Recent QCD results from ATLAS

Vojtěch Pleskot, Institut für Physik, JGU Mainz On behalf of the ATLAS collaboration Lake Louise Winter Institute 2016

Introduction

Four-jet cross-section @ 8 TeV JHEP12 (2015) 105

Sherpa and HEJ in agreement with data

Four-jet cross-section @ 8 TeV JHEP12 (2015) 105

- Some deviation of theory?
 - Mostly covered by uncertainties

Transverse energy-energy correlations Phys. Lett. B 750 (2015) 427-447

 Energy-weighted angular distribution of jets

$$\alpha_{s}(m_{Z}) = 0.1173$$

$$\pm 0.0010 \text{ (exp.)}$$

$$^{+0.0063}_{-0.0020} \text{ (scale)}$$

$$\pm 0.0017 \text{ (PDF)}$$

$$\pm 0.0002 \text{ (NPC)}$$

 NNLO pQCD prediction needed

Number of charged particles in jets arXiv:1602.00988

- Data between Pythia and Herwig++
- <n_{charged}> higher for gluon jets
 - Increases faster with jet p_{T}

Underlying event studies

DPI in four-jet events @ 7 TeV ATLAS-CONF-2015-058

DPI in four-jet events @ 7 TeV ATLAS-CONF-2015-058

- Compatible with other measurements
- Large uncertainties

Minimum bias charged particle distributions @ 8 TeV

ATLAS-STDM-2014-19

EPOS and Pythia+Monash: the best description

- Still space for improvement! Vojtěch Pleskot, JGU Mainz

Minimum bias charged particle distributions @ 8, 13 TeV

13 TeV: Valentina's Maria Cairo poster!

Back-up

Jet reconstruction with ATLAS (2012)

- Calorimeter cells \rightarrow Topoclusters \rightarrow Anti- k_t jets
- Calibration:

Jet reconstruction with ATLAS

Eur. Phys. J. C (2015) 75:17

- JES uncertainty of ~1% in 0.1 1.5 TeV!
 - Measured in-situ

Transverse energy-energy correlations Phys. Lett. B 750 (2015) 427-447

(1/σ)dΣ^{asym}/d(cos φ • TEEC: ATLAS \s = 7 TeV L dt = 158 pb⁻¹ $\alpha_{s}^{fit}(m_{z}) = 0.1195$ anti-k, jets R = 0.4 10 Data (exp. unc.) $\frac{1}{\sigma}\frac{\mathrm{d}\Sigma}{\mathrm{d}(\cos\phi)} = \frac{1}{\sigma}\sum_{ii}\int\frac{\mathrm{d}\sigma}{\mathrm{d}x_{\mathrm{T}i}\mathrm{d}x_{\mathrm{T}j}\mathrm{d}(\cos\phi)}x_{\mathrm{T}i}x_{\mathrm{T}j}\mathrm{d}x_{\mathrm{T}i}\mathrm{d}x_{\mathrm{T}j}$ NLO pQCD (th. unc.) CT10 NNLO 10-2 • Asymmetry of TEEC: 10-3 1.5 $\frac{1}{\sigma} \frac{d\Sigma^{asym}}{d(\cos\phi)} \equiv \left. \frac{1}{\sigma} \frac{d\Sigma}{d(\cos\phi)} \right|_{\phi} - \left. \frac{1}{\sigma} \frac{d\Sigma}{d(\cos\phi)} \right|_{\pi-\phi}$ Data / Theory 0.5 -0.8 -0.7 -0.6 -0.5 -04 cos ø

 Exploit difference in <n_{charged}> and q-g composition of more central and more forward jets

$$\langle n_{\text{charged}}^{f} \rangle = f_{q}^{f} \langle n_{\text{charged}}^{q} \rangle + f_{g}^{f} \langle n_{\text{charged}}^{g} \rangle$$
$$\langle n_{\text{charged}}^{c} \rangle = f_{q}^{c} \langle n_{\text{charged}}^{q} \rangle + f_{g}^{c} \langle n_{\text{charged}}^{g} \rangle.$$

Vojtěch Pleskot, JGU Mainz

DPI in four-jet events @ 7 TeV ATLAS-CONF-2015-058

• Discriminating variables

Vojtěch Pleskot, JGU Mainz

Leading Track UE @ 13 TeV ATL-PHYS-PUB-2015-019

- Detector-level distributions, 170 μb⁻¹
- Plateau in transverse region described by UE tunes

Leading Track UE @ 13 TeV ATL-PHYS-PUB-2015-019

- Detector-level distributions, 170 μ b⁻¹
- Plateau in transverse region described by UE tunes

Minimum bias charged particle distributions @ 8 TeV

ATLAS-STDM-2014-19

- EPOS and A2: the best description
 - Still space for improvement! Vojtěch Pleskot, JGU Mainz

Minimum bias charged particle distributions @ 8 TeV

ATLAS-STDM-2014-19

- EPOS and Monash: best agreement
 - Still space for improvement! Vojtěch Pleskot, JGU Mainz

Inclusive-, di- and three-jet cross-sections @ 7 TeV

- Good agreement between data and NLO pQCD
- Correlation of stat. and syst. unc. determined

Inclusive jet cross-section @ 7 TeV JHEP02 (2015) 153

• *R* = 0.4 jets

Vojtěch Pleskot, JGU Mainz

Dijet cross-section @ 7 TeV JHEP05 (2014) 059

• *R* = 0.4 jets

Three-jet cross-section @ 7 TeV

Eur. Phys. J. C (2015) 75

• *R* = 0.4 jets

Shape of systematic uncertainty

Inclusive jet cross-section @ 7 TeV, JHEP02 (2015) 153

Large systematic uncertainties are non-gaussian

Parton distribution functions

Quantitative comparison data-theory

Inclusive jet cross-section @ 7 TeV, JHEP02 (2015) 153

y ranges				$P_{\rm obs}$		
	NLO PDF set:	CT10	MSTW2008	NNPDF2.1	HERAPDF1.5	ABM11
y < 0.5		81%	60%	70%	58%	< 0.1%
$0.5 \le y < 1.0$		90%	92%	88%	50%	${<}0.1\%$
$1.0 \le y < 1.5$		87%	87%	84%	92%	3.5%
$1.5 \le y < 2.0$		91%	88%	90%	72%	60%
$2.0 \le y < 2.5$		89%	82%	85%	25%	54%
$2.5 \le y < 3.0$		95%	92%	96%	83%	87%

- Anti- $k_{\rm t}$, R = 0.4 jets
- ABM11 excluded: *p*-value < 0.1%

Qualitative comparison data-theory

Inclusive jet cross-section @ 13 TeV, ATLAS-CONF-2015-034

Agreement for CT10, NNPDF3.0, MMHT