Recent Electroweak Results from ATLAS

Alex Long - Boston University On behalf of the ATLAS Collaboration Lake Louise Winter Institute 7th - 13th February 2016

Standard Model Production Cross Section Measurements

Feb 2016

2

ERIMENT

3

Inclusive 4I Production - 8 TeV PLB 753 (2016) 552-572

Inclusive 4I Production - 8 TeV

Continued

m₄ [GeV]

Submitted to EPJC arXiv:1512.02192

Born-level differential distributions for Drell-Yan processes compared to a variety of generators ϕ_{η}^{*} is a useful proxy to p_{T}^{\parallel} with a better precision, in particular at low values. ResBos comparisons corrected to QCD NNLO

DYNNLO / Data

___dp/o 1 1

0.

Data (stat uncert.) Data (total uncert.) √s=8 TeV, 20.3 fb⁻¹ PowhegPythia (AU2) Sherpa ATLAS Normalized p_{T}^{\parallel} distributions compared to PowhegPythia (AZNLO) 1.2 1.2 Sherpa and Powheg+Pythia Absolute p_{τ}^{\parallel} distributions compared to -0.8 $12 \text{ GeV} \le m_{\parallel} < 20 \text{ GeV}, |y_{\parallel}| < 2.4$ $46 \text{ GeV} \le m_{\parallel} < 66 \text{ GeV}, |y_{\parallel}| < 2.4$ DYNNLO at QCD NNLO and QCD NNLO + 0.6 1.2 NLO EWK. Normalization differences might be fixed by $O(\alpha_s^3)$ corrections. -0.8 Data (stat uncert.) Data (total uncert.) √s=8 TeV, 20.3 fb⁻¹ $20 \text{ GeV} \le m_{\parallel} < 30 \text{ GeV}, |y_{\parallel}| < 2.4$ $66 \text{ GeV} \le m_{\parallel} < 116 \text{ GeV}, |y| < 2.4$ dp/op 1.2 0.6 ATLAS DYNNLO DYNNLO+NLO EWK 1.2 1.1 ь 0.8 -0.8 0.6<u>-...</u> 50 $30 \text{ GeV} \le m_{\parallel} < 46 \text{ GeV}, |y_{\parallel}| < 2.4$ 116 GeV $\leq m_{\parallel} < 150$ GeV, |y| < 2.40.8 0.6 $46 \; GeV \leq m_{_{I\!I}} < 66 \; GeV, \; |y_{_{I\!I}}| < 2.4$ $GeV \le m_{\parallel} < 20 GeV, |y_{\parallel}| < 2.4$ 100 500 10² 10 p_l [GeV]¹ p[∥] [GeV] Many more di-lepton mass and rapidity الاستشار bins have been compared. 0.8 20 GeV ≤ m_i < 30 GeV, |y_i| < 2.4 66 GeV $\leq m_{\parallel} < 116$ GeV, $|y_{\parallel}| < 2.4$ 0.7 Also have performed measurements of 1.1 integrated cross-sections in bins of m(II) 0.9 0.8 0.8 $GeV \le m_{\parallel} < 46 GeV, |y_{\parallel}| < 2.4$ 116 GeV $\leq m_{\parallel} < 150$ GeV, $|y_{\parallel}| < 2.4$ 0.7 500 p^{ll}_T [GeV] ¹⁰ 50 100 10² p[∥]_⊤ [GeV]

6

Submitted to EPJC

arXiv:1512.02192

W/Z Cross-sections and Ratios – 13 TeV

GeV 35F

Entries / 2

30F

25

20F

15E

10E

5

40

60

80

- W and Z cross-sections measured at 13 TeV using first Run 2 data.
- Measured cross-sections are consistent with NNLO QCD + NLO EW predictions
- Ratios of cross-sections allows for good comparison of PDFs

Note public on 8/2015 ATLAS-CONF-2015-039

Z→e⁺e⁻

Feb 2016

GeV

Data

□Z→e⁺e⁻

 $W \rightarrow \mu \nu$

ATLAS Preliminary

13 TeV, 85 pb⁻¹

ATLAS Preliminary

Z+Jets – 13 TeV

- Same inclusive selection as in W/Z study
- Fiducial cross-sections measured in bins of inclusive N_{iets}
- Cross-section ratios with neighboring bin improve precision
- Results consistent with SM predictions normalized to QCD NNLO

Note public on 8/2015 ATLAS-CONF-2015-041

arXiv:1512.05314

Submitted to PRL 12/2015

ZZ→4I - 13 TeV

• First 13 TeV di-boson measurement from ATLAS!

