The meaning of precision in top-quark physics at the LHC

M. Czakon

Lake Louise, 9th February 2016

Outline

• Top-quark pair production

- High-precision QCD
- Boosted-top regime resummation
- Off-shell effects
- Electroweak corrections
- Single-top production

HIGH-PRECISION QCD

General remarks

- High precision should be associated with fixed order perturbation theory:
 - Clear advantage: not many ambiguities
 - But: beware of range of applicability
 - Currently at NNLO for on-shell production

MC, Fiedler, Heymes, Mitov `12 - `15

Partial independent results by: Abelof, Gehrmann-De Ridder, Maierhofer, Pozzorini `14 Catani, Grazzini, Torre `14 - `15

Total cross section

Early applications

Ratio to NNPDF2.3 NNLO, $\alpha_{s} = 0.118$

MC, Mangano, Mitov, Rojo `13

arXiv:1307.1907 (CMS-TOP-12-022)

Current applications

- Same as before
- + Normalization of backgrounds (most frequent)
- One example out of many: search for SUSY in VBF events

Process	$\mu^{\pm}\mu^{\mp}jj$	$e^{\pm}\mu^{\mp}jj$	$\mu^{\pm} au_{ m h}^{\mp} j j$	$ au_{ m h}^{\pm} au_{ m h}^{\mp}jj$
Z+jets	4.3 ± 1.7	$3.7^{+2.1}_{-1.9}$	19.9 ± 2.9	12.3 ± 4.4
W+jets	< 0.1	$4.2^{+3.3}_{-2.5}$	17.3 ± 3.0	2.0 ± 1.7
VV	2.8 ± 0.5	3.1 ± 0.7	2.9 ± 0.5	0.5 ± 0.2
tī	24.0 ± 1.7	$19.0^{+2.3}_{-2.4}$	11.7 ± 2.8	_
QCD		_		6.3 ± 1.8
Higgs boson	1.0 ± 0.1	1.1 ± 0.5		1.1 ± 0.1
VBF Z		—		0.7 ± 0.2
Total	32.2 ± 2.4	$31.1_{-4.1}^{+4.6}$	51.8 ± 5.1	22.9 ± 5.1
Observed	31	22	41	31

Perturbation theory convergence

Concurrent uncertainties:

Scales	~ 3%
pdf (at 68%cl)	~ 2-3%
$lpha_{ m s}$ (parametric)	~ 1.5%
m _{top} (parametric)	~ 3%

Soft gluon resummation makes a difference:

3%

5% ->

Perturbation theory convergence

- It has been argued that it is better to use the MS mass to improve convergence
- Is there a better scale in the on-shell scheme?
- Relevant for differential Monte Carlo description

Alekhin, Blümlein, Moch `13

Perturbation theory convergence

- Reducing error at NNLO to the level of NNLO + NNLL important for total cross sections
- In particular since complete NNLL PDFs not available

Exp.	E _{CM} [GeV]	α _s (M _Z)	Exp.	scale	PDF	m _{top}	E _{beam}	total
ATLAS	7000	0.1207	±0.0017	±0.0014	±0.0014	±0.0018	±0.0009	±0.0033
ATLAS	8000	0.1168	±0.0018	±0.0015	±0.0013	±0.0018	±0.0008	±0.0033
CMS	7000	0.1184	±0.0016	±0.0014	±0.0014	±0.0018	±0.0008	±0.0032
CMS	8000	0.1174	±0.0017	±0.0015	±0.0013	±0.0018	±0.0008	±0.0033
CDF&D0	1960	0.1201	±0.0032	±0.0013	±0.0010	±0.0013	±0.0000	±0.0038
unweigted	average	0.1187						

plain NNLO with NNPDF23

Exp.	E _{CM} [GeV]	α _s (M _Z)	Exp.	scale	PDF	m _{top}	E _{beam}	total
ATLAS	7000	0.1223	±0.0018	±0.0025	±0.0014	±0.0018	±0.0009	±0.0040
ATLAS	8000	0.1182	±0.0019	±0.0026	±0.0013	±0.0019	±0.0009	±0.0041
CMS	7000	0.1199	±0.0017	±0.0025	±0.0014	±0.0018	±0.0008	±0.0039
CMS	8000	0.1189	±0.0018	±0.0026	±0.0013	±0.0018	±0.0008	±0.0040
TEV	1960	0.1215	±0.0034	±0.0027	±0.0010	±0.0014	±0.0000	±0.0047
unweigted	average	0.1201						

Workshop on high-precision α_s measurements: from LHC to FCC-ee CERN, 13 October 2015

α_s from σ (ttbar): preliminary new results

Gavin Salam (CERN), work in progress with Siggi Bethke, Günther Dissertori and Thomas Klijnsma

Open question of choice of theory: NNLL+NNLO v. NNLO. Latter increases result and uncertainty.

