

Lake Louise Winter Institute 2016

Dark Matter Searches at ATLAS

Johanna Gramling (Geneva University) for the ATLAS Collaboration

10.02.2016

Looking for dark matter...

Much astrophysical evidence for the existence of dark matter (DM) but its nature remains unknown

All we know: relic density (stable), interacts gravitationally (if otherwise, very weakly)

Many scenarios possible, WIMP miracle: matches observed relic density for mass and coupling around EW scale

→ could be produced at the LHC!

... at the LHC

- No DM interaction with the detector → missing E_T signatures
- Initial-state radiation (ISR) to detect it * (can be jets, photons, W, Z, ...)
 - * or direct coupling to DM (e.g. mono-Higgs)

Making Comparisons

Completely different experimental techniques → different systematic effects enter

Fair comparisons require disclaimers stating assumptions made on the different sides

A (GeV)

LHC results "traditionally" interpreted in effective field theory (EFT) models → easy comparisons

- Justified, if energy scale well below new physics (Q_{trans} « m_{Med}) → questionable at LHC!
- Truncation procedure: assume simplest interaction and correct cross-section, regarding only valid events
 - No "way out", but feeling for how problematic EFT is

Need to move to simplified models

 Reduce whatever full theory to a simple model with DM, a mediator and one interaction

The ATLAS detector

Search strategies

- 1: Define signal regions (SRs): as much signal and as little background as possible
- 2: Define control regions (CRs): similar to SR, but background-enriched
 - Typically, one CR for each major background, normalise MC processes to data and extrapolate to SR via "transfer factors" (TFs) *

- 3: Validate TF in validation region (in between SR and CR)
- 4: Look at data in SR ("unblind")
- 5: Interpretation of results: signal measurements and/or limits...

^{*} Often much more complicated in practice: CRs and corresponding SRs are fitted simultaneously in a likelihood fit or shape fits can be used

Results: Monojets

Eur. Phys. J. C (2015) 75:299

Generally most sensitive channel (highest cross-section) *

- Main irreducible background from Z → νν + jets (estimated from W → Iν + jets and Z → II + jets CRs)
- Truncation procedure for EFT limits
- * strictly not always true, some special cases/operators

E_Tmiss + jet(s)

- at least 1 central jet with p_T > max(120 GeV, 0.5 E_Tmiss)
- $\Delta \phi$ (jets, E_T^{miss}) > 1
- veto leptons
- 9 E_Tmiss bins

Results: Monojets

Eur. Phys. J. C (2015) 75:299

Interpretation in terms of Z'-like simplified models

 Mediator mass and width, DM mass are free parameters, set limit on couplings

Results: Monophotons

Phys. Rev. D 91, 012008 (2015)

Generally most sensitive channel after monojets

- Challenge: reject fake gammas
- Z → νν also irreducible background

Interpretation in terms of simplified model, analogous to monojets

E_Tmiss + photon(s)

- 1 central γ with $p_T > 120$ GeV
- $E_{T}^{miss} > 150 \text{ GeV}$
- $\Delta \phi \ (\gamma, E_{T}^{miss}) > 0.4$
- veto leptons

Results: Mono-V

ATLAS-CONF-2015-080

Mono-W/Z hadronic

- Based on boson-tagged large-R jet
 - Largest systematic from modelling of its properties (< 10 %)

W, Z and ttbar CRs

Results from shape fit of E_Tmiss distribution

Interpreted both in EFT and simplified models

E_Tmiss +boson-tagged jet

- lepton veto
- E_Tmiss > 250 GeV
- at least 1 large-R jet (boson-tagged)
- $\Delta \phi$ (E_T^{miss}, jet) > 0.6
- prmiss > 30 GeV
- $\Delta \phi$ (E_T^{miss}, p_T^{miss}) < $\pi/2$

Results: DM and Higgs

arXiv:1508.07869 , JHEP11(2015)206, Phys. Rev. Lett. 115, 131801 (2015)