- Z candidates required to be on-shell.
- 63 events observed in data.
- Measured cross-section consistent with SM

 $\sigma(ZZ \text{ Total Obs.}) = 16.7 \stackrel{+2.2}{_{-2.0}} (\text{Stat.}) \stackrel{+0.9}{_{-0.7}} (\text{Syst.}) \stackrel{+1.0}{_{-0.7}} (\text{Lumi.}) \text{ pb}$

 $\sigma(ZZ$ NNLO Total Exp.) = $15.6\pm0.4~{\rm pb}$

Feb 2016

WZ - 8 TeV

Hot off the press! To be submitted to PRD STDM-2014-02

- Brand new result for WZ production at 8 TeV in leptonic final state
- Many important new measurements/limits presented.

Feb 2016

11

[fb/GeV] Δσ^{fid.} [fb] Hot off the press! ATLAS Preliminary WZ - 8 TeV To be submitted to PRD vs = 8 TeV, 20.3 fb⁻¹ STDM-2014-02 °d⊢ $W^{\pm}Z \rightarrow \ell' \nu \ell \ell$ $\Delta \sigma^{fid.}/\Delta$ 10 eee 1.27 ± 0.10 ATLAS Preliminary Data 2012 Fiducial and total s = 8 TeV, 20.3 fb⁻¹ μ**ее** 10 1.21 ± 0.08 Powhea MC@NLO cross-sections W[±]Z ---- Sherpa **e**μμ 1.19 ± 0.08 observed to be above Data Ratio to Powheg QCD NLO SM Powheg μμμ 1.11 ± 0.06 1.55 prediction. (Full NNLO calculation unavailable) combined 1.17 ± 0.05 0.65 Unfolded differential 0.4 0.6 0.8 1.2 1.6 1 1.4 1.8 0.2 $\sigma_{W^{\pm}Z}^{\text{fid.}} \ / \ \sigma_{W^{\pm}Z}^{\text{theory}}$ 40 60 80 100 ∞ cross-section p_{τ}^{v} [GeV] measurements of ∆σ^{fid} [fb] [fb/GeV] Δσ^{fid.}/Δ N_{jets} [fb] [fb] ATLAS Preliminary Data 2012 ATLAS Preliminary $p_{T}(W), p_{T}(Z), m_{T}(WZ),$ **∆σ**^{fid.} J \s = 8 TeV, 20.3 fb⁻¹ Sherpa \s = 8 TeV, 20.3 fb⁻¹ Sherpa WZjj-EW $p_{T}(nu)$, $|y_{1W}-y_{7}|$, jet ∆ơ^{fid.}/∆ m_{ii} $W^{\pm}Z \rightarrow \ell'\nu \ell \ell$ ----- Powheg multiplicity, m(jj) ---- MC@NLO $W^{\pm}Z \rightarrow \ell' \nu \ell \ell$ Differences mainly at Data 2012 Sherpa low p_T ---- Powhea 10^{-3} ---- MC@NLO 10^{-1} 10 Study of EW VBS also 10^{-1} performed. Ratio to Sherpa Ratio to Sherpa BOSTON UNIVERSITY 0 0 2 ∞ 200 400 600 800 1000 ∞ N_{jets} m_{ji} [GeV]

Feb 2016

Conclusions

- A summary of recent studies of electroweak processes in ATLAS were presented with new results at 8 TeV and the first results at 13 TeV.
- A wide survey of results show we are consistent with the SM. Any differences could likely be resolved by higher order corrections.
- There is more to come from the 8 TeV and latest 13 TeV runs. And we have an exciting year ahead with much more 13 TeV data coming from the LHC!

BACKUP

15

4I Production - 8 TeV

4I Production - 8 TeV Selection

Fiducial

BOSTON

Lepton selection				
Muons:	$p_{\rm T} > 6 {\rm GeV}, \eta < 2.7$			
Electrons:	$p_{\rm T} > 7 {\rm GeV}, \eta < 2.5$			
Lepto	on pairing			
Leading pair:	SFOS lepton pair with			
	smallest $ m_Z - m_{\ell\ell} $			
Sub-leading pair:	The remaining SFOS			
	with the largest $m_{\ell\ell}$			
For both pairs:	$p_{\mathrm{T}}^{\ell^+\ell^-} > 2 \mathrm{GeV}$			
Event selection				
Lepton $p_{\mathrm{T}}^{\ell_1,\ell_2,\ell_3}$:	$> 20, 15, 10(8 \text{ if } \mu) \text{ GeV}$			
Mass requirements:	$50 < m_{12} < 120 \text{ GeV}$			
	$12 < m_{34} < 120 \text{ GeV}$			
Lepton separation:	$\Delta R(\ell_i, \ell_j) > 0.1 \ (0.2)$			
	for same- (different-)			
	flavour leptons			
J/ψ veto:	$m(\ell_i^+, \ell_j^-) > 5 \text{ GeV}$			
4ℓ mass range:	$80 < m_{4\ell} < 1000 { m GeV}$			

