

Lake Louise Winter Institute 2016

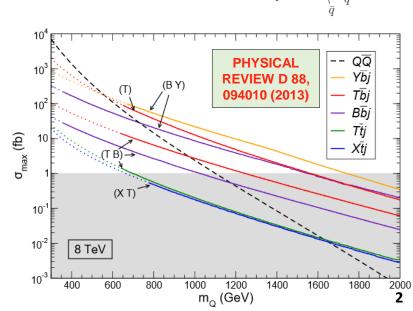
Search for vector like quarks at CMS

Aniello Spiezia IHEP/CAS Beijing

On behalf of CMS Collaboration

中國科學院為維物服研究所 Institute of High Energy Physics Chinese Academy of Sciences

Theoretical Motivation

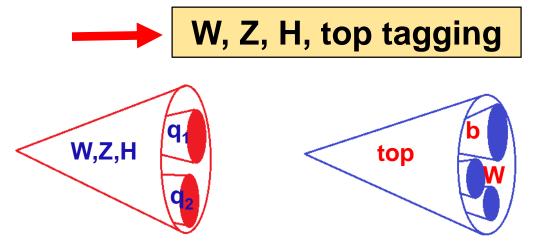


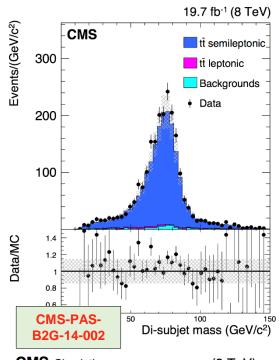
- Discovery of Higgs boson motivates search for new physics
- Possible explanations given by: little Higgs models, extra dimensions

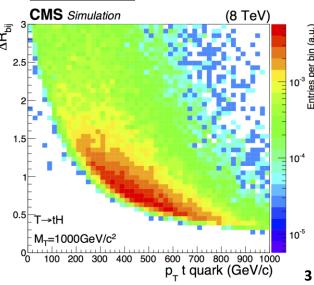
models, composite Higgs models

- These theories predict existence of heavy vector-like quarks (VLQ)
- Vector-like quarks are hypothetical new spin-1/2 particles: left- and right-handed chiralities transform in the same way under the standard model symmetry group
- In this talk, VLQ pair production searches at CMS will be shown

$$T \rightarrow W^+b$$
, $T \rightarrow Zt$, $T \rightarrow Ht$, $B \rightarrow W^-t$, $B \rightarrow Zb$, $B \rightarrow Hb$, $X \rightarrow W^+t$, $Y \rightarrow W^-b$,






Experimental techniques

- Boosted topologies: resonance with high mass (~TeV) → decay products are produced close to each other
- Proper techniques have been developed
- Jet grooming techniques allow to distinguish signal/background: pruning/filtering/trimming
- Definition of useful variables: mass of the jet/subjets, N-subjetness, mass drop, subjet btagging

VLQ searches @ CMS

T _{5/3} search (8 TeV and 13 TeV)			
VLQ production $pp \rightarrow T_{5/3}T_{5/3}$			
VLQ decay	tWtW		

T _{2/3} search (8 TeV)						
$\begin{array}{c c} \textbf{VLQ} \\ \textbf{production} \end{array} \qquad \qquad \textbf{pp} \rightarrow \textbf{T}_{2/3}\textbf{T}_{2/3}$						
VLQ decay	bWbW tZtZ tHtH bWtH bWtZ tZtH					

B _{-1/3} search (8 TeV)					
$\begin{array}{c c} \textbf{VLQ} \\ \textbf{production} \end{array} \qquad pp \rightarrow B_{-1/3}B_{-1/3}$					
VLQ decay	tWtW bZbZ bHbH tWbH tWbZ bZbH				