For $m_{DM} < m_H/2$: BR (H \rightarrow inv.) relevant

BR (H→inv.) < 28% (31%) from VBF
 BR (H→inv.) < 25% (27%) from combination with WH/ZH

For $m_{DM} > m_H/2$: mono-Higgs relevant

- Interesting, because probe cannot be ISR (as opposed to other mono-X signatures)
- decay channels $H \rightarrow \gamma \gamma$ and $H \rightarrow$ bb (poster by Jia Jian TEOH) studied
- Interpretation done both for EFT and simplified model

Results: DM + heavy flavour

Eur. Phys. J. C (2015) 75:92

$$\mathcal{O}_{ ext{scalar}} = \sum_q rac{m_q}{M_*^N} ar{q} q ar{\chi} \chi$$

Scalar operators/mediators can have explicit dependence on quark mass

- Motivated by minimal flavour violation
- Couplings to top quarks interesting!
- Signature "ttbar + E_Tmiss" similar to SUSY stop

ttbar + E_Tmiss

- at least 1 b-jet
- $E_{T}^{miss} > 270 \text{ GeV}$
- jet $p_T > 80$, 70, 50, 25 GeV
- b-jet p_T > 60 GeV
- $\Delta \phi$ (E_T^{miss}, j_{1/2}) > 0.6
- $m_T > 130 \text{ GeV}$
- and other topological cuts

Summary

LHC is an excellent and exciting place to look for DM - especially now!

Most searches profit enormously from increase of energy to 13 TeV

Many complementary searches have been performed at ATLAS

- No signal detected, limits placed
- Interpretation mostly within EFT, some simplified models examples

First results from Run II (13 TeV) presented

- No surprises up to now
- Interpretation and optimisation more and more focused on simplified models

Many more 13 TeV searches in preparation - stay tuned!

Web References

Monojets 8 TeV: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2013-13/

Monojets 13 TeV: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/EXOT-2015-005/

Monophotons: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2014-06/

Mono-V (hadronic, 13 TeV): https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ ATLAS-CONF-2015-080/

Invisible Higgs: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-16/

Mono-Higgs (bb): https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2014-20/

Mono-Higgs (γγ): https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2014-05/

DMHF: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2014-06/

bullet cluster: http://apod.nasa.gov/apod/image/0608/bulletcluster_comp_f2048.jpg

LHC image: http://cds.cern.ch/record/826521

ATLAS sketch: http://www.atlas.ch/photos/full-detector-cgi.html

"dark matter" zoo particle: http://particlezoo.net/individual_pages/shop_dark_matter.html

Additional Material

Problems with EFTs

arXiv:1402.1275

EFT idea: integrate out mediator - "ignore everything in the bubble"

- justified, if energy scale well below mediator mass/hidden physics $(Q_{trans} \ll m_{Med})$
- advantage: as model-independent as possible, only 2 free parameters (m_{DM}, cut-off scale Lambda (dependent on mediator mass and couplings))
 → allows for easy comparisons between DD/ID/LHC

But: in significant fraction of events at LHC, EFT assumption is questionable

 Past LHC results always criticised for EFT approach from DD/ID sides

trom DD/ID sides

For EFT limits: truncation procedure

- assume simplest interaction and correct cross-section, regarding only valid events (Q_{trans} < f(g_qg_χ,Λ))
- cross-check with iterative procedure that scans through Lambda until convergence is found

Truncation is no "way out", but gives feeling for how problematic EFT is

Simplified models

arXiv:1507.00966

"Solution": move to simplified models - always valid

 lots of work done within ATLAS/CMS DM forum to define benchmarks, grids, ...

Reduce whatever complex full theory to a simple model with DM, a mediator between the SM and the Dark Sector, one interaction

 few free parameters: m_{DM}, m_{Med}, g_{SM}, g_{DM}, Γ_{Med} and mediator and DM type and interaction

Results: DM+HF

Phys. Rev. D 91, 012008 (2015)

b ϕ χ χ

Mono-b interesting, if scalar mediator coupling only to down-type quarks

Interpretation in terms of EFT and simplified models

simplified model motivated by FERMI gamma-ray excess

$E_T^{miss} + b(b)$

- 1-2 (3-4) jets
- at least one b jet
- lepton veto
- E_Tmiss > 300 GeV
- b-jet $p_T > 100 \text{ GeV}$
- $\Delta \phi$ (j, E_T^{miss}) > 1.0

Backup: Monojet

Table 3 Summary of the methods and control samples used to constrain the different background contributions in the signal regions.