Cross section from factorization

 $\sigma_{h_1h_2}(s, m_t) = \sum_{ij} \int dx_1 dx_2 \phi_{i/h_1}(x_1, \mu_F) \phi_{j/h_2}(x_2, \mu_F) \hat{\sigma}_{ij}(x_1 x_2 s, m_t, \alpha_s(\mu_R), \mu_R, \mu_F)$

 σ_{h_1,h_2} hadronic cross section

 $h_{1,2}$ hadrons

- s square of collider energy
- m_t top quark mass

- $\phi_{i/h}$ PDF for parton *i* in hadron *h*
- $\hat{\sigma}_{ij}$ partonic cross section
- μ_R renormalization scale
- μ_F factorization scale
- In fixed order perturbation theory the only ambiguity is in the two-scale choice

- Total cross section depends only on the top-quark mass if the collider energy is fixed
- In principle, the scale must therefore be related to the mass
- Convergence improved at lower scales

- Total cross section depends only on the top-quark mass if the collider energy is fixed
- In principle, the scale must therefore be related to the mass
- Convergence improved at lower scales

• Careful with conclusions based on one PDF set only (particular attention to α_s)

- Monte Carlo simulations use dynamical scales since they are fully differential
- Several possible choices based on

- Monte Carlo simulations use dynamical scales since they are fully differential
- Several possible choices based on

• Conclusions stable w.r.t. the PDF set

- Even with fixed scale the agreement with data quite good
- Apparently convergence poor in normalized distributions

MC, Heymes, Mitov `15

- Much better impression of convergence for absolute distributions
- Stability of invariant mass important for searches
- Limited kinematical range only

MC, Heymes, Mitov `15

- Much better agreement with ATLAS data
- Lesson for the theorist: "spot-on agreement" may be dangerous

- Single-differential distributions introduce an additional scale, e.g. p_{τt} or m_{tt}
- It might make sense to interpolate between regimes

$$H_{T,\text{int}} = \sqrt{(m_t/2)^2 + p_{\mathrm{T}t}^2} + \sqrt{(m_t/2)^2 + p_{\mathrm{T}\bar{t}}^2}$$

- Total cross section reproduced
- Excellent K-Factor at high p_T

MC, Heymes, Mitov, preliminary

- Single-differential distributions introduce an additional scale, e.g. p_{Tt} or m_{tt}
- A different interpolation is better for m_{tt}

$$H_T = \sqrt{m_t^2 + p_{\mathrm{T}t}^2} + \sqrt{m_t^2 + p_{\mathrm{T}\bar{t}}^2}$$

- Total cross section reproduced
- Excellent scale variation at high m_{tt}
- Introducing different scales for different observables is typical of resummation, but not usual in Monte Carlo studies

MC, Heymes, Mitov, preliminary

- The issue is not that relevant once at NNLO
- It seems that the effect is largest on the scale dependence

MC, Heymes, Mitov, preliminary

BOOSTED-TOP REGIME RESUMMATION

General remarks

- Soft-gluon resummation up to NNLL well understood thanks to the work of many
 - Kidonakis
 - Moch, Uwer
 - Almeida, Sterman, Vogelsang
 - Ahrens, Ferroglia, Neubert, Pecjak, Yang
 - Beneke, Falgari, Schwinn
 - Cacciari, MC, Mitov, Mangano, Nason
 - Becher, Neubert
 - Broggio, Papanastasiou, Signer
- The "boosted" regime resummation builds on this by adding collinear singularities
 - Ferroglia, Pecjak, Scott, Yang `13

Physical effects for the "bulk"

Physical effects for the "bulk"

NLO vs NLO+NLL+Coulomb •

Kiyo et al. `08

Physical effects in the "tails"