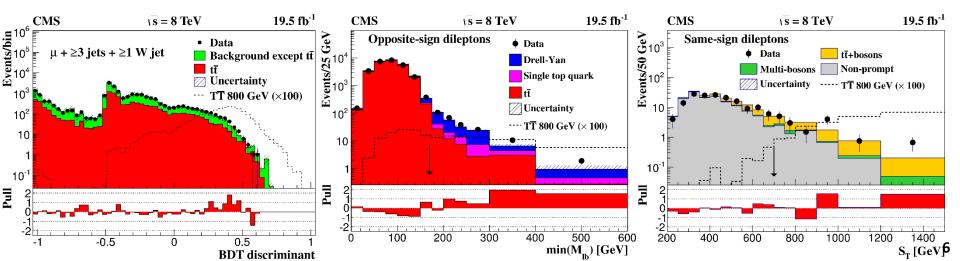
Search for pair production of VLQ T' with charge 2/3

T _{2/3} search (8 TeV)					
$\begin{array}{c c} \textbf{VLQ} \\ \textbf{production} \end{array} \qquad \qquad \textbf{pp} \rightarrow \textbf{T}_{2/3} \textbf{T}_{2/3}$					
VLQ decay	bWbW tZtZ tHtH bWtH bWtZ tZtH				

$T_{2/3}T_{2/3} \rightarrow Inclusive$

CMS-PAS-B2G-12-015: Inclusive search for a vector-like T quark by CMS

Single lepton


- One isolated electron or muon
- Count additional jets, W-jets and top-jets
- BDT: jet/b-jet multiplicities, H_T, E_T^{miss}, lepton p_T, p_T of the third and fourth jets. For events with a W-jet: number and p_T of W jets and the number of top-jets

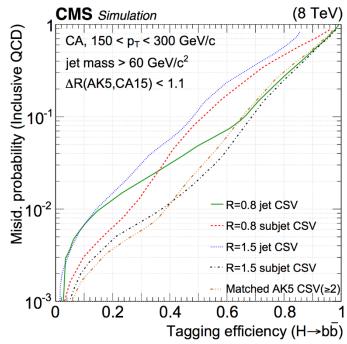
Multilepton

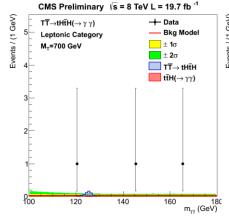
- Opposite sign dilepton from or not a Z boson (6 categories)
- Same sign dilepton (3 categories)
- Three leptons (3 categories)

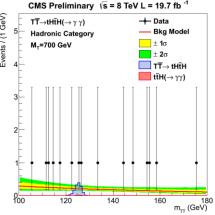
Results

 Limits for for T_{2/3} mass between 687 and 782 GeV

$T_{2/3}T_{2/3} \rightarrow tH + inclusive$


 CMS-PAS-B2G-14-002: Search for top-Higgs resonances in all-hadronic final states using jet substructure methods

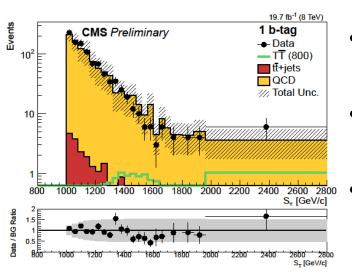

CMS-PAS-B2G-14-003: Search for vector-like top quark partners produced in association with Higgs


bosons in the diphoton final state

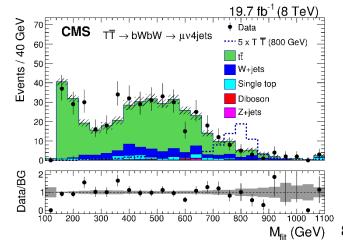
tH fully hadronic

- One top-jet, from HEPTopTagger algorithm, with M(jet) in [140,250] GeV and subjet btagging
- One or two H-jet with two subjet b-tagged and with M_{inv} > 60 GeV
- Likelihood ratio obtained starting from H_T and m_{bb} distributions

tH in diphoton


- Higgs boson to photons to allow for full mass reconstruction
- Two search channels: leptonic and hadronic categories

