Heavy quark production at LHCb

Chris Burr on behalf of the LHCb Collaboration

Lake Louise Winter Institute Feburary 7, 2016

The University of Manchester

Motivation

Why study heavy flavour production?

- $\cdot\,$ Run 2 of the LHC probes a new energy, $\sqrt{s}=$ 13 TeV
- $\cdot\,$ LHCb provides a unique kinematic region for testing QCD

Why study heavy flavour production?

- $\cdot\,$ Run 2 of the LHC probes a new energy, $\sqrt{s}=$ 13 TeV
- LHCb provides a unique kinematic region for testing QCD

J/ψ cross-section

- Probes perturbative QCD, at $c\overline{c}$ production, and non-perturbative QCD, at J/ ψ hadronisation
- Can help distinguish between non-relativistic QCD^a and colour singlet model^b
- Previously measured by LHCb at $\sqrt{s} = 2.76 \text{ TeV}^c$, 7 TeV^d and 8 TeV^e
 - ^a Hua-Sheng Shao et al. JHEP. 05. 2015 .
 - ^b V. G. Kartvelishvili et al. Sov. J. Nucl. Phys. 28. 1978 .
 - ^c LHCb collaboration. *Eur. Phys. J.*. C74. 2014 .
 - ^d LHCb collaboration. *Eur. Phys. J.*. C71. 2011 .
 - ^e LHCb collaboration. *JHEP*. 11. 2015 .

Why study heavy flavour production?

- $\cdot\,$ Run 2 of the LHC probes a new energy, $\sqrt{s}=$ 13 TeV
- LHCb provides a unique kinematic region for testing QCD

cc cross-section

- Constrain parton distributions at low x^a
- Estimate charm backgrounds in atmospheric neutrino experiments^b

• $\sqrt{s} = 13$ TeV corresponds to 90 PeV neutrinos

• Previously measured by LHCb at $\sqrt{s} = 7 \text{ TeV}^c$

^a Oleksandr Zenaiev et al. Eur. Phys. J.. C75. 2015 .

^b Atri Bhattacharya et al. JHEP. 06. 2015 .

^c LHCb collaboration. *Nucl. Phys.* B871. 2013 .

· Acceptance between 2 and 5 in pseudorapidity

- Acceptance between 2 and 5 in pseudorapidity
- Excellent primary vertex and momentum resolution

- Acceptance between 2 and 5 in pseudorapidity
- Excellent primary vertex and momentum resolution

- · Acceptance between 2 and 5 in pseudorapidity
- Excellent primary vertex and momentum resolution
- Particle identification with RICH detectors to separate π^{\pm} , K^{\pm} and p/\overline{p}

- · Acceptance between 2 and 5 in pseudorapidity
- Excellent primary vertex and momentum resolution
- Particle identification with RICH detectors to separate π^{\pm} , K^{\pm} and p/\overline{p}

LHC Run 2 trigger changes

- Trigger/offline reconstruction unified
- Real time alignment and calibration
- Analysis quality reconstruction available in the trigger

LHC Run 2 trigger changes

- New Turbo Stream added¹
- Raw event can be discarded reducing event size (~14x)
- Total output rate can be increased
- Many analyses can now be done using the trigger reconstruction

¹ Sean Benson et al. J. Phys. Conf. Ser. 664. 2015 .

Methodology

Differential production cross-section of H_c given by

$$\frac{\mathrm{d}^{2}\sigma_{i}\left(H_{c}\right)}{\mathrm{d}p_{T}\,\mathrm{d}y}\approx\frac{1}{\Delta p_{T}\Delta y}\cdot\frac{N_{i}\left(H_{c}\rightarrow f+\mathrm{c.c.}\right)}{\epsilon_{i,\mathrm{tot}}\left(H_{c}\rightarrow f\right)\cdot\mathcal{B}\left(H_{c}\rightarrow f\right)\cdot\mathcal{L}_{\mathrm{int}}}$$

where:

- $i a bin in p_T and y$
- $N(H_c \rightarrow f + \text{c.c.})$ signal yield
- $\epsilon_{\text{tot}} (H_c \rightarrow f)$ total signal efficiency
 - Factorised into components
 - Evaluated using independent data samples if possible
 - Estimated from simulation where necessary
- $\cdot \mathcal{B}(H_c \rightarrow f)$ branching ratio to the decay products
- + \mathcal{L}_{int} total integrated luminosity calibrated using beam-gas imaging^2

² LHCb collaboration. JINST. 9. 2014 .

