

Production of heavy vector boson pairs at 13 TeV with the CMS experiment at LHC"

Gian Luca Pinna Angioni Università degli studi di Torino and INFN

NE PHARMENT

Introduction

- First measurement of WZ and ZZ cross-section at 13 TeV with the CMS experiment.
 - Leptonic decay modes.
- Others VV analysis are in progress (WW, ZZ/Zq, ZZjj, etc..)
- Data sample corresponding to an integrated luminosity of 1.3 fb⁻¹ with 25 ns of bunch spaces.
- WZ and ZZ previously measured at the LHC by the CMS experiment at 7 and 8 TeV.

Physic Motivation

- Test of electroweak sector of SM.
 - Sensitive to the interaction between gauge bosons via triple/ quadric gauge couplings (TGC,QGC).
 - Fundamental to establish if Higgs boson really can preserve unitarity in the VV scattering amplitude at all energies.
 - QCD initiated processes have larger cross section than pure EW processes.

Modelled through effective field theory, effective Lagrangian, etc..

Important background to Higgs and beyond-SM searches

Signals: $qg/q\bar{q} \rightarrow ZZ, \ gg \rightarrow ZZ, \ qg/qq \rightarrow ZZjj$

- 3 channels: 2e2µ,4e,4µ
- Background:

- Irreducible background: processes which contain 4 prompt leptons from non-signal processes (ttZ, WWZ, ttWW), very small. (negligible with this statistic).
- Reducible background: processes which contain one or more nonprompt leptons in the four-lepton final state (DY, tt, WZ, WWW).
 - Not well represented by MC samples.

 data driven method.

ZZ Selection

 $\mathbf{p}_{\mathrm{T}}^{\ell} > 10 \, \mathrm{GeV} \qquad 1 \, \mathrm{lepton} \, \mathbf{p}_{\mathrm{T}}^{\ell} > 20 \, \mathrm{GeV} \qquad \bullet \, \mathrm{On \, shell} \, \mathrm{Z} \qquad 60 \, \mathrm{GeV} < \mathrm{M}_{2_{\ell}} < 120 \, \mathrm{GeV}$

• Leptons from interaction point SIP= $|IP/\sigma_{IP}| < 4$

- Isolated tracks in a cone $\Delta R < 0.4$ $R_{iso}^{e} < 0.5$ $R_{iso}^{\mu} < 0.4$
- Leptons in detector acceptance $|\eta_e| < 2.5$, $|\eta_\mu| < 2.4$
- **QCD** suppression $m_{\ell\ell} > 4 \text{ GeV}$

Decay channel	N _{exp} ZZ	Background	Total expected	Observed
4μ	$10.53 \pm 0.08 \pm 0.31$	$0.04 \pm 0.09 \pm 0.02$	$10.57 \pm 0.12 \pm 0.31$	15
2e2 μ	$17.83 \pm 0.10 \pm 0.48$	0±0.11±0.10	$17.83 \pm 0.15 \pm 0.48$	16
4e	$7.81 \pm 0.07 \pm 0.20$	$0.09 \pm 0.12 \pm 0.04$	$7.90 \pm 0.14 \pm 0.21$	5
Total	$36.18 \pm 0.15 \pm 0.61$	$0.10 \pm 0.19 \pm 0.11$	$36.28 \pm 0.24 \pm 0.61$	36

ZZ Reducible Background

 $f_i =$ the probability for fake electrons and fake muons which do pass predefined loose selection criteria, to also pass the final selection criteria.

Measured with a data driven method.

P = lepton passing the final selection criteria (Z1) F = lepton not passing the final ID and ISO criteria $p_i = f_i / (1 - f_i)$

ZZ Plots

ZZ Fiducial Cross-Section

Fiducial Region

60 GeV<M $_{2\ell}$ < 120 GeV , m $\ell\ell$ '>4 GeV

 $p_T^{\ell} > 20, 10, 10, 10 \text{ GeV}$

|η_ℓ| < 2.5</p>

- Efficiency calculated from MC.
- The signal strength is derived from a combined fit to the number of observed events in all final states.

 $\sigma_{\rm fid} \,({\rm pp} \rightarrow {\rm ZZ} \rightarrow 4{\rm l}) = 38.0^{+6.7}_{-6.0}({\rm stat})^{+1.5}_{-1.2}({\rm syst.}) \pm 1.7$ (lum.) fb.