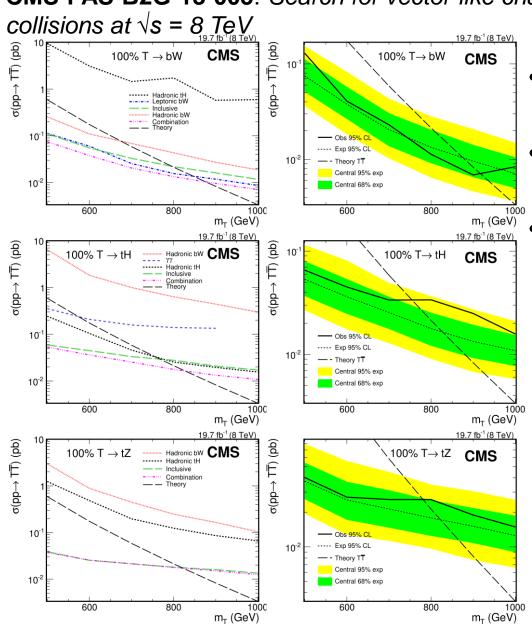
$T_{2/3}T_{2/3} \rightarrow bWbW$

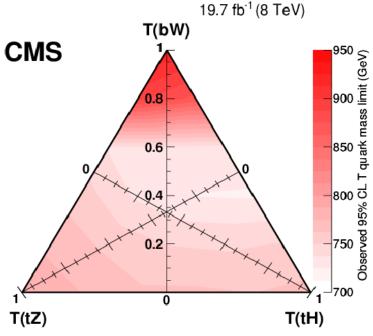

CMS-PAS-B2G-12-013: Search for pair-produced vector-like top quark partners decaying to bW in the fully hadronic channel using jet substructure at 8 TeV

- Fully hadronic final state: 2 W-jets and 2 jets (at least one is b-tagged)
- tt background from simulation, QCD from data-driven method
 - Variable sensitive to signal: S_T , scalar sum of p_T of W-jets and jets

CMS-PAS-B2G-12-017: Search for vector-like quarks in final states with a single lepton and jets in pp collisions at $\sqrt{s}=8$ TeV

- One isolated electron or muon
- At least 4 jets or 3 jets + 1W-jet
- Kinematic fit for hypothesis
 TT→bWbW→ℓvbqqb to find the mass of
 the resonance




$T_{2/3}T_{2/3}$ - Combination

CMS-PAS-B2G-13-005: Search for vector-like charge 2/3 T quarks in proton-proton

- The 5 searches are combined together
- The 2 single-leptonic analyes are considered exclusively
- Lower mass limits between720 and 920 GeV

Search for pair production of VLQ B' with charge -1/3

B _{-1/3} search (8 TeV)					
$\begin{array}{c c} \textbf{VLQ} \\ \textbf{production} \end{array} \qquad pp \rightarrow B_{\text{-1/3}} B_{\text{-1/3}}$					
VLQ decay	tWtW bZbZ bHbH tWbH tWbZ bZbH				

$B_{-1/3}B_{-1/3} \rightarrow Lepton+Jets$

 $X \rightarrow W_1 W_1$, Pythia6

+ < PU > = 22 + sim.

+ < PU > = 12 + sim.

W+jets, MG+Pythia6

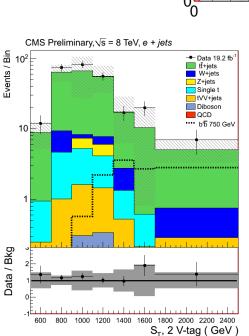
+ < PU > = 22 + sim.+ < PU > = 12 + sim.

