Search for Flavor-changing Neutral Current Decays t → qH at √s = 8 TeV

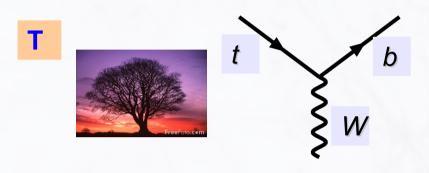
Yuan CHAO

National Taiwan University, Taipei, Taiwan
For the CMS collaboration

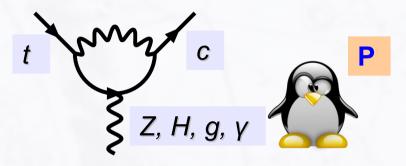
Lake Louise Winter Institute
University of Alberta

2016/02/07-13

Introduction


From Physicist TV @ FB

Top quark decays as t → bW ~100%, but...



Motivation

Top quark decay channels:

Flavor-Changing
Neutral- Current (FCNC)

FCNC plays an important role in NP and CPV studies

- FCNC suppressed by O(10⁻¹³-10⁻¹⁵) by GIM Mechanism
- Occurs at quantum loop corrections only
 Phys. Rev. D2 (1970) 1285
- Could be enhanced through new physics at loop level Models predict BRs of O(10⁻³-10⁻⁵):
 - MSSM, R-parity violating SUSY Phys. Lett. B502 (2001) 115-124
 - Two Higgs doublet models arXiv: 1112.1707v1 [hep-ph]

3

Y. CHAO

Motivation (cont.)

- Any observation would indicate new physics
- Previous studies: Search for t → qZ decays
 - Combined 7 + 8 TeV results BR(t \rightarrow qZ) < 0.05% with 25/fb (current best limit)

 Phys. Rev. Lett. 112 171802
- Higgs is found with mass ~126 GeV, lighter than top quark
 - Search for $t \rightarrow qH$ are therefore possible
 - Studies done by both Atlas and CMS
 - Looking at bb, γγ, WW/ZZ/ττ

Top FCNC Searches (cont.)

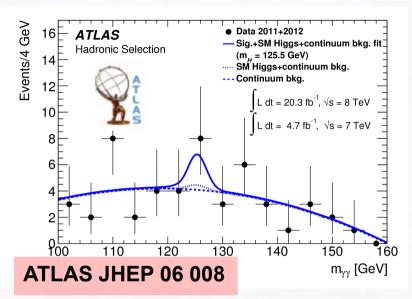
Search for $t \rightarrow qH$ decays

- ATLAS using 7+8 TeV data (direct search)
 - $\bullet H \rightarrow VV$

ArXiv: 1509.06047

- *H* → *WW*, *ZZ*, *TT*
- \bullet $H \rightarrow bb$

combined limits:


$$\mathcal{B}(t \to cH) < 0.46\% \text{ (exp. } 0.25\%)$$

 $\mathcal{B}(t \to uH) < 0.45\% \text{ (exp. } 0.29\%)$

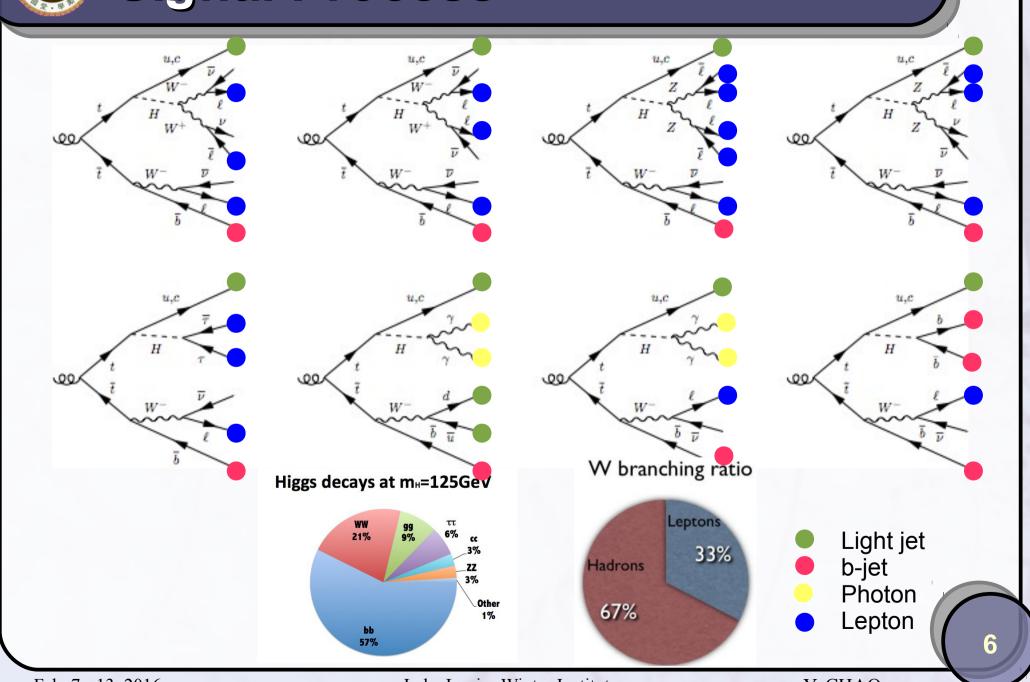
- CMS (two approaches)
 - Re-interpret from SUSY mult.-lep. studies
 - $H \rightarrow WW$, ZZ, TT
 - Combining $H \rightarrow \gamma \gamma$

