

Search for resonant tt production with the CMS experiment

Lake Louise Winter Institute
[7-13 Feb 2015]
Daniel Sandoval
On behalf of the CMS Collaboration

Introduction

- Many BSM theories predict the existence of heavy resonances that decay preferentially to top-antitop quark pairs.
- Such resonances would manifest as an additional resonant component to the SM topantitop production.
- For high mass resonances the decay products have a significant Lorentz boost.
- Hadronic, dileptonic and semileptonic analyzes are presented here and correspond to 19.7 fb⁻¹ of data taken with the CMS detector at √s=8 TeV.

Talk based on: PhysRevD.93.012001

Topology of the event

- Due to the boosted topology of the event, we developed techniques to identify the boosted top quark decay products.
- Non-isolated leptons and merged jets are considered through out the semileptonic and dilepton analyzes.
- Techniques to identify the substructure of jets were used to tag boosted top jets.
- SM processes:

Object identification

CSV

• Non isolated leptons : 2D-topological cut

$$\Delta R_{\rm min}(\ell,j) > 0.5 \ {
m OR} \ p_{T,{
m rel}}(\ell,j) > 25 \ {
m GeV}$$

- b-tagging: HEPTT
 - CSV (applied in jets and subjets)
- top-tagging: CMS PAS JME-13-007
 - HEPTT, CMSTT, Substructure variables

$$m_{ij} = \sqrt{(E_i + E_j)^2 - (\vec{p}_i + \vec{p}_j)^2}$$

 $m_{\min} = \min[m_{12}, m_{13}, m_{23}]$

Leptonic top with non-isolated lepton

N subjettiness

$$au_N = rac{\sum_{i=1}^{n_{ ext{constituents}}} p_{ ext{T},i} \min\{\Delta R_{1,i}, \Delta R_{2,i}, ..., \Delta R_{N,i}\}}{\sum_{i=1}^{n_{ ext{constituents}}} p_{ ext{T},i} R}$$

Semileptonic channel

Event Selection

- 1 non-isolated lepton and at least 2 high pT jets [150,50]GeV and MET
- Lepton 2D-cut to reduce QCD background

$$\Delta R_{\rm min}(\ell,j) > 0.5$$
 OR $p_{T,{\rm rel}}(\ell,j) > 25$ GeV

Triangular cut (e-channel)

$$\frac{-1.5}{75 GeV} E_T^{miss} + 1.5 < \Delta \phi(e, E_T^{miss}) < \frac{1.5}{75 GeV} E_T^{miss} + 1.5$$

Veto on events with more than one CA8 top-tagged jet (CMSTT)

Categorization

- The selected CA8 CMSTT jet must also pass the τ3/τ2 < 0.7 cut
- Using the combined CSV algorithm we b-tag jets.
- Events are categorized depending on the number of top and b tagged jets

Semileptonic channel

Categorization

Hadronic channel

Event Selection

- 2 orthogonal methods for tagging top jets are employed [CMSTT, HEPTT]
- The sensitivity is increased by looking at b-jets within the top tagged jets [subjet b-tagging]

Very Boosted: H_T>800GeV

- At least two jets, pT> 400 GeV [CA8 Jets]
- Leading jets must be back-to-back
- Jet mass in [140,250] GeV
- N-subjettines τ3/τ2 <0.7
- To increase sensitivity we categorize events based on the number of sub b-tagged jets and |Δy|

Moderately Boosted

- At least two fat jets, pT> 200 GeV [CA15Jets]
- Jet mass in [140,250] GeV
- Within the jet, there must be an identified W candidate
- The events are categorized by the number of identified b-subjets and by comparing H_T > 800GeV or H_T<800

Hadronic channel

Categorization

HT>800 1 sub b-tags 2 sub b-tags 2 sub b-tags 1 sub b-tags 2 sub b-tags

C M S T

0 sub b-tags

1 sub b-tags
2 sub b-tags

|Δy| >1 0 sub b-tags 1 sub b-tags 2 sub b-tags

Dilepton channel

Event Selection

- Two oppositely charged leptons [ee,eµ,µµ]
- At least two central jets
- $M_{\text{H}} > 12 \text{ GeV}$ and veto on the [76,106]GeV (Z mass) §
- If $\Delta R(I,jet) < 0.5$ then $p_{T,REL}(I,jet) > 15 GeV$
- MET > 30 GeV
- At least 2 loose b-tagged jets or at least one medium b-tagged jet.
- To reduce SM tt background ΔR(I₁,jet)<1.2 and $\Delta R(l_2, jet) < 1.5$
- Background processes are estimated from simulation

M. [GeV]

CMS

Summary

Dilepton: 3 categories {ee, eµ, µµ}

Semileptonic: 6 categories

{e, μ} **(Σ)** {1 top-tag, 0top-tag & 1b-tag, 0top-tag & 0b-tag}

Hadronic: 12 categories

$$\left\{ \begin{array}{l} \text{CMSTT} \\ \text{HEPTT} \end{array} \right\} \bigotimes \left\{ \begin{array}{l} |\Delta y| > 1 \; , \quad |\Delta y| < 1 \\ \text{Ht} > 800 \; \text{GeV} \; , \text{Ht} < 800 \; \text{GeV} \end{array} \right\} \bigotimes \left\{ \begin{array}{l} 0,1 \; ,2 \; \; \text{b-subjets} \\ 0,1 \; ,2 \; \; \text{b-subjets} \end{array} \right\}$$

Systematic Uncertainties

Uncertainties originating from the same source are assumed 100% correlated

Limits

No significant excess of data over expected SM processes is observed. A bayesian statistical method is employed to determine the 95%CL upper limits on the cross section times branching fraction on the bench mark models (Z' and KK-gluons).