Decays involving b quarks

Two main sources of charm at LHCb:

- Prompt
 - · Direct production at the primary vertex
 - Decays of higher resonances
- Secondary
 - · Decays of B hadrons

13 TeV J/ ψ cross-section

- Integrated luminosity of $3.05 \pm 0.12 \text{ pb}^{-1}$ (collected July 2015)
- + Uses samples of J/ $\psi
 ightarrow \mu^+ \mu^-$

J/ψ analysis

- Integrated luminosity of $3.05 \pm 0.12 \text{ pb}^{-1}$ (collected July 2015)
- + Uses samples of J/ $\psi
 ightarrow \mu^+ \mu^-$
- Two dimensional unbinned maximum likelihood fit
 - Mass fit to remove combinatorial background

J/ψ analysis

• Integrated luminosity of $3.05 \pm 0.12 \text{ pb}^{-1}$ (collected July 2015)

• Uses samples of J/
$$\psi \rightarrow \mu^+ \mu^-$$

- Two dimensional unbinned maximum likelihood fit
 - · Mass fit to remove combinatorial background
 - + Fit the pseudo proper time distribution of the J/ ψ vertex

D

(z_{1/w}-z_n

p

Integrated over acceptance:

 $\sigma (\text{prompt J}/\psi, p_T < 14 \,\text{GeV}, 2.0 < y < 4.5) = 15.30 \pm 0.03 \pm 0.86 \,\mu\text{b}^{-1}$

${\rm J}/\psi$ from b cross-section

Integrated over acceptance:

 $\sigma (J/\psi \text{ from } b, p_T < 14 \text{ GeV}, 2.0 < y < 4.5) = 2.34 \pm 0.01 \pm 0.13 \,\mu\text{b}^{-1}$ $\sigma (pp \to b\overline{b}X) = 515 \pm 2 \pm 53 \,\mu\text{b}^{-1}$

$\sqrt{\rm s}$ dependence of J/ ψ cross-section

13 TeV $c\overline{c}$ and D meson cross-sections

- Integrated luminosity of $4.98 \pm 0.19 \text{ pb}^{-1}$ (collected July 2015)
- Uses samples of D^0 , D^+ , D_s^+ and D^{*+} :
 - $\cdot D^0 \rightarrow K^- \pi^+$
 - $\cdot \ \mathrm{D^+} \to \mathrm{K^-} \pi^+ \pi^+$
 - $\cdot D_{\rm s}^+ \rightarrow \left(\phi \rightarrow K^- K^+\right) \pi^+$
 - $\cdot D^{*+} \to \left(D^0 \to K^- \pi^+ \right) \pi^+$

$c\overline{c}$ analysis

- Integrated luminosity of $4.98 \pm 0.19 \text{ pb}^{-1}$ (collected July 2015)
- Two one dimensional unbinned maximum likelihood fits
 - Mass fit to remove combinatorial background

$c\overline{c}$ analysis

- Integrated luminosity of $4.98 \pm 0.19 \text{ pb}^{-1}$ (collected July 2015)
- Two one dimensional unbinned maximum likelihood fits
 - Mass fit to remove combinatorial background
 - Second fit to $\log(IP\chi^2)$ to separate prompt and secondary charm

D meson cross-sections

Integrated over acceptance:

 $\sigma(D^{0}, p_{T} < 8 \text{ GeV}, 2.0 < y < 4.5) = 3370 \pm 4 \pm 200 \,\mu\text{b}^{-1}$ $\sigma(D^{+}, p_{T} < 8 \text{ GeV}, 2.0 < y < 4.5) = 1290 \pm 8 \pm 190 \,\mu\text{b}^{-1}$ $\sigma(D_{s}^{+}, 1 < p_{T} < 8 \text{ GeV}, 2.0 < y < 4.5) = 460 \pm 13 \pm 100 \,\mu\text{b}^{-1}$ $\sigma(D^{*+}, 1 < p_{T} < 8 \text{ GeV}, 2.0 < y < 4.5) = 880 \pm 5 \pm 140 \,\mu\text{b}^{-1}$

$c\overline{c}$ cross-section

Integrated over acceptance:

 $\sigma(pp \rightarrow c\overline{c}X, p_T < 8 \text{ GeV}, 2.0 < y < 4.5) = 2940 \pm 3 \pm 180 \pm 160 \,\mu\text{b}^{-1}$

D meson cross-section ratios between species

3.0 < y < 3.5

3.5 < y < 4.0

4.0 < v < 4.5

3.0 < y < 3.5

3.5 < y < 4.0

4.0 < y < 4.5

10 12 14 p_T [GeV/c]

10 12 14 p_T [GeV/c]

D meson cross-section ratios between energies

bottle differential cross-section ratios between $\sqrt{s} = 13$ TeV and $\sqrt{s} = 7$ TeV for D^0

Double differential cross-section ratios between $\sqrt{s} = 13 \text{ TeV}$ and $\sqrt{s} = 7 \text{ TeV}$ for D^+

Recent Run 1 result

Production of Υ and open charm hadrons via double parton scattering

- Observation of Υ (1S) D^0 , Υ (2S) D^0 , Υ (1S) D^+ , Υ (2S) D^+ and Υ (1S) D_s^+
- · Cross-sections measured for Υ (1S) D^0 and Υ (1S) D^+
- · Results in agreement with double parton scattering expectations
- Significantly exceed the expected yield in the single parton scattering approach

- Excellent start to LHC Run 2 for LHCb
- New Turbo Stream working well
- + LHCb has already performed measurements at $\sqrt{s}=$ 13 TeV for
 - \cdot J/ ψ
 - · J/ ψ from b
 - bb
 - D^0 , D^+ , D^+_s and D^{*+}
 - c<u>c</u>
- More measurements coming soon

Questions?