ZZ Total Cross-Section

The fiducial cross-section is then corrected for the acceptance, estimated form simulation and BR ZZ $\Rightarrow 4\ell (\ell = \mu, e)$

Fiducial Region \Rightarrow 60 GeV $< M_{2\ell} < 120$ GeV

SMP-15-005 PAS:

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/ SMP-15-005/index.html

- Signal process: $q\bar{q}/qg \rightarrow WZ$, $q\bar{q}/qg \rightarrow WZ(TGC)$, $q\bar{q}/qg \rightarrow WZ(QGC)$, $q\bar{q}/qg \rightarrow WZjj$
 - Channels: (eeµ, eee, µµµ, µµe) + Missing energy MET
- Background:

- Irreducible background: processes which contain 3 prompt leptons from non-signal processes (ZZ, tZ,Zγ,VVV). Estimated from simulation
- Reducible background: processes which contain one or more non-prompt leptons in the three-lepton final state.
 - DY, ttbar,QCD multijets

WZ Selection

	· •	• •		-					
• Leptons from interaction point $d_{xy} < 0.2 \text{ cm}, d_z < 0.5 \text{ cm}$							Z		
Isolated tracks in a cone ΔR <0.4						p_T^{ℓ} >10 GeV			
• $R_{e}^{e} < 0.0766 (0.0678)$ for barrel(endcap)						рт ^{ℓZ} >20 GeV			
iso (orotic) for Barron (orrotap)						$60 \text{ GeV} < M_{2\ell} < 120 \text{ GeV}$			
• $R_{iso}^{\mu} < 0.12$									
						W			
• Leptons in detector acceptance $ \eta_e < 2.5$, $ \eta_\mu < 2.4$						$p_T^{\ell W} > 20 \text{ GeV}$			
QCD suppression $m_{\ell\ell}$ >4 GeV • Z γ suppression m3 ℓ >100 GeV					v				
					EMiss> 30Ge			V	
	Decay channel	N ^{exp} WZ	Background Datadriven	Background Monte Carlo	ех	Total pected	Observed		
	eee	28.4 ± 0.5	14.1 ± 2.3	7.9 ± 0.9	50	$.4 \pm 2.5$	39		
	ееμ	32.5 ± 0.5	13.7 ± 1.9	6.3 ± 0.3	52	$.5 \pm 2.0$	49		
	μμε	39.1 ± 0.5	22.3 ± 2.5	10.3 ± 0.9	71	.7 ± 2.7	74		
	μμμ	46.7 ± 0.9	18.8 ± 1.9	8.1 ± 0.3	73	$.6 \pm 2.0$	69		

Gian Luca Pinna Angioni

 32.6 ± 1.3

 248.2 ± 4.7

 69.0 ± 4.4

 146.6 ± 1.0

Total

231

WZ Plots

M_{lll'}

WZ Fiducial Cross-Section

Fiducial Region

60 GeV< $M_{4\ell}$ < 120 GeV

- $p_T^{\ell} > 10 \text{ GeV} + p_T^{\ell Z} > 20 \text{ GeV} + p_T^{\ell W} > 20 \text{ GeV}$
- |η_ℓ| < 2.5</p>

- Efficiency calculated from MC.
- The signal strength is derived from a combined fit to the number of observed events in all final states.

 $\sigma_{\text{fid}} (\text{pp} \rightarrow \text{WZ} \rightarrow \ell \nu \ell' \ell') = 239 \pm 29 (\text{stat})^{+52} -_{40} (\text{syst}) \pm 11 (\text{lum}) \text{ fb.}$

MCFM NLO Theoretical value: 274⁺¹³-8 fb

WZ Total Cross-Section

The fiducial cross-section is then corrected for the acceptance, estimated form simulation and BR for ZW $\Rightarrow 3\ell$ ($\ell = \mu, e$).

• Fiducial Region → 60 GeV<M_{2ℓ}< 120 GeV
</p>

• Acceptance = $(45.0 \pm 0.4)\%$.

Total Cross Section

 $\sigma(pp \rightarrow WZ) = 36.8 \pm 4.6(stat)^{+8.1}_{-6.2}(syst) \pm 0.6 (theo) \pm 1.7 (lum) pb.$

MCFM NLO Theoretical value: 42.7^{+1.6}-0.8 pb

SMP-15-006 PAS:

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/ SMP-15-006/index.html

Conclusions

- First measurement of WZ and ZZ cross-section at 13 TeV with the CMS experiment.
- Results are in good agreement with the theory prediction.

Back-Up slides

Miscellaneous

Particle Flow: event-reconstruction algorithm identifying and reconstructing individually each particle by combining the information from all the sub-detectors.

Isolation:

•
$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.4$$

•
$$R_{ISO}^{\ell} = \left(\sum (p_T^{charged} + MAX[0, \sum (p_T^{neutral} + \sum p_T^{gamma} - p_T^{PU}(\ell)])/p_T^{\ell}\right)$$