CMS Preliminary Simulation, √s = 8 TeV, W+jets

CA R=0.8

250 < p₋ < 350 GeV

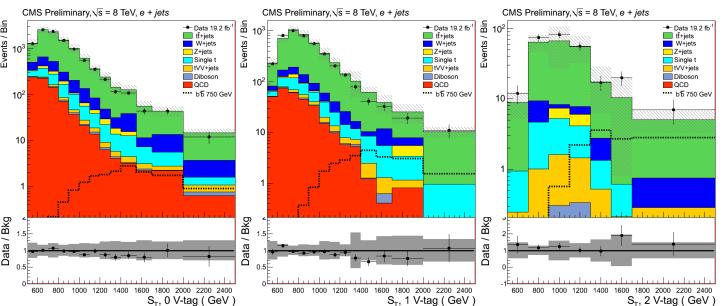
 $|\eta| < 2.4$


JME-13-006

CMS-PAS-B2G-12-019: Search for pair-produced vector-like quarks of charge -1/3 in lepton + jets final

state in pp collisions at $\sqrt{s} = 8 \text{ TeV}$

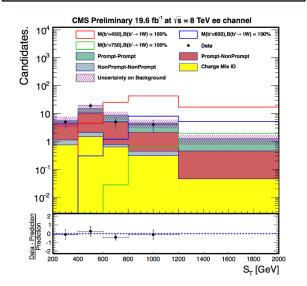
 One isolated lepton and at least four jets (at least one is b-tagged)


- Events divided in 0, 1 and ≥2 V-jets (either W, Z or H boson)
- V-jets identified with pruning algorithm and mass drop

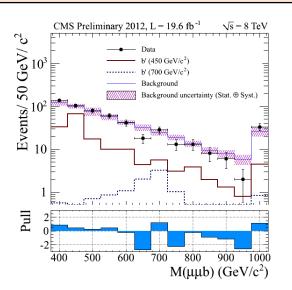
Normalized Distributior

To discriminate B quark signal from background, S_T (scalar sum of jets, leptons and missing energy pt) is used

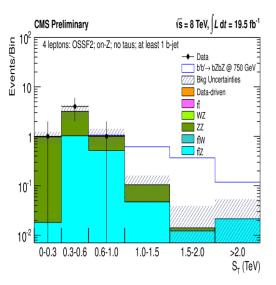
100 pruned jet mass (GeV)


$B_{-1/3}B_{-1/3} \rightarrow Multilepton$

- CMS-PAS-B2G-12-020: Search for pair-produced vector-like quarks of charge -1/3 in same-sign dilepton final state
- CMS-PAS-B2G-12-021: Search for pair-produced vector-like quarks of charge -1/3 in dilepton+jets final state in pp collisions at $\sqrt{s} = 8$ TeV
- CMS-PAS-B2G-13-003: Search for Vector-Like b' Pair Production with Multilepton Final States in pp collisions at $\sqrt{s} = 8$ TeV


Same sign dilepton

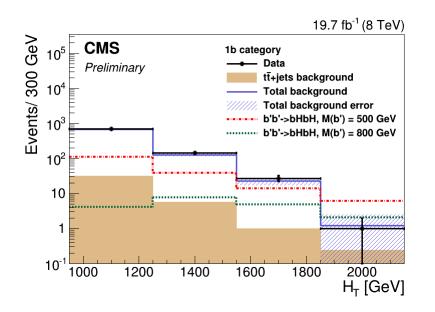
- Two SS leptons and four jets
- S_⊤ distribution

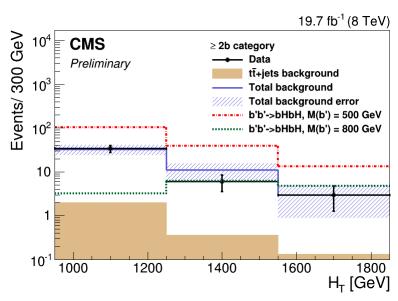

Opposite sign dilepton

- Two leptons from a Z boson
- At least one b-jet

Multilepton

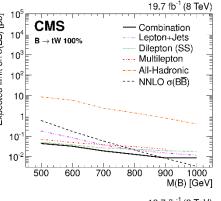
- At least three leptons
- Number of oppositesign same flavor