- Additionally to the potentially small gluon energies, the top-quark mass is small
- In this "boosted" regime there are two kinds of logs

soft logs: $[\ln^{n}(1-z)/(1-z)]_{+}$ $(z \equiv M_{t\bar{t}}^{2}/\hat{s})$

small-mass (collinear) logs: $\ln m_t/M_{t\bar{t}}$

• Widely separated scales

Soft Limit:
$$\hat{s}, t_1, m_t^2 \gg \hat{s}(1-z)^2$$
Boosted Soft Limit: $\hat{s}, t_1 \gg m_t^2 \gg \hat{s}(1-z)^2 \gg m_t^2(1-z)^2$

• Factorization possible

$$\begin{split} d\widetilde{\hat{\sigma}}_{ij}(\mu_{f}) &= \operatorname{Tr}\left[\widetilde{\mathbf{U}}_{ij}(\mu_{f},\mu_{h},\mu_{s})\mathbf{H}_{ij}(M,\cos\theta,\mu_{h})\widetilde{\mathbf{U}}_{ij}^{\dagger}(\mu_{f},\mu_{h},\mu_{s})\right. \\ &\times \widetilde{s}_{ij}\left(\ln\frac{M^{2}}{\bar{N}^{2}\mu_{s}^{2}},M,\cos\theta,\mu_{s}\right)\right] \times \widetilde{U}_{D}^{2}(\mu_{f},\mu_{dh},\mu_{ds}) C_{D}^{2}(m_{t},\mu_{dh}) \,\widetilde{s}_{D}^{2}\left(\ln\frac{m_{t}}{\bar{N}\mu_{ds}},\mu_{ds}\right) \\ &+ \mathcal{O}\left(\frac{1}{N}\right) + \mathcal{O}\left(\frac{m_{t}^{2}}{M^{2}}\right) \end{split}$$
Ferroglia, Pecjak, Scott, Yang `13

• Notice that there are 5 (!) scales now

Results for the LHC

- Transverse momentum distribution modified by dynamical scales and resummation
- At low p_T better description of CMS data, slightly worse for ATLAS (not shown)
- Larger scale dependence?

Pecjak, Scott, Wang, Yang `15

Results for the LHC

- Observable dependent scale
- Results presented for 13 TeV as well
- At some point consistent matching to NNLO will become necessary
- When is true resummation needed?

Pecjak, Scott, Wang, Yang `15

OFF-SHELL EFFECTS

Decay modeling @ NLO

• Narrow-width approximation

NLO corrections to both production and decay, neglecting non-factorizable corrections, including spin correlations at NLO

- Double differential angular distributions to probe spin correlations
 Bernreuther, Brandenburg, Si, Uwer `04
- Flexible Monte Carlo implementation, fully differential level
- Spin correlations of top anti-top via decay products
- − pp \rightarrow tt + X \rightarrow WWbb + X \rightarrow lv lv bb + X (di-lepton)
- − pp \rightarrow tt + X \rightarrow WWbb + X \rightarrow ud lv bb + X (lepton + jet)

Melnikov, Schulze `09

– Can be implemented at NNLO :

decay at this level is already known

Gao, Li, Zhu `12 Brucherseifer, Caola, Melnikov `13

Decay modeling @ NLO

 Off-shell effects through direct simulation of the final state WWbb

> Denner, Dittmaier, Kallweit, Pozzorini `11 Bevilacqua, MC, van Hameren, Papadopoulos, Worek `11 Heinrich, Maier, Nisius, Schlenk, Winter `13

 Off-shell effects with massive b-quarks (simultaneous top-pair and single-top)

> Frederix `13 Cascioli, Kallweit, Maierhöfer, Pozzorini `13

very fancy interpolating scales

Decay modeling @ NLO

Available in the Narrow Width Approximation

Single-top

Non-resonant

Effects on total rates (fiducial)