	Mass limit [TeV]									
	Dilepton channel		Lepton+jets channel		All-hadronic channels		Combined			
	Expected	Observed	Expected	Observed	Expected	Observed	Expected	Observed		
$Z', \Gamma_{Z'}/M_{Z'} = 1.2\%$	1.4	1.5	2.2	2.3	2.1	2.1	2.4	2.4		
Z' , $\Gamma_{Z'}/M_{Z'}=10\%$	2.1	2.2	2.7	2.8	2.5	2.5	2.8	2.9		
RS KK gluon	1.8	2.0	2.5	2.5	2.4	2.3	2.7	2.8		

Summary & Outlook

- Using 19.7 fb-1 of data collected with the CMS detector in pp collisions at 8 TeV, no excess above the SM ttbar production was observed.
- We obtained the most stringent limit on the Mz' and MgKK to date
- The development of substructure techniques for boosted topologies were key factors to achieve better limits in this analyzes
- A lot of refinement on the employed substructure techniques has been done in the past year and it is expected to be crucial for future analyzes
- Huge effort has been directed to improve the HLT algorithms such that they also consider these boosted topologies

Summary & Outlook

Last year the LHC delivered ~ 4 fb⁻¹ at √s=13TeV

CMS Experiment at LHC, CERN Data recorded: Sun Jul 12 07:25:11 2015 CEST Run/Event: 251562 / 111132974 Lumi section: 122 Orbit/Crossing: 31722792 / 2253

- Analysts have started looking at the new data and new results should be coming out soon ...
- Expect around the same or better sensitivity with ~3 fb⁻¹ (at \sqrt{s} =13TeV) than what we had with 19.7 fb⁻¹ at \sqrt{s} =8 TeV

BACKUP

BSM

Bench mark models

Hadronic channel

Background Estimation

- Non Top Multijet production (NTMJ) and SM tt production are the main backgrounds
- NTMJ production modeling is poor.
- To estimate NTMJ background, a dataderived method is employed.

Systematics

Uncertainties originating from the same source are assumed 100% correlated

Uncorrelated

Correlated

Source of uncertainty	Prior uncertainty	2ℓ	ℓ+jets	Had. channel high-mass	Had. channel low-mass
Integrated luminosity	2.6%	0	\oplus	\oplus	\oplus
tt cross section	15%	0	\oplus	\oplus	\oplus
Single top quark cross section	23%	0	\oplus		
Diboson cross section	20%	0	\oplus		
Z+jets cross section	50%	0	\oplus		
W+jets (light flavor) cross section	9%		\odot		
W+jets (heavy flavor) cross section	23%		\odot		
Electron+jet trigger	1%		\odot		
H_{T} trigger	2%			\oplus	\oplus
Four-jet trigger	$\pm 1\sigma(p_{ m T})$				\odot
Single-electron trigger	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	0			
Single-muon trigger and id	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	0	\oplus		
Electron ID	$\pm 1\sigma(p_{ m T},\eta)$	0	\oplus		
Jet energy scale	$\pm 1\sigma(p_{ m T},\eta)$	0	\oplus	\oplus	\oplus
Jet energy resolution	$\pm 1\sigma(\eta)$	0	\oplus	\oplus	\oplus
Pileup uncertainty	$\pm 1\sigma$	\oplus	\oplus	\oplus	\oplus
b tagging efficiency ^(†)	$\pm 1\sigma(p_{ m T},\eta)$	0	\oplus		\oplus
b tagging mistag rate (†)	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	0	\oplus		\oplus
CA8 subjet b tagging	unconstrained			⊙	
CA8 t tagged jet efficiency	unconstrained		\oplus	\oplus	
CA8 t-tagged jet mistag	$\pm 25\%$		\odot		
CA15 t-tagged jet efficiency	$\pm 1\sigma(p_{ m T},\eta)$				\odot
QCD multijet background	sideband			⊙	\odot
MC statistical uncertainty		0	\odot	⊙	•
PDF uncertainty	$\pm 1\sigma$	0	\oplus	\oplus	\oplus
tt ren. and fact. scales	$4Q^2$ and $0.25Q^2$	0	\oplus	\oplus	\oplus
W+jets ren. and fact. scales	$4Q^2$ and $0.25Q^2$		\odot		
W+jets matching scale μ	2μ and 0.5μ		\odot		

post-fit nuisance parameters values