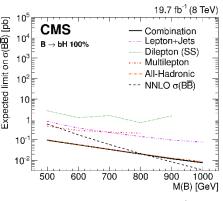


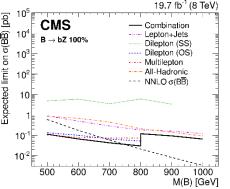

$B_{-1/3}B_{-1/3} \rightarrow bH$ all hadronic

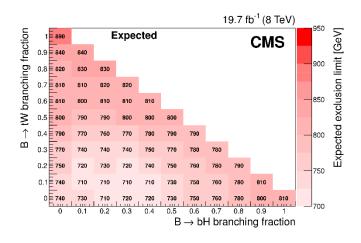
CMS-PAS-B2G-14-001: Search for pair-produced vector-like quarks of charge -1/3 decaying to bH using boosted Higgs jet-tagging in pp collisions at $\sqrt{s} = 8$ TeV

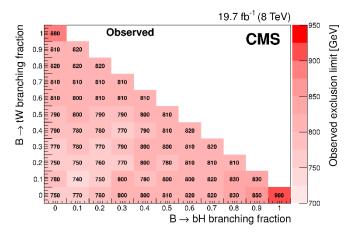
- At least one H-tagged jet: jet mass, N-subjettiness and subjets btagging
- At least one additional b-jet (two categories on number of b-jets)
- H_T distribution used to discriminate signal and background
- tt background from simulation, QCD estimated from data-driven method






B_{-1/3}B_{-1/3} - Combination

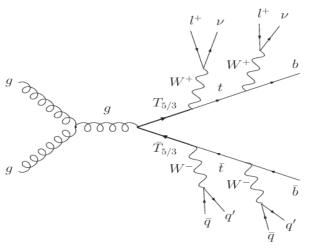

CMS-PAS-B2G-13-006: Search for pair-produced vector-like B quarks in proton-proton collisions at $\sqrt{s} = 8$ TeV



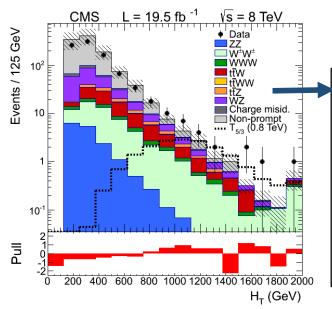
- The 5 searches are combined together
- Observed exclusion limit ranges
 between 740 GeV and 900 GeV for the
 mass of the B_{-1/3}

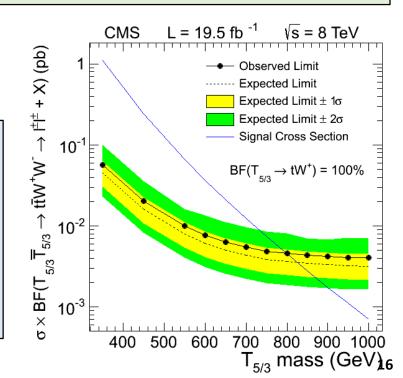
T _{5/3} search (8 TeV and 13 TeV)				
VLQ production $pp \rightarrow T_{5/3}T_{5/3}$				
VLQ decay	tWtW			

Search for pair production of VLQ with charge 5/3



$T_{5/3}T_{5/3}$ search


■ Phys. Rev. Lett. 112 (2014) 171801: Search for Top-Quark Partners with Charge 5/3 in the Same-Sign Dilepton Final State


Same-sign dilepton signature:

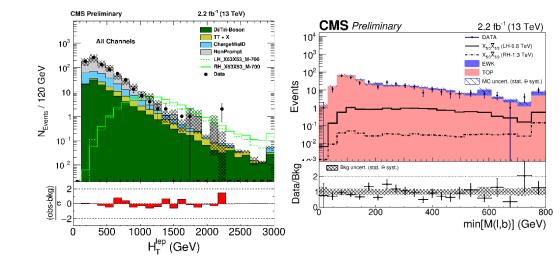
- two leptons from W decays
- top-jets and W-jets are reconstructed
- minimum number of constituents: leptons, jets, W-jets, top-jets