	NWA 🔪			Off-sh		
Collider	\sqrt{s} [TeV]	approx.	$\sigma_{\mathrm{t}\overline{\mathrm{t}}}$ [fb]	$\sigma_{ m WWbar{b}}$ [fb]	$\sigma_{\rm t\bar{t}}/\sigma_{\rm WWb\bar{b}} - 1$	Expected
Tevatron	1.96	LO	$44.691(8)^{+19.81}_{-12.58}$	$44.310(3)^{+19.68}_{-12.49}$	+ 0.861(19)%	+0.8%
		NLO	$42.16(3)^{+0.00}_{-2.91}$	$41.75(5)^{+0.00}_{-2.63}$	+0.98(14)%	+0.9%
LHC	7	LO	$659.5(1)^{+261.8}_{-173.1}$	$662.35(4)^{+263.4}_{-174.1}$	-0.431(16)%	-0.4%
		NLO	$837(2)^{+42}_{-87}$	$840(2)^{+41}_{-87}$	-0.41(31)%	-0.2%
LHC	14	LO	$3306.3(1)^{+1086.8}_{-763.6}$	$3334.6(2)^{+1098.5}_{-771.2}$	-0.849(7)%	
		NLO	$4253(3)^{+282}_{-404}$	$4286(7)^{+283}_{-407}$	-0.77(19)%	

Denner, Dittmaier, Kallweit, Pozzorini, Schulze `12

Tevatron (LHC)R = 0.4 (0.5) $p_{T,b-jet} > 20 (30) \,\text{GeV}, |\eta_{b-jet}| < 2.5$ $p_{T,miss} > 25 (20) \,\text{GeV}$ $p_{T,l} > 20 \,\text{GeV}$ and $|\eta_l| < 2.5$

Finite width sensitive observables

Denner, Dittmaier, Kallweit, Pozzorini, Schulze `12

Large effects easily found by reaching past kinematic end-points

ELECTROWEAK CORRECTIONS

General remarks

• Long history

- Beennakker, Denner, Hollik, Mertig, Sack, Wackeroth `94
- Bernreuther, Fücker, Si `05,`06
- Moretti, Nolten, Ross `06
- Kühn,Scharf,PU `05,`06,`14
- Typically only virtual corrections due to W/Z
 > large effects are negative

$$\mathbb{W}, \mathbb{Z}$$
 $\log^2(p_{\mathrm{T}t}/M_{W,Z})$

• When is QCD enough ?

Total cross sections

- Expectedly small corrections, which justify the use of pure QCD
- In the plot beware of the normalization to LO

Kühn, Scharf, Uwer `13

Sudakov effects in the "tails"

• Clearly, the "boosted" regime requires the inclusion of EW effects

Kühn, Scharf, Uwer `13

Sudakov effects in the "tails"

• Clearly, the "boosted" regime requires the inclusion of EW effects

Kühn, Scharf, Uwer '13

These effects might be reduced by including real-radiation corrections from W/Z
 Complete cancellation impossible due to isospin of the initial state

SINGLE-TOP PRODUCTION

Recent result @ NNLO

 T-channel production structure function approximation

 \boldsymbol{q}

• Fixed scale around top-quark mass

Recent result @ NNLO

• Stability w.r.t. cut on the transverse momentum important for reliability of NLO

p_{\perp}	$\sigma_{ m LO},{ m pb}$	$\sigma_{ m NLO},{ m pb}$	$\delta_{ m NLO}$	$\sigma_{\rm NNLO},{ m pb}$	$\delta_{ m NNLO}$
0 GeV	$53.8^{+3.0}_{-4.3}$	$55.1^{+1.6}_{-0.9}$	+2.4%	$54.2^{+0.5}_{-0.2}$	-1.6%
$20 \mathrm{GeV}$	$46.6^{+2.5}_{-3.7}$	$48.9^{+1.2}_{-0.5}$	+4.9%	$48.3^{+0.3}_{-0.02}$	-1.2%
$40 \mathrm{GeV}$	$33.4^{+1.7}_{-2.5}$	$36.5^{+0.6}_{-0.03}$	+9.3%	$36.5^{+0.1}_{+0.1}$	-0.1%
$60 \mathrm{GeV}$	$22.0^{+1.0}_{-1.5}$	$25.0^{+0.2}_{+0.3}$	+13.6%	$25.4_{\pm 0.2}^{-0.1}$	+1.6%

Conclusions

- Precent level precision achieved thanks to many simplifications
- Reliable/transparent description at the level of fiducial cross sections within grasp
- Precision only usable when Monte Carlo systems used in data analysis: calculations cannot replace Monte Carlo's