Extended

Feb 2016

4 leptons each with $p_T > 5 \text{ GeV}$
and ŋ <2.8
(no flavor dependence)

80 < m(4l) < 1000 GeV

M(|+|-) > 4 GeV

 $p_T(Z_1), p_T(Z_2) > 2 \text{ GeV}$

4I Production - 8 TeV

Signal

Unfolded distributions in extended phase space

Measured cross-sections

20

Feb 2016

Z/ $\gamma^* p_T^{II}$ and φ_{η}^* - 8 TeV

Particle-level definitions (Tr	Particle-level definitions (Treatment of final-state photon radiation)					
electron pairs	dressed; Born					
muon pairs	bare; dressed; Born					
combined	Born					
Fiducial region						
Leptons	$p_T > 20 \mathrm{GeV}; \ \eta < 2.4$					
Lepton pairs	$ y_{\ell\ell} < 2.4$					
	$\Delta R > 0.15 \ (p_{\rm T}^{\ell\ell} \text{ measurements of dressed electrons only})$					
Mass and rapidity regions						
$46{\rm GeV} < m_{\ell\ell} < 66{\rm GeV}$	$ y_{\ell\ell} < 0.8; \ \ 0.8 < y_{\ell\ell} < 1.6; \ \ 1.6 < y_{\ell\ell} < 2.4$					
	$(\phi_{\eta}^* \text{ measurements only})$					
$66{\rm GeV} < m_{\ell\ell} < 116{\rm GeV}$	$ y_{\ell\ell} < 0.4; \ \ 0.4 < y_{\ell\ell} < 0.8; \ \ 0.8 < y_{\ell\ell} < 1.2;$					
	$1.2 < y_{\ell\ell} < 1.6; \ 1.6 < y_{\ell\ell} < 2.0; \ 2.0 < y_{\ell\ell} < 2.4$					
$116{\rm GeV} < m_{\ell\ell} < 150{\rm GeV}$	$ y_{\ell\ell} < 0.8; \ \ 0.8 < y_{\ell\ell} < 1.6; \ \ 1.6 < y_{\ell\ell} < 2.4$					
	$(\phi_{\eta}^* \text{ measurements only})$					
$ y_{\ell\ell} < 2.4$	$46 \text{GeV} < m_{\ell\ell} < 66 \text{GeV}; 66 \text{GeV} < m_{\ell\ell} < 116 \text{GeV};$					
	$116{\rm GeV} < m_{\ell\ell} < 150{\rm GeV}$					
37 1 .						

Very-low mass regions

 $\begin{array}{l} \overline{12\,\mathrm{GeV} < m_{\ell\ell} < 20\,\mathrm{GeV}}; & 20\,\mathrm{GeV} < m_{\ell\ell} < 30\,\mathrm{GeV}; & 30\,\mathrm{GeV} < m_{\ell\ell} < 46\,\mathrm{GeV} \\ (p_\mathrm{T}^{\ell\ell} > 45\,\mathrm{GeV},\,p_\mathrm{T}^{\ell\ell} \text{ measurements only}) \end{array} \end{array}$

$Z/\gamma^* p_T^{\parallel}$ and $\phi_{\eta}^* - 8 \text{ TeV}$ Integrated cross-sections