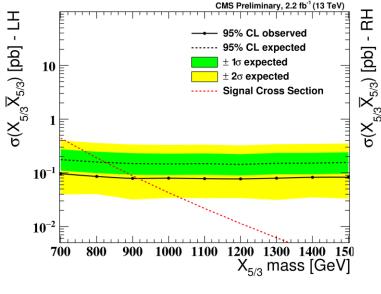
Background:

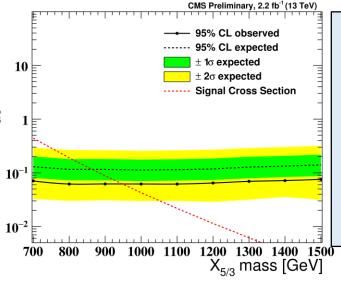
- 1. SM irreducible
- 2. charge misidentification
- 3. Non-prompt leptons

T_{5/3}T_{5/3} search

■ CMS-PAS-B2G-15-006: Search for top quark partners with charge 5/3 at $\sqrt{s}=13 \text{ TeV}$

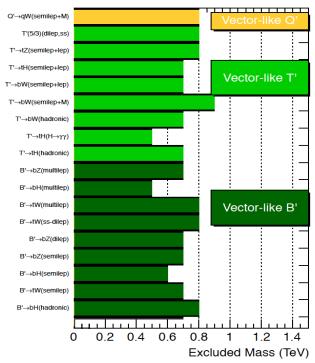

13 TeV


Same-sign dilepton signature:

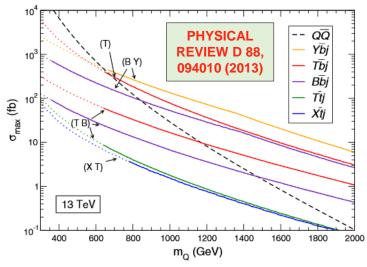

- Similar selection as before
- Re-optimized for 13 TeV data

Lepton+jets (only 13 TeV)

- One lepton from W decay
- at least 4 jets, 1 b-jets, categories with 0 or 1+ W-jets



Exclusion observed (expected) limit of 960/940 (900/860) GeV for RH/LH T_{5/3} mass → improved with



Conclusions

- CMS has a robust programme focused on search for VLQ
- Search for pair production of VLQ T_{5/3},
 T_{2/3}, B_{-1/3} performed during Run 1:
 - limits up to ~850 GeV
- First result for pair production of T_{5/3} at Run 2:
 - extend limits up to ~950 GeV

Run 2 perspective:

- Extend sensitivity of previous analyses
- Single production of VLQ become sensitive
- Boosted techniques are being improved

BACKUP

Jet grooming techniques

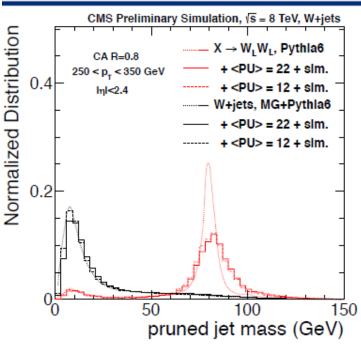
ref. JHEP05 (2013) 090

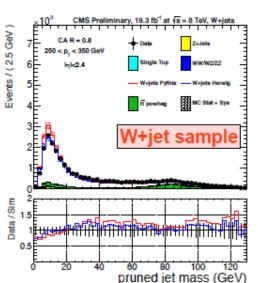
- Designed to separate between jet from heavy particles and jet from QCD
- Jet mass highly depends on grooming techniques
- Understand the dependence for the jet mass with the pileup
- Three algorithms can be used:
 - Filtering algorithm → the constituents of the jet are reclustered with CA 0.3 and only the three hardest subjets are considered
 - Trimming algorithm → the constituents of the jet are reclustered with k_t 0.2 and particles at low p_t are ignored
 - Pruning algorithm → remove constituents that are at large angles or soft

