pm 0.093 \pm 0.063$	$1.939 \pm 0.150 \ \pm 0.182$
20	1.81	$0.381 \pm 0.031 \ \pm 0.059$	$2.170 \pm 0.297 \ \pm 0.251$	$0.511 \pm 0.094 \ \pm 0.063$	$2.426 \pm 0.156 \ \pm 0.277$
21	1.87	$0.457 \pm 0.035 \ \pm 0.085$	$2.258 \pm 0.251 \ \pm 0.284$	$0.588 \pm 0.098 \ \pm 0.080$	$2.242 \pm 0.084 \ \pm 0.210$
22	1.93	$0.565 \pm 0.042 \pm 0.067$	$2.386 \pm 0.255 \ \pm 0.207$	$0.729 \pm 0.114 \pm 0.095$	$2.427 \pm 0.098 \pm 0.254$
23	1.99	$0.640 \pm 0.044 \ \pm 0.055$	$2.361 \pm 0.228 \ \pm 0.092$	$0.777 \pm 0.119 \ \pm 0.075$	$2.306 \pm 0.102 \ \pm 0.325$
24	2.05	$0.593 \pm 0.046 \ \pm 0.065$	$2.329 \pm 0.235 \ \pm 0.268$	$0.775 \pm 0.134 \ \pm 0.075$	$2.347 \pm 0.107 \ \pm 0.299$
25	2.11	$0.614 \pm 0.057 \ \pm 0.083$	$2.421 \pm 0.230 \ \pm 0.169$	$0.830 \pm 0.134 \ \pm 0.078$	$2.374 \pm 0.105 \ \pm 0.199$
26	2.17	$0.677 \pm 0.067 \ \pm 0.117$	$2.563 \pm 0.218 \ \pm 0.137$	$0.825 \pm 0.140 \pm 0.070$	$2.401 \pm 0.127 \ \pm 0.189$
27	2.23	$0.788 \pm 0.085 \ \pm 0.104$	$2.539 \pm 0.228 \ \pm 0.241$	$0.860 \pm 0.158 \ \pm 0.123$	$2.296 \pm 0.131 \ \pm 0.297$
28	2.29	$0.753 \pm 0.097 \ \pm 0.125$	$2.550 \pm 0.234 \ \pm 0.168$	$0.891 \pm 0.167 \ \pm 0.133$	$2.320 \pm 0.131 \ \pm 0.273$
29	2.35	$0.646 \pm 0.096 \ \pm 0.118$	$2.315 \pm 0.241 \ \pm 0.321$	$0.994 \pm 0.202 \ \pm 0.076$	$2.297 \pm 0.153 \ \pm 0.197$
30	2.41	$0.789 \pm 0.184 \pm 0.187$	$2.364 \pm 0.336 \pm 0.199$	$0.892 \pm 0.322 \pm 0.098$	$2.143 \pm 0.292 \pm 0.393$

Effect of systematic uncertainties is an average of 16 %.

Phys. Rev. D 89, 112004 (2014)

•Located at SLAC National Accelerator Laboratory

•Asymmetric e+e- collisions at CM energy of 10.58 GeV .

•Data collection 1999 to 2008.

Υ(2S)

10.00 10.02

Y(3S)

10.37

Mass (GeV/ c^2)

10.54

10.34

9.44 9.46

Ϋ́(1S)

25

20

15

10

5

 \rightarrow Hadrons)(nb)

д (е⁺-

Resonance Parameterization

- Each amplitude is parameterized as the product of a complex Breit-Wigner and a real angular term T: $A(x, y) = BW(m) \times T(\Omega).$
- Relativistic BW is written as: $D \rightarrow rc, r \rightarrow ab$

$$BW(M_{AB}) = \frac{F_r F_D}{M_r^2 - M_{AB}^2 - i\Gamma_{AB}M_r}$$

$$\Gamma_{AB} = \Gamma_r \left(\frac{p_{AB}}{p_r}\right)^{2J+1} \left(\frac{M_r}{M_{AB}}\right) F_r^2$$

- F_r and F_D are form factors
- f₀(980) amplitude parameterized as:

$$A_{f_0(980)} = \frac{1}{m_0^2 - m^2 - im_0\Gamma_0\rho_{KK}},$$

$$\rho_{KK} = 2p/m$$

 $m_0 = (0.922 \pm 0.003_{\text{stat}}) \text{ GeV}/c^2,$

 $\Gamma_0 = (0.24 \pm 0.08_{\text{stat}}) \text{ GeV}.$

- Coupled channed BW (Flatte) formalisim does not take into account coupling to tjheππ channel:
- $a_0(980)$ amplitude parameterized using Flatte formalism, because of its coupling to KK and $\pi\eta$:

$$F_0 = \beta_0' \frac{\binom{81}{g_2}}{m_0^2 - m^2 - i(\rho_1 g_1^2 + \rho_2 g_2^2)}$$

2016-02-12

• $k\pi$ S-wave is taken as reference amplitude,

$$A = |A_1 + c_2 A_2 e^{\phi^2} + c_3 A_3 e^{\phi^3} + \dots |$$

- Other resonance contributions, A₂, A₃, etc..., are parametrized as Breit-Wigner amplitudes multiplied by their corresponding angular functions.
- Mass spectrum is divided into 30 equally spaced mass intervals 60 MeV wide.
- In each interval, 2 new free parameters are added: A_i and ϕ_i

Outline

- Theoretical Motivation
- $\gamma\gamma \rightarrow K_{s}K^{+}\pi^{-}$ and $\gamma\gamma \rightarrow K^{+}K^{-}\pi^{0}$
 - PHYSICAL REVIEW D 89, 112004 (2014)
- Model Independent Partial Wave Analysis
- $K\pi$ S-wave amplitude