 $m_{\ell\ell} \; [\text{GeV}]$ 20 - 3046 - 6666 - 11612 - 2030 - 46116 - 150 $\sigma(Z/\gamma^* \to e^+e^-)$ [pb] 1.421.041.0115.16537.645.72Statistical uncertainty [%] 0.911.051.130.280.04 0.41Detector uncertainty [%] 3.470.872.282.121.790.83Background uncertainty [%] 2.362.770.833.161.970.14Model uncertainty [%] 5.114.383.591.590.160.74Total systematic uncertainty [%]6.435.254.664.720.861.41 $\sigma(Z/\gamma^* \to \mu^+\mu^-)$ [pb] 5.481.451.040.9714.97535.25Statistical uncertainty [%] 0.690.820.910.210.03 0.37Detector uncertainty [%] 1.071.081.011.100.710.84Background uncertainty [%] 0.752.192.001.480.04 0.97Model uncertainty [%] 2.591.812.360.750.310.31Total systematic uncertainty [%]2.903.043.252.000.781.32 $\sigma(Z/\gamma^* \to \ell^+ \ell^-)$ [pb] 0.9714.96537.105.591.451.03Statistical uncertainty [%] 0.630.750.830.170.030.31Detector uncertainty [%] 0.840.990.871.050.40 0.56Background uncertainty [%] 0.851.421.280.060.770.18Model uncertainty [%] 2.240.501.842.270.890.19Total systematic uncertainty [%]2.062.442.381.820.451.03

Feb 2016

$Z/\gamma^* p_T^{\parallel}$ and $\phi_{\eta}^* - 8 \text{ TeV}$ Evolutions

Feb 2016

 $Z/\gamma^* p_T^{\parallel}$ and $\phi_n^* - 8 \text{ TeV}$ Data to background comparisons

 $Z/\gamma^* p_T^{\parallel}$ and $\phi_n^* - 8 \text{ TeV}$ Electron and Muon channel combinations

p[∥]_⊤ [GeV]

Feb 2016

WZ - 8 TeV

Variable	Total	Fiducial and aTGC	VBS	aQGC
Lepton $ \eta $	_	≤ 2.5	≤ 2.5	≤ 2.5
p_{T} of ℓ_Z, p_{T} of ℓ_W [GeV]		$\geq 15, \geq 20$	$\geq 15, \geq 20$	$\geq 15, \geq 20$
m_Z range [GeV]	66 - 116	$ m_Z - m_Z^{\text{PDG}} < 10$	$ m_Z - m_Z^{\text{PDG}} < 10$	$ m_Z - m_Z^{\rm PDG} < 10$
$m_{\rm T}^W$ [GeV]	_	≥ 30	≥ 30	≥ 30
$\Delta \hat{R}(\ell_Z^-,\ell_Z^+), \Delta R(\ell_Z,\ell_W)$	_	$\geq 0.2, \geq 0.3$	$\geq 0.2, \geq 0.3$	$\geq 0.2, \geq 0.3$
$p_{\rm T}$ two leading jets [GeV]	_	_	≥ 30	≥ 30
$ \eta_j $ two leading jets	_	_	≤ 4.5	≤ 4.5
Jet multiplicity	_	_	≥ 2	≥ 2
m_{jj} [GeV]	_	_	≥ 500	≥ 500
$\Delta R(j,\ell)$	_	_	≥ 0.3	≥ 0.3
$ \Delta\phi(W,Z) >2$	_	_	_	≥ 2
$\sum p_{\mathrm{T}}^{\ell} $ [GeV]		_	_	≥ 250

Table 1: Phase-space definitions used for the total, fiducial, VBS cross-section measurements and for the extraction of limits on the aTGC and aQGC. The symbols ℓ_Z and ℓ_W refer to the leptons associated to the Z and W boson, respectively. The symbol m_Z^{PDG} refers to the mean experimental mass of the Z boson from the Particle Data Group [16]. The other symbols are defined in the text.

W+Z/W-Z cross-section ratio

Δσ^{fid.}/Δ m^{TWZ} [fb/GeV] 10² 🔁 WZ - 8 TeV ATLAS Preliminary $\Delta\sigma^{fid.}$ \s = 8 TeV, 20.3 fb⁻¹ $W^{\!\pm}Z \to \,\ell'\nu\,\ell\ell$ 10 Differential **Cross-sections** • Data 2012 Powheg 10^{-3} 10^{-1} ···· MC@NLO ---- Sherpa 2.2 Ratio to Powheg 1.8 0.6 600 200 300 500 100 400 ∞ m^{wz} [GeV] $\Delta\sigma^{fid}/\Delta p_T^Z$ [fb/GeV] Δσ^{fid.} [fb] ATLAS Preliminary Δσ^{fid.} [fb] $\Delta\sigma^{fid.}/\Delta p_T^W$ [fb/GeV] 20 $\Delta\sigma^{fid.}/\Delta |y_{Z}^{-}y_{\ell,W}^{-}|$ [fb] ATLAS Preliminary √s = 8 TeV, 20.3 fb⁻¹ ATLAS Preliminary \s = 8 TeV, 20.3 fb 18 \s = 8 TeV, 20.3 fb⁻¹ 10 $W^{\pm}Z \to \,\ell'\nu\,\ell\ell$ $W^{\pm}Z \to \ell'\ell\,\ell$ 10 $W^{\!\pm}Z \to \,\ell'\nu\,\ell\ell$ • Data 2012 10 10⁻¹ Powheg ····· MC@NLO • Data 2012 • Data 2012 ---- Sherpa Powheg Powheg ····· MC@NLO ····· MC@NLO ---- Sherpa ---- Sherpa Ratio to Powheg Ratio to Powheg Ratio to Powheg 1.5 1.5 1.5 0 0.5 1.5 2 2.5 З 3.5 4.5 250 🗙 p₇^z [GeV] 250 ∝ p^w_⊤ [GeV] $|y_{z} - y_{\ell W}|$ 50 150 200 ∞ 0 100 0 50 100 150 200 ∞