Background process	Method	Control sample $Z/\gamma^*(\to \ell^+\ell^-), W(\to \ell\nu) \ (\ell=e,\mu)$ $W(\to e\nu) \ (\text{loose})$ $W(\to e\nu) \ (\text{loose})$ $W(\to \mu\nu)$	
$Z(\rightarrow u \bar{ u}) + \mathrm{jets}$ $W(\rightarrow e u) + \mathrm{jets}$ $W(\rightarrow au u) + \mathrm{jets}$ $W(\rightarrow \mu u) + \mathrm{jets}$	MC and control samples in data MC and control samples in data MC and control samples in data MC and control samples in data		
$Z/\gamma^*(\to \ell^+\ell^-) + \text{jets } (\ell = e, \mu, \tau)$ \bar{t} , single top Diboson Multijets Non-collision	MC-only MC-only MC-only data-driven data-driven	S 0.FF111111	
DAMA/LIBRA, 3σ CRESST II, 2σ COGENT, 99%CL CDMS, 1σ CDMS, 2σ CDMS, low mass. LUX 2013 90%CL Xenon100 90%CL D5: ATLAS 8TeV g=4 π 90%CL D5: ATLAS 7TeV γ(χ̄) 10-40 Spin-independent	D9: ATLAS 8TeV g=4π 90%Ct D9: ATLAS 8TeV g=1 90%Ct D8: ATLAS 8TeV g=4π 90%Ct D8: ATLAS 8TeV g=1 90%Ct D9: ATLAS 7TeV γ(χ̄) D8: ATLAS 7TeV γ(χ̄) D8: ATLAS 7TeV γ(χ̄) COUPP 90%Ct Spin-dependent SIMPLE 90%Ct PICASSO 90%Ct LocCube W'W 90%Ct LocCube	3.5 $m_{\chi}=50\text{GeV}, \Gamma=M_{\text{med}}/3$ ATLAS 3 $m_{\chi}=50\text{GeV}, \Gamma=M_{\text{med}}/8\pi$ $m_{\chi}=400\text{GeV}, \Gamma=M_{\text{med}}/8\pi$ 2.5 $m_{\chi}=400\text{GeV}, \Gamma=M_{\text{med}}/8\pi$ 1.5 $m_{\chi}=400\text{GeV}, \Gamma=M_{\text{med}}/8\pi$	

Monojets @ 13 TeV

q g χ \bar{q} $\bar{\chi}$

EXOT-2015-005

Non-collision background needs to be very well controlled

first step after data-taking conditions change

Control region distribution shows reasonable MC modelling

 apart from V+jets, ttbar is significant background

ETmiss + jet(s)

- 1 central jet with pT > min(120 GeV, 0.5 ETmiss)
- delta phi (jets, ETmiss) > 1
- veto leptons
- 9 ETmiss bins

Alternative models & EFT info

Name	Initial state	Type	Operator
C1	qq	scalar	$rac{m_q}{M_\star^2} \chi^\dagger \chi ar{q} q$
C5	gg	scalar	$\frac{1}{4M_{\star}^2}\chi^{\dagger}\chi\alpha_{\rm s}(G_{\mu\nu}^a)^2$
D1	qq	scalar	$rac{m_q}{M_\star^3}ar{\chi}\chiar{q}q$
D5	qq	vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q$
D8	qq	axial-vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} \gamma^5 q$
D9	qq	tensor	$\frac{1}{M_{\star}^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
D11	gg	scalar	$\frac{1}{4M_{\star}^3}\bar{\chi}\chi\alpha_{\rm s}(G_{\mu\nu}^a)^2$
1	I		

$$M_*^{limit} = M_*^{gen} \left(\frac{\sigma_{th}}{\sigma_{excl}} \right)^{1/y}$$

