First Observation of Doubly Cabibbo Suppressed Decay of a Charmed Baryon, $\Lambda_c^+ \rightarrow p K^+ \pi^-$

13th, Feb., 2016 LLWI 2016

Seongbae Yang for the Belle collaboration Department of Physics and Astronomy Seoul National University

1. Introduction

■ Doubly Cabibbo-suppressed (DCS) decay, $\Lambda_c^+ \rightarrow pK^+\pi^-$

• Previous study \rightarrow No positive results

• Naïve expectation of branching ratio, $\frac{B(\Lambda_c^+ \to pK^+\pi^-)}{B(\Lambda_c^+ \to pK^-\pi^+)} \approx \tan^4\theta_{\rm C} (= 0.00285),$ where $\theta_{\rm C}$ is a Cabibbo mixing angle.

• Contribution of W exchange in Λ_c^+ decay

 \rightarrow The *W* exchange is prohibited in DCS decay, but allowed in CF decay.

 \rightarrow A contribution of *W* exchange can be estimated.

*Feyman diagram of *W* exchange of the CF decay.

- Data sample → Full data sample of Belle, 980 fb^{-1} , at and near $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S), \Upsilon(4S)$, and $\Upsilon(5S)$ is used.
- Analysis
- → Optimization by using a control sample, $\Lambda_c^+ \rightarrow pK^-\pi^+$, to keep a blinded condition.
- \rightarrow Reconstruction efficiency and backgrounds are estimated by MC samples.
- \rightarrow Most systematic sources (efficiency, phase space, etc.) for the branching fraction cancel out.

*example: scaled momentum, x_p \rightarrow A condition with maximum FoM is selected.

■ Relative efficiency → $\epsilon(\Lambda_c^+, CF)/\epsilon(\Lambda_c^+, DCS)$ from MC study. $\epsilon = \frac{\sum_i \epsilon_i BR_i}{\sum_j BR_j}$,

where ϵ_i : efficiency of *i*th sub-decay channel, BR_i : branch ratio of *i*th sub-decay channel

→ Sub-decay channels

Sub Channel of CF decay, $\Lambda_c^+ \rightarrow p K^- \pi^+$	Branching Ratio *PDG2014	Sub Channel of DCS decay $\Lambda_c^+ \rightarrow p K^+ \pi^-$	Branching Ratio
$p\overline{K}^*(892)^0; \overline{K}^*(892)^0 \to K^-\pi^+$	0.21±0.03 $pK^*(892)^0 \stackrel{.}{,} K^*(892)^0 \rightarrow K^+\pi^-$		0.23
$\Delta(1232)^{++}K^{-}; \Delta(1232)^{++} \rightarrow p\pi^{+}$	0.17±0.04 $\Delta (1232)^0 K^+ \Delta (1232)^0 \to p\pi^-$		0.18
$\Lambda(1520)\pi^+;\Lambda(1520)\to pK^-$	0.08±0.02	$pK^+\pi^-$ (non-resonant)	0.59
$pK^{-}\pi^{+}$ (non-resonant)	0.55±0.06	*They are just assumed branching ratios and sub-channels from CF	

decay.

 $\rightarrow \epsilon(\Lambda_{\rm c}^+, \ CF)/\epsilon(\Lambda_{\rm c}^+, \ DCS) = 1.01$

■ Peaking background from singly Cabibbo-suppressed (SCS) decay, $\Lambda_c^+ \rightarrow \Lambda K^+$; $\Lambda \rightarrow p\pi^-$

→ Yield of the SCS decay is estimated as follows, $s(SCS) = \frac{BR(SCS)}{BR(CF)} \times \frac{\epsilon(SCS)}{\epsilon(CF)} \times s(CF),$ where $\frac{BR(SCS)}{BR(CF)} = 0.61 \pm 0.13$ % (PDG2014), $\frac{\epsilon(SCS)}{\epsilon(CF)} = 0.023$, and $s(CF) = 1.452 \times 10^{6}.$

 \rightarrow The estimated yield is 208 events.

■ Background distributions of the CF and the DCS decays → MC sample (790 fb^{-1}) not including the DCS decay events.

 \rightarrow They are combinatorial or accidental backgrounds, and their distributions are flat.