6

UNIVERSITY

WZ - 8 TeV aQGC

W/Z Cross-sections and Ratios – 13 TeV

W/Z Cross-sections and Ratios – 13 TeV Selection

W+/W -	Z	
Exactly one lepton	Exactly two leptons with same- flavor and opposite-sign	
p _T (I) > 2	25 GeV	
ŋ(l)	< 2.5	
p _T (v) > 25 GeV		
m _T > 50 GeV	66 < m(II) < 116 GeV	

ZZ→4I - 13 TeV

ZZ→4I - 13 TeV

Selection

Exactly 4 leptons with $p_T > 20 \text{ GeV}$ and $|\eta| < 2.7$

Leptons must form two separate same-flavor opposite-sign pairs. When ambiguous, choose combination that minimizs $|m(II)_a$ - $m(Z)|+|m(II)_b-m(Z)|$

66 < M(II) < 116 GeV for both pairs

Feb 2016

37

Anomalous Couplings

In addition to measuring cross-sections, we attempt to find new physics using an Effective Field Theory approach

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \sum_{j} \frac{f_j}{\Lambda^4} \mathcal{O}_j + \dots$$

New physics suppressed by some cutoff scale, Λ

aTGC Operators

coupling	parameters	channel
$WW\gamma$	$\lambda_\gamma, \Delta k_\gamma$	$WW,W\gamma$
WWZ	$\lambda_Z, \Delta k_Z, \Delta g_1^Z$	WW, WZ
$ZZ\gamma$	h_3^Z,h_4^Z	$Z\gamma$
$Z\gamma\gamma$	h_3^γ, h_4^γ	$Z\gamma$
$Z\gamma Z$	$f_{40}^\gamma, f_{50}^\gamma$	ZZ
ZZZ	f_{40}^Z, f_{50}^Z	ZZ

arXiv:1310.6708

aQGC Operators

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	X	х	X						
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\!\mathcal{O}_{M,6},\!\mathcal{O}_{M,7}$	X	х	X	X	X	X	х		
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		Х	X	X	X	Х	Х		
$\mathcal{O}_{T,0}$, $\mathcal{O}_{T,1}$, $\mathcal{O}_{T,2}$	X	х	X	X	X	X	х	X	X
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		X	X	X	X	X	х	X	X
$\mathcal{O}_{T,8}$, $\mathcal{O}_{T,9}$			X			Х	Х	X	Х

Dimension-6 EFT Operators

arXiv:1310.6708

Conserve CP:

$$egin{split} \mathcal{O}_{WWW} &= \mathrm{Tr}[W_{\mu
u}W^{
u
ho}W^{\mu}_{
ho}] \ \mathcal{O}_{W} &= (D_{\mu}\Phi)^{\dagger}W^{\mu
u}(D_{
u}\Phi) \ \mathcal{O}_{B} &= (D_{\mu}\Phi)^{\dagger}B^{\mu
u}(D_{
u}\Phi), \end{split}$$

Violate CP:

$$\mathcal{O}_{ ilde{W}W} = \Phi^{\dagger} \tilde{W}_{\mu
u} W^{\mu
u} \Phi$$

 $\mathcal{O}_{ ilde{B}B} = \Phi^{\dagger} \tilde{B}_{\mu
u} B^{\mu
u} \Phi$

$$egin{aligned} \mathcal{O}_{\Phi d} &= \partial_{\mu} \left(\Phi^{\dagger} \Phi
ight) \partial^{\mu} \left(\Phi^{\dagger} \Phi
ight) \ \mathcal{O}_{\Phi W} &= \left(\Phi^{\dagger} \Phi
ight) \operatorname{Tr} [W^{\mu
u} W_{\mu
u}] \ \mathcal{O}_{\Phi B} &= \left(\Phi^{\dagger} \Phi
ight) B^{\mu
u} B_{\mu
u} \end{aligned}$$