50 GeV

ATLAS

Boosted SR

 $vs = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

Higgs DM

Requirement	SR1	SR2a	SR2b	
Leading Jet p _T	>75 GeV >120 GeV		>120 GeV	
Leading Jet Charge Fraction	N/A	>10%	>10%	
Second Jet p _T	>50 GeV	>35 GeV	>35 GeV	
m_{jj}	>1 TeV	$0.5 < m_{jj} < 1 \text{ TeV}$	> 1 TeV	
$\eta_{j1} \times \eta_{j2}$	<0			
$ \Delta \eta_{jj} $	>4.8	>3	$3 < \Delta \eta_{jj} < 4.8$	
$ \Delta \phi_{jj} $	<2.5	N/A		
Third Jet Veto p _T Threshold	30 GeV			
$ \Delta\phi_{j,E_{\mathrm{T}}^{\mathrm{miss}}} $	>1.6 for $j_1, >1$ otherwise	>0.5		
$E_{ m T}^{ m miss}$	>150 GeV	>200 GeV		

ATLAS

 $\chi \partial^{\mu} \chi H D_{\mu} H$

. \s = 8 TeV, 20.3 fb⁻¹

Data

:/// SM exp.

Diboson

Z(→vv)+jets

tt + single top

 \longrightarrow W(\rightarrow lv)/Z(\rightarrow ll)+jets

Backup: DMHF

	SR1	SR2	SR3	SR4
Trigger	$E_{ m T}^{ m miss}$	$E_{ m T}^{ m miss}$	5 jets 4jets(1b)	$E_{\rm T}^{\rm miss} \parallel 1 \text{ lepton (no } \tau)$
Jet multiplicity n_j	1–2	3–4	≥5	≥4
b -jet multiplicity n_b	>0 (60% eff.)	>0 (60% eff.)	>1 (70% eff.)	>0 (70% eff.)
Lepton multiplicity n_{ℓ}	0	0	0	$1 \ \ell \ (\ell = e, \mu)$
$E_{\mathrm{T}}^{\mathrm{miss}}$	>300 GeV	>300 GeV	>200 GeV	>270 GeV
Jet kinematics	$a^{b_1} > 100 \text{ GeV}$	$p_{\rm T}^{b_1} > 100 \; {\rm GeV}$	$p_{\mathrm{T}}^{j} > 25 \mathrm{~GeV}$	$p_{\rm T}^{b_1} > 60 {\rm ~GeV}$
	$p_{\rm T}^{b_1} > 100 \; {\rm GeV}$	$p_{\rm T}^{j_2} > 100 (60) {\rm GeV}$		$p_{\rm T}^{1-4} = 80, 70, 50, 25 \text{ GeV}$
Three-jet invariant mass				$m_{jjj} < 360 \text{ GeV}$
$\Delta i \left(j_i, E_{\mathrm{T}}^{\mathrm{miss}} \right)$	> 1.0, i = 1, 2	> 1.0, i = 1 - 4	-	> 0.6, i = 1, 2
Angular selections	-	-	$\Delta i \left(b_1, E_{\mathrm{T}}^{\mathrm{miss}} \right) \ge 1.6$	$\Delta i \left(\ell, E_{\mathrm{T}}^{\mathrm{miss}} \right) > 0.6$
				$\Delta R\left(\ell, j_1\right) < 2.75$
				$\Delta R\left(\ell,b\right) < 3.0$
Event shape	_	-	Razor $R > 0.75$	topness > 2
am_{T2}	-	-	-	>190 GeV
$\frac{m_{\mathrm{T2}}^{\ell+E_{\mathrm{T}}^{\mathrm{miss}}}}{m_{\mathrm{T}}^{\ell+E_{\mathrm{T}}^{\mathrm{miss}}}}$	_	-	-	>130 GeV
$E_{ m T}^{ m miss}/\sqrt{H_{ m T}^{4j}}$	-	-	_	$>9 \sqrt{\mathrm{GeV}}$