Pruning algorithm

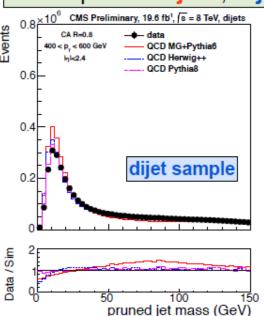
- Developed by S.Ellis et al: [Phys. Rev. n D80 (2009)]
- Main idea → add a set of requirements during the clustering algorithm
 - → to prune the jet: remove constituents that are at large angles or soft
- Starting point: jets clustered with CA algorithm and distance parameter of 0.8
- Steps of the algorithm:
 - 1. **rerun** the clustering sequence
 - 2. two more requirements are asked:

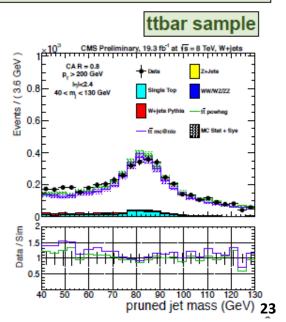
•
$$z_{ij} \equiv \frac{\min(p_T^i, p_T^j)}{p_T^p} > z_{cut}$$
 remove soft particles


• $\Delta R_{ij} < \alpha \cdot m_{jet}/p_T^{jet}$


remove large angle particles

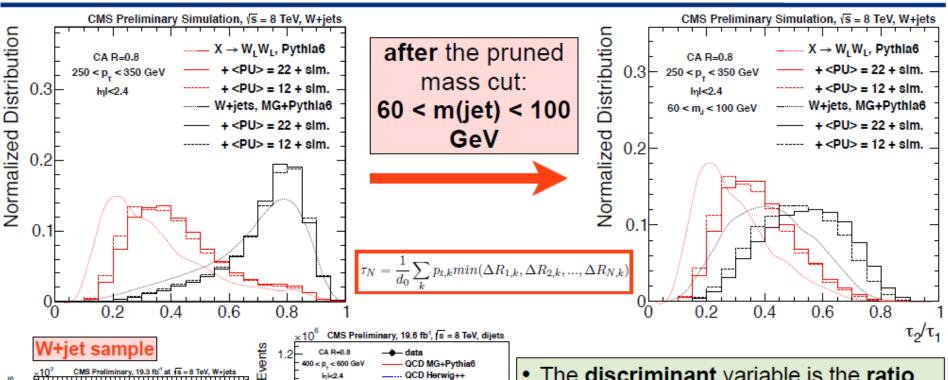
W-tagging algorithm: pruned mass

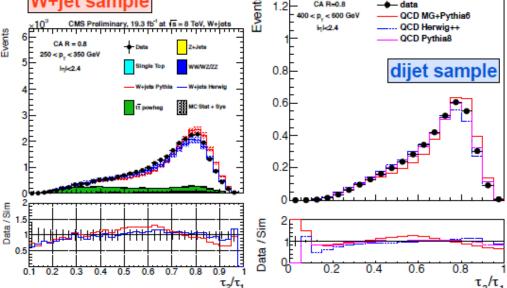




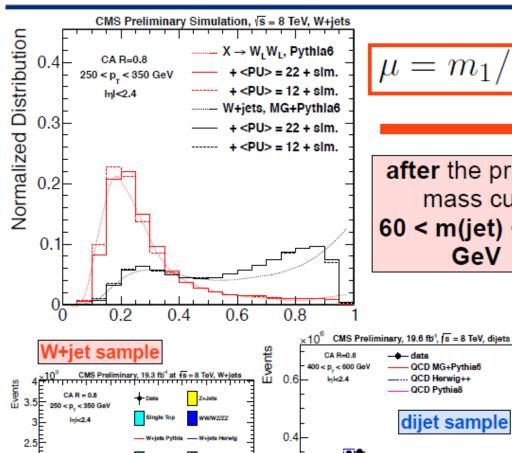
ref. CMS PAS JME-13-006

- Signal with real hadronic W peaks at W mass
- QCD jets peak at lower value
- Pileup and detector effects results in broadening the W mass and shift it at higher value
- Different pileup scenarios have not effects, due to the pruning
- data/MC comparison in three different samples: W+jets, dijet and ttbar