Feb 2016

$$egin{aligned} \mathcal{O}_{ ilde{W}WW} &= \mathrm{Tr}[ilde{W}_{\mu
u}W^{
u
ho}W^{\mu}_{
ho}] \ \mathcal{O}_{ ilde{W}} &= (D_{\mu}\Phi)^{\dagger} ilde{W}^{\mu
u}(D_{
u}\Phi), \end{aligned}$$

	ZWW	AWW	HWW	HZZ	HZA	HAA	WWWW	ZZWW	ZAWW	AAWW
\mathcal{O}_{WWW}	х	х					Х	х	X	Х
\mathcal{O}_W	х	х	X	X	X		х	х	x	
\mathcal{O}_B	x	х		X	X					
$\mathcal{O}_{\Phi d}$			x	X						
$\mathcal{O}_{\Phi W}$			X	X	x	x				
$\mathcal{O}_{\Phi B}$				X	X	X				
$\mathcal{O}_{ ilde{W}WW}$	х	х					Х	Х	X	X
$\mathcal{O}_{ ilde{W}}$	x	х	X	X	X					
$\mathcal{O}_{ ilde{W}W}$			X	X	X	X				
$\mathcal{O}_{ ilde{B}B}$				x	x	X				

Dimension-8 EFT Operators

$\mathcal{O}_{S,0} = \left[\left(D_\mu \Phi ight)^\dagger D_ u \Phi ight] imes$	$< \left[\left(D^{\mu} \Phi ight)^{\dagger} D^{ u} \Phi ight]$
$\mathcal{O}_{S,1} = \left[\left(D_\mu \Phi ight)^\dagger D^\mu \Phi ight] imes$	$\left(\left(D_{\nu}\Phi\right)^{\dagger}D^{\nu}\Phi\right]$
$\mathcal{O}_{M,0} = ext{Tr} \left[W_{\mu u} W^{\mu u} ight] imes \left[\left(D_eta \Phi ight)^\dagger D^eta \Phi ight] \; ,$	$\mathcal{O}_{T,0} = \mathrm{Tr} \left[W_{\mu u} W^{\mu u} ight] imes \mathrm{Tr} \left[W_{lphaeta} W^{lphaeta} ight] \; ,$
$\mathcal{O}_{M,1} = \mathrm{Tr}\left[W_{\mu u} W^{ ueta} ight] imes \left[\left(D_eta \Phi ight)^\dagger D^\mu \Phi ight] \; ,$	$\mathcal{O}_{T,1} = \mathrm{Tr} \left[W_{lpha u} W^{\mu eta} ight] imes \mathrm{Tr} \left[W_{\mu eta} W^{lpha u} ight] \; ,$
$\mathcal{O}_{M,2} = \left[B_{\mu u}B^{\mu u} ight] imes \left[\left(D_eta \Phi ight)^\dagger D^eta \Phi ight] \;,$	$\mathcal{O}_{T,2} = \mathrm{Tr} \left[W_{lpha\mu} W^{\mueta} ight] imes \mathrm{Tr} \left[W_{eta u} W^{ ulpha} ight] \;,$
$\mathcal{O}_{M,3} = \left[B_{\mu u} B^{ ueta} ight] imes \left[\left(D_eta \Phi ight)^\dagger D^\mu \Phi ight] \; ,$	$\mathcal{O}_{T,5} = ext{Tr} \left[W_{\mu u} W^{\mu u} ight] imes B_{lphaeta} B^{lphaeta} \; ,$
$\mathcal{O}_{M,4} = \left[\left(D_\mu \Phi ight)^\dagger W_{eta u} D^\mu \Phi ight] imes B^{eta u} \; ,$	$\mathcal{O}_{T,6} = \mathrm{Tr}\left[W_{lpha u}W^{\mueta} ight] imes B_{\mueta}B^{lpha u} \;,$
$\mathcal{O}_{M,5} = \left[\left(D_\mu \Phi ight)^\dagger W_{eta u} D^ u \Phi ight] imes B^{eta \mu} \; ,$	$\mathcal{O}_{T,7} = ext{Tr} \left[W_{lpha\mu} W^{\mueta} ight] imes B_{eta u} B^{ ulpha} \; ,$
$\mathcal{O}_{M,6} = \left[\left(D_\mu \Phi ight)^\dagger W_{eta u} W^{eta u} D^\mu \Phi ight] \; ,$	$\mathcal{O}_{T,8} = B_{\mu u}B^{\mu u}B_{lphaeta}B^{lphaeta}$
$\mathcal{O}_{M,7} = \left[\left(D_\mu \Phi ight)^\dagger W_{eta u} W^{eta \mu} D^ u \Phi ight] \; ,$	$\mathcal{O}_{T,9} = B_{lpha\mu}B^{\mueta}B_{eta u}B^{ ulpha}$.
	TATAA 7777A 777AA 77AAA AAAA