$$\mathcal{B}(t \to cH) < 0.56\%$$

- Direct searches
 - Multi-lepton ch. H → WW, ZZ, τ τ
 - Using 8 TeV data only
 - Tri-lepton & same-sign di-lep.
 - Di-photon ch. $H \rightarrow \gamma \gamma$
 - Di-b jet ch. $H \rightarrow bb$

New!

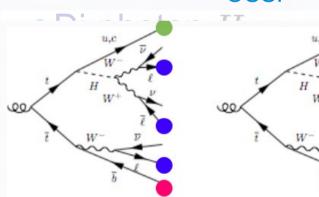
Higgs Decay Mode	observed	expected	1σ range
$H \rightarrow WW^*$ ($\mathcal{B} = 23.1\%$)	1.58 %	1.57 %	(1.02–2.22) %
$H \rightarrow \tau\tau$ ($\mathcal{B} = 6.15\%$)	7.01 %	4.99 %	(3.53–7.74) %
$H \rightarrow ZZ^*$ ($\mathcal{B} = 2.89 \%$)	5 31 %	4.11 %	(2.85–6.45) %
combined multileptons (WW*, $\tau\tau$, ZZ*)	1.28 %	1.17 %	(0.85–1.73) %
$H \rightarrow \gamma \gamma$ ($\mathcal{B} = 0.23\%$)	0.69%	0.81 %	(0.60–1.17) %
combined multilentens + diphotons	0.56 %	0.65 %	(0.46–0.94) %


CMS PAS SUS-13-034

CMS PAS TOP-13-017

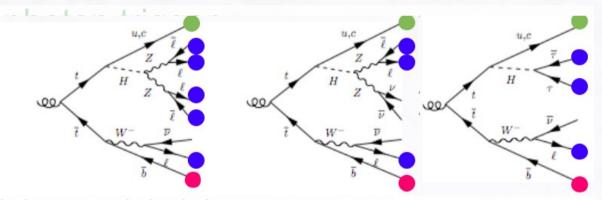
CMS PAS TOP-14-019, 20

Signal Process


- Multi-lepton $H \rightarrow WW, ZZ, \tau\tau$ DoubleMu, DoubleEle, MuEG
 - Three leptons (20, 10, 10) plus >= 2 jets
 - Same-signed di-lepton
 - Z veto for $|M_{ee} M_7| > 15$, MET dept. HT cut
 - Trilepton
 - $|M_{OSSF} M_Z| > 15$, $|M_{III} M_Z| > 10$, $M_{OSSF} > 40$
- Di-photon $H \rightarrow \gamma \gamma$ di-photon trigger
 - Leptonic channel: one lepton + >= 2 jets (one b-jet)
 - Hadronic channel: >= 4jets (one b-jet)
- Di-bjets $H \rightarrow b\overline{b}$ single lepton trigger
 - One lepton + >= 4 jets (including >= 3 b-jets)
 - 2nd lepton veto
- No event overlapping between channels

