

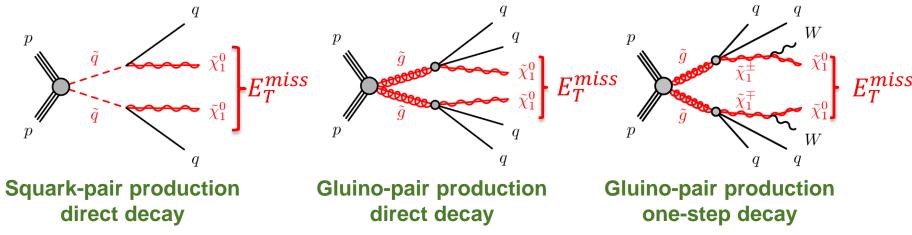
ATLAS SUSY

Search for squarks and gluinos with the ATLAS detector in final states with jets and transverse missing momentum using 2015 data

Shunsuke Adachi (The University of Tokyo) for the ATLAS collaboration

Shunsuke Adachi

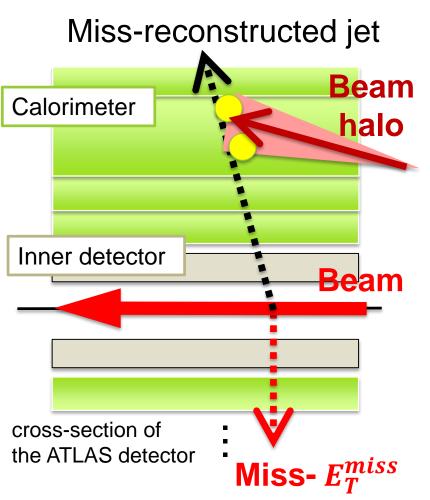
Lake Louise Winter Institute 2016



Introduction

- Target signal has a few assumptions :
 - 1. R-parity conservation

Shunsuke Adachi


2. The lightest neutralino ($\tilde{\chi}_1^0$) is the lightest supersymmetric particle (LSP).

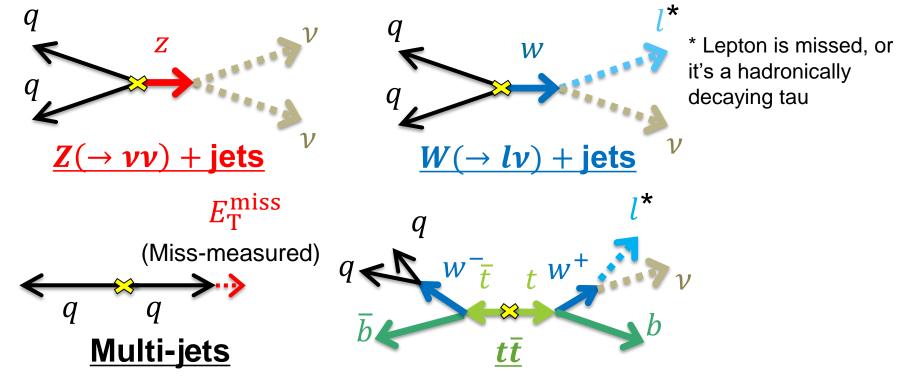
The final state with (2—6) jets and transverse missing momentum (E_T^{miss}) *All hadronic decay. No lepton (μ or e).

This poster shows a important result for SUSY search, using **3.2 fb⁻¹** full p-p collision data recorded with the ATLAS detector in 2015.

Non-collision background

Shunsuke Adachi

Non-collision background is a <u>potentially</u> <u>dangerous background</u> for this analysis :

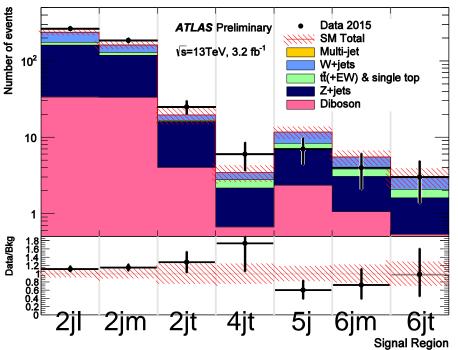

- Miss-reconstructed jet makes also miss- E_T^{miss} on the opposite direction.
 - $\Rightarrow \text{Similar to signal characteristics}$ $(jet + E_T^{miss})$
- It <u>cannot be reproduced by Monte-</u> <u>Carlo</u>.

At first, we need to reject the **non-collision background** to **the negligible level**.

Lake Louise Winter Institute 2016

Standard model background

There are **<u>4 kinds</u>** of **standard model background**.



• Background is estimated by Monte-Carlo.

Shunsuke Adachi

 The normalisation of the MC is estimated in 4 dedicated control regions, each dominated by a specific SM process.

Result

- 2/4/5/6 is the minimum number of jets
- I/m/t : Loose/Medium/Tight selection

Shunsuke Adachi

7 signal-rich regions are prepared to 2jl/2jm/2jt 4jt 5j 6jm/6jt

cover large mass-range of squark and gluino.

The comparison (counting) between **data** and **expected background** in each **signal region** is shown in each bin.

There is no significance excess.

Lake Louise Winter Institute 2016

5

Search for Squarks and gluinos with the ATLAS detector in final states with jets and transverse missing momentum using 2015 data Introduction

Squark-pair production

direct decay

Non-collision background jet

ata and fit them to the data inollision event 6 ± 11 0 + 0.4

(Miss-messur

· cannot be reproduced by Monte Carlo.

small angle with beam axis

Non-collision background

Veto the event having a jet considered to be non-collision background - Large fmax : The maximum fraction of deposit energy in one calorimeter layer Small (. . . The fraction of denosit energy of charged particles (in ince)

Estimate the amount of non-collision background in

Gluino-pair production

is miss-reconstructed jet from Proton beam halo.

less matching tracks in inner detector

⇒ Needs to be rejected to a negligible level in this analysis

ATLAS Work In Progress

Standard model background is caused from 4 kinds of process.

Litt=3215" (c=

Signal regi

direct decay

the gluons (gluinos)

alorimeter

Miss-reconstructed jet

Search for the supersymmetric partner of - the quarks (squarks)

Their cross-sections are expected to be much larger at a centre-of-

Use the 3.2fb⁻¹ full data recorded by the ATLAS in 2015

a neutralino is the lightest supersymmetric particle (LSP)

Focus on the final state with (2-6) jets & large transvers missing momentum (E_T^{miss})

Assume that - R-parity is conserved.

mass energy of 13TeV at the LHC in Run2

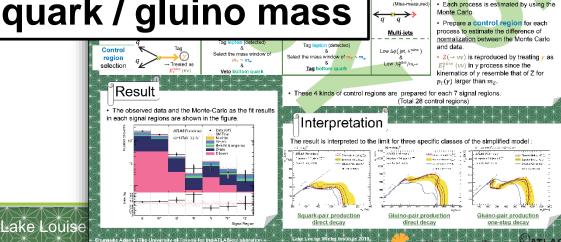
Event selection Prepare 7 kinds of selections to enrich signal by

changing selections on jet, $m_{\rm eff}$ and $E_{\rm T}^{\rm miss}$ / $m_{\rm eff}$

more : Scalar sum of the

Signal region : 2jl/2jm/2jt / 4jt / 5j / 6jm/6jt

Gluino-pair productio


one-step decay

Entra albar o Isanina

albian werl

Please come to listen to more de

- How to reduce non-collision background
- Selection of control regions
- Limit plot of squark / gluino mass

Shunsuke Adachi