→ Fitting function: 2Gaussians with same mean (signal) + 5^{th} Polynomials (background)

 \rightarrow (1.452 \pm 0.015(*Stat.*)) × 10⁶ events

Signal yield of the DCS decay

→ Fitting function: 2Gaussians with fixed mean and width to be same as the CF decay (signal) + 3^{rd} Polynomials (background)

→ $3587 \pm 380(Stat.)$ events including the SCS decay and 3379 events only for the DCS decay

 \rightarrow Statistical significance (after subtracting the SCS decay): 9.4 σ

Systematics of the branching ratio

Source	Uncertainty (%)	
Background from SCS signal	±2.3	
Intermediate state	±5.4	
Binning and fit range (DCS)	±5.5	
Binning and fit range (CF)	±0.6	
PDF shape (DCS)	±2.6	
PDF shape (CF)	±1.4	
MC statistics	±0.4	
PID	±2.2	
Charge-conjugate mode	±1.8	
Total	±9.0	

Branching ratio between the DCS and CF decays

$$\frac{\partial BR(DCS)}{\partial BR(CF)} = (2.35 \pm 0.27(Stat.) \pm 0.21(Syst.)) \times 10^{-3}$$
$$= (0.82 \pm 0.12(total)) \times \tan^{4}\theta_{C}$$

- → W exchange does not make a large contribution to Λ_c^+ decay.
- → $BR(DCS) = (1.61 \pm 0.23(total)^{+0.07}_{-0.08}(CF)) \times 10^{-4}$ * $BR(CF) = (6.84^{+0.32}_{-0.40}) \times 10^{-2}$ (PRL, 113, 042002(2014))

Summary

- 1. The $\Lambda_c^+ \rightarrow pK^+\pi^-$ is clearly observed, and it is the first observation of DCS decay of a charmed baryon.
- 2. The branching ratio between the DCS and CF decays is determined to be $(2.35 \pm 0.27(Stat.) \pm 0.21(Syst.)) \times 10^{-3}$, and it corresponds to $(0.82 \pm 0.12(total)) \times \tan^4\theta_{\rm C}$.
- 3. Naively, the result indicates the W exchange does not make a large contribution to Λ_c^+ decay.

Backup Pages

■ Events selection criteria →FoM study performed with typical condition

Selection Type	Quantity	Typical Condition	Selected Condition		
Impact Parameter for all particles					
	dr	$< 0.30 { m ~cm}$	$< 0.10 { m ~cm}$		
	dz	$< 3.00 \mathrm{~cm}$	$< 2.00 {\rm ~cm}$		
PID(K)					
	$\mathcal{R}(K \pi)$	> 0.60	> 0.90		
	$\mathcal{R}(p K)$	< 0.40	< 0.60		
PID(p)					
	$\mathcal{R}(p K)$	> 0.80	> 0.90		
	$\mathcal{R}(p \pi)$	> 0.80	> 0.90		
$PID(\pi)$					
	$\mathcal{R}(K \pi)$	< 0.40	< 0.60		
	$\mathcal{R}(p \pi)$	< 0.40	< 0.60		
Lepton PID					
	$\mathcal{R}(e)$	< 0.95	< 0.90		
Number of SVD hits for all particles					
	$r\phi$ -layer	≥ 1	≥ 1		
	z-layer	≥ 1	≥ 1		
scaled momentum					
	x_p	> 0.55	> 0.53		
χ^2 of vertex fitting					
	χ^2	< 30	< 40		

■ Systematical uncertainty from SCS signal
 → By comparing real yield and calculated yield with loosened selection criteria for the vertex point.

→Maximum difference, 38 % of expected signal yield

* Systematical Uncertainty (Intermediate States)

Systematical uncertainty from intermediate states (CF) \rightarrow Efficiency on Dalitz plot

 \rightarrow Reconstruction efficiency can be estimated by weighting them by real data or MC sample. Weighting by real data: 14.48 % Weighting by MC sample: 14.04 % \rightarrow The difference between them (0.44 %) is used for the systematic. 17 * Systematical Uncertainty (Intermediate States)

Systematical uncertainty from intermediate states (DCS)

$$\rightarrow \epsilon \left(\frac{\sum_{i} \epsilon_{i} BR_{i}}{\sum_{j} BR_{j}} \right) - \epsilon (\text{sub-channel})$$

The maximum difference between the overall reconstruction efficiency and efficiencies of the assumed sub-channels is used.

→ Overall:
$$\epsilon \left(\frac{\sum_{i} \epsilon_{i} BR_{i}}{\sum_{j} BR_{j}} \right) = 14.20 \pm 0.05\%$$

Sub-channels:

 $\epsilon(p\overline{K}^*(892)^0, \overline{K}^*(892)^0 \rightarrow K^-\pi^+) = 13.89 \pm 0.10\%$ $\epsilon(\Delta(1232)^0K^+, \Delta(1232)^0 \rightarrow p\pi^-) = 13.56 \pm 0.10\%$ $\epsilon(non - resonant) = 14.55 \pm 0.08\%$ Maximum difference: 0.64%