Channels	leptons	photon	jets	b-jets
$H \rightarrow WW, ZZ, \tau\tau \& W \rightarrow \ell\nu$		_	≥ 2	_
$H \rightarrow WW, ZZ, \tau\tau \& W \rightarrow \ell\nu$	$e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, $\mu^{\pm}\mu^{\pm}$	_	≥ 2	_
$H \rightarrow \gamma \gamma \& W \rightarrow \ell \nu$	e^{\pm}, μ^{\pm}	≥ 2	≥ 2	=1
$H \rightarrow \gamma \gamma \& W \rightarrow q_1 q_2$	_	≥ 2	≥ 4	=1
$H \rightarrow b\overline{b} \& W \rightarrow \ell\nu$	e^{\pm} , μ^{\pm}	_	≥ 4	≥ 3

Table 1: The basic topology for the twelve $pp \to t\bar{t} \to Hq + Wb$ channels.



- Multi-lepton $H \rightarrow WW, ZZ, \tau\tau$ DoubleMu, DoubleEle, MuEG
 - Three leptons (20, 10, 10) plus >=2 jets
 - Same-signed di-lepton
 - Z veto for $|M_{ee} M_7| > 15$, MET dept. HT cut
 - Trilepton
 - $|M_{OSSF} M_Z| > 15$, $|M_{III} M_Z| > 10$, $M_{OSSF} > 40$

 No event overlapping between channels

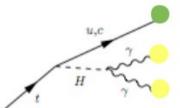
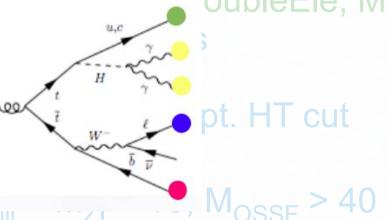

Channels	leptons	photon	jets	b-jets
$H \rightarrow WW, ZZ, \tau\tau \& W \rightarrow \ell\nu$		_	≥ 2	_
$H \rightarrow WW, ZZ, \tau\tau \& W \rightarrow \ell\nu$	$e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, $\mu^{\pm}\mu^{\pm}$	_	≥ 2	_
$H \rightarrow \gamma \gamma \& W \rightarrow \ell \nu$	e^{\pm}, μ^{\pm}	≥ 2	≥ 2	=1
$H \rightarrow \gamma \gamma \& W \rightarrow q_1 q_2$	_	≥ 2	≥ 4	=1
$H \rightarrow b\bar{b} \& W \rightarrow \ell\nu$	e^{\pm} , μ^{\pm}	_	≥ 4	≥ 3

Table 1: The basic topology for the twelve pp \rightarrow t \bar{t} \rightarrow Hq + Wb channels.



- Same-sig
 - Z vet
- Trilepton
 - OSSE

- Di-photon $H \to \gamma \gamma$ di-photon trigger
 - Leptonic channel: one lepton + >= 2 jets (one b-jet)
 - Hadronic channel: >= 4jets (one b-jet)
- Di-bjets $H \rightarrow b\overline{b}$ single lepton trigger
 - One lepton + >= 4 jets (including >= 3 b-jets)
 - 2nd lepton veto
- No event overlapping between channels

Channels	leptons	photon	jets	b-jets
$H \rightarrow WW, ZZ, \tau\tau \& W \rightarrow \ell\nu$		_	≥ 2	_
$H \rightarrow WW, ZZ, \tau\tau \& W \rightarrow \ell\nu$	$e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, $\mu^{\pm}\mu^{\pm}$	_	≥ 2	_
$H \rightarrow \gamma \gamma \& W \rightarrow \ell \nu$	e^{\pm} , μ^{\pm}	≥ 2	≥ 2	=1
$H \rightarrow \gamma \gamma \& W \rightarrow q_1 q_2$	_	≥ 2	≥ 4	=1
$H \rightarrow b\overline{b} \& W \rightarrow \ell\nu$	e^{\pm} , μ^{\pm}	_	≥ 4	≥ 3

Table 1: The basic topology for the twelve $pp \to t\bar{t} \to Hq + Wb$ channels.

- Multi-lepton $H \to WW$, ZZ, $\tau\tau$ DoubleMu, DoubleEle, MuEG
 - Three leptons (20, 10, 10) plus >=2 jets
 - Same-signed di-lepton

Z veto for IN

Trilepton

• $M_{OSSF} - M_{2}$

- Leptonic channe
- Hadronic chann