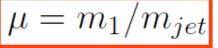


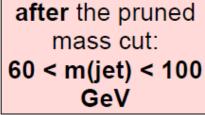


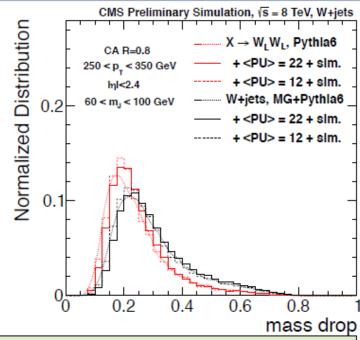
W-tagging algorithm: N-subjettiness

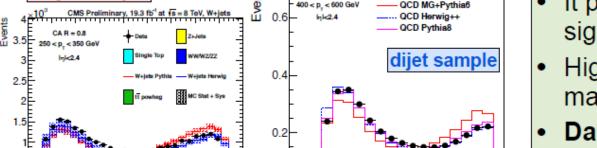


- The discriminant variable is the ratio between 2- and 1-subjettiness
- High correlation between τ₂₁ and m(jet)
- Disagreement between generator and simulation level from pileup
- Data/MC comparison in two different samples: W+jets and dijet
- Data/MC disagreements motivate measurement of SF




W-tagging algorithm: mass drop





mass drop

mass drop

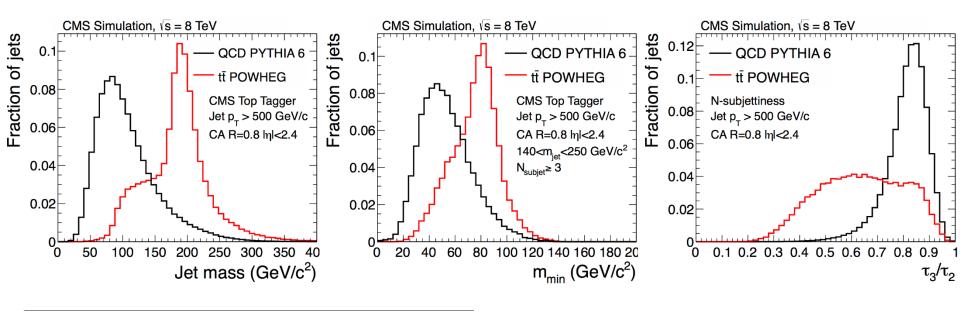
- It peaks at low value for the signal
- High correlation between mass drop variable and m(jet)
- Data/MC comparison in two different samples: W+jets and dijet
- Best agreement with herwig++ (W+jets) and pythia8 (dijet)

top-tagging algorithm (I)

- Developed by Kaplan et al: [Phys. Rev. Lett. 101, 142001 (2008)]
- Main idea: look for the three partons that come from the top decaying hadronically
- Starting point: jets clustered with CA algorithm and distance parameter of 0.8
- Steps of the algorithm:
 - 1. the clustering sequence is examined in reverse...
 - 2. ... till two subjets satisfy two requirements
 - 3. repeat the decomposition on the two subjets

•
$$\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.4 - A \cdot p_T^C$$

• $p_T^{cluster} > \delta_p \cdot p_T^{hard\ jet}$


remove **subclusters** that are too **close**

remove lowpt subclusters

top-tagging algorithm (II)

Three variables used to tag top-quark:

- Mass of the jet
- N-subjettiness
- Minimum pairwise subjets

mass of the four-vector of all the constituents of the jet

number of subjets found by the algorithm

hat

minimum **invariant mass** between two of the three subjets

ref. CMS PAS JME-13-007