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	Х	х	х						
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\!\mathcal{O}_{M,6},\!\mathcal{O}_{M,7}$	Х	Х	х	Х	Х	х	Х		
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		Х	х	Х	Х	х	Х		
$\mathcal{O}_{T,0}$, $\mathcal{O}_{T,1}$, $\mathcal{O}_{T,2}$	Х	х	х	Х	Х	х	Х	X	х
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		Х	Х	Х	Х	х	Х	X	Х
$\mathcal{O}_{T,8}$, $\mathcal{O}_{T,9}$			х			х	Х	X	х

arXiv:1310.6708

WV Semi-leptonic - 7 TeV

WV Semi-leptonic - 7 TeV

WW+WZ \rightarrow Iv jj cross-section measured with observed (expected) significance of 3.4 σ (3.2 σ)

 σ (Total NLO Exp.) = 61.1 ± 2.2 pb

 σ (Total Obs.) = 68 ± 7 (Stat.) ± 19 (Syst.) pb

Shape of dijet mass used to extract cross-section

JHEP 01 (2015) 049

arXiv:1410.7238v2

WV Semi-leptonic - 7 TeV Selection

Exactly 1 lepton with $p_T > 25$ GeV and exactly 2 jets with leading (subleading) $p_T > 30$ (25) GeV
MET > 30GeV
M _T > 40GeV
Δφ(MET,Leading jet) > 0.8
Δη(j,j) < 1.5
$\Delta R(j,j) > 0.7$ if $p_T(jj) < 250$ GeV
р _т (jj) > 250 GeV
25 < m(jj) < 250 GeV

Z Forward-Backward Asymmetry - 7 TeV

Z Forward-Backward Asymmetry - 7 TeV

- Extract $\sin^2(\theta^{\text{lept}}_{\text{eff}})$ from template fit of A_{FB} at the Z-pole
- Collins-Soper frame used to minimize ambiguity of incoming quark
- Combined measurement is found to be within 0.6 σ of global PDG fit:

 $\sin^2 \theta_{\text{eff}}^{\text{Tept}} = 0.2308 \pm 0.0005 \text{ (Stat.)} \pm 0.0006 \text{ (Syst.)} \pm 0.0009 \text{ (PDF)}$

Z Forward-Backward Asymmetry - 7 TeV Selection

Object Selection

Electron Central	Electron Forward	Muon
Electron η < 2.47 except 1.37 < η < 1.52	Electron 2.5 < η < 4.9 except 3.16 < η < 3.35	η < 2.4
E _T > 25 GeV	E _T > 25 GeV	p _T > 20 GeV
Event Selection		
Electron Central-Central	Electron Central-Forward	Muon
Two opposite-sign medium quality central electron candidates	One tight quality central and one medium quality forward electron candidate. (No charge requirement)	Two combined muons
E _T > 25 GeV	E _T > 25 GeV	p _T > 20 GeV
M(II) < 1 TeV	M(II) < 250 GeV	M(II) < 1 TeV

Same-Sign WW - 8 TeV

Same-Sign WW - 8 TeV

PRL. 113, (2014) 141803

arXiv:1405.6241v2

Feb 2016

- Limits are set on aQGCS for dimension-8 operators α_4 vs α_5
- First limits on these parameters.
- aQGC predictions unitarized

Same-Sign WW - 8 TeV Selection

Inclusive Region (QCD + EW)	VBS Region (EW)				
Exactly two leptons with same charge, p_T > 25 GeV, $ \eta $ <2.5					
At least two jets with $p_T > 30 \text{ GeV}$					
MET > 40 GeV					
M(II) > 20 GeV					
ΔR(II) > 0.3					
M(jj) > 500 GeV					
	∆y(jj) > 2.4				

Wyy - 8 TeV

Feb 2016

PRL 115, 031802 (2015)

Wyy - 8 TeV Selection

 $\begin{array}{l} \mbox{Definition of the fiducial region} \\ p_{\rm T}^{\ell} > 20 \, GeV, \, p_{\rm T}^{\nu} > 25 \, GeV, \, |\eta_{\ell}| < 2.5 \\ m_{\rm T} > 40 \, GeV \\ E_{\rm T}^{\gamma} > 20 \, GeV, \, |\eta^{\gamma}| < 2.37, \, {\rm iso. \ fraction \ } \epsilon_{\rm h}^{\rm p} < 0.5 \\ \Delta R(\ell,\gamma) > 0.7, \, \Delta R(\gamma,\gamma) > 0.4, \, \Delta R(\ell/\gamma, {\rm jet}) > 0.3 \end{array}$

Exclusive: no anti- k_t jets with $p_{\rm T}^{\rm jet} > 30 \, GeV, \, |\eta^{\rm jet}| < 4.4$

CMS

CMS – WWZ aTGC limits

September 2015 Centra Fit Val	CMS ATLAS ULEP	Channel	Limits	(/ dt	٧s	
		WW	[-4.3e-02, 4.3e-02]	4.6 fb ⁻¹	7 TeV	
Δĸ _Z	⊢−−−− −−−−−−1	WW	[-6.0e-02, 4.6e-02]	19.4 fb ⁻¹	8 TeV	
F		WV	[-9.0e-02, 1.0e-01]	4.6 fb ⁻¹	7 TeV	
	F4	WV	[-4.3e-02, 3.3e-02]	5.0 fb ⁻¹	7 TeV	
	⊢−−−− −	LEP Comb.	[-7.4e-02, 5.1e-02]	0.7 fb ⁻¹	0.20 TeV	
λ_		WW	[-6.2e-02, 5.9e-02]	4.6 fb ⁻¹	7 TeV	
~z	⊢−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	ww	[-4.8e-02, 4.8e-02]	4.9 fb ⁻¹	7 TeV	
	⊢	WW	[-2.4e-02, 2.4e-02]	19.4 fb ⁻¹	8 TeV	
	HH	WZ	[-4.6e-02, 4.7e-02]	4.6 fb ⁻¹	7 TeV	
	⊢−−−−− 1	WV	[-3.9e-02, 4.0e-02]	4.6 fb ⁻¹	7 TeV	
	F	WV	[-3.8e-02, 3.0e-02]	5.0 fb ⁻¹	7 TeV	
	⊢ →	D0 Comb.	[-3.6e-02, 4.4e-02]	8.6 fb ⁻¹	1.96 TeV	
	⊢	LEP Comb.	[-5.9e-02, 1.7e-02]	0.7 fb ⁻¹	0.20 TeV	
Δg^{Z}	μι	WW	[-3.9e-02, 5.2e-02]	4.6 fb ⁻¹	7 TeV	
-1 		WW	[-9.5e-02, 9.5e-02]	4.9 fb ⁻¹	7 TeV	
	⊢	WW	[-4.7e-02, 2.2e-02]	19.4 fb ⁻¹	8 TeV	
	μι	WZ	[-5.7e-02, 9.3e-02]	4.6 fb ⁻¹	7 TeV	
	H	WV	[-5.5e-02, 7.1e-02]	4.6 fb ⁻¹	7 TeV	
	⊢ I	D0 Comb.	[-3.4e-02, 8.4e-02]	8.6 fb ⁻¹	1.96 TeV	
I		LEP Comb.	[-5.4e-02, 2.1e-02]	0.7 fb ⁻¹	0.20 TeV	
	0	0).2			
		a I GC Limits (095%				

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

.AS

-500	0.016	40	-38	43	-42	$F_{S,0}/\Lambda^4$
-500	0.050	120	-118	131	-129	$F_{S,1}/\Lambda^4$
_	80	32	-33	35	-35	$F_{M,0}/\Lambda^4$
Ę.	205	47	-44	51	-49	$F_{M,1}/\Lambda^4$
-1000 ^{LL}	160	63	-65	69	-70	$F_{M,6}/\Lambda^4$
	105	66	-70	73	-76	$F_{M,7}/\Lambda^4$
	0.027	4.6	-4.2	4.9	-4.6	$F_{T,0}/\Lambda^4$
	0.022	2.2	-1.9	2.4	-2.1	$F_{T,1}/\Lambda^4$
	0.08	6.4	-5.2	7.0	-5.9	$F_{T,2}/\Lambda^4$

Feb 2016

arXiv:1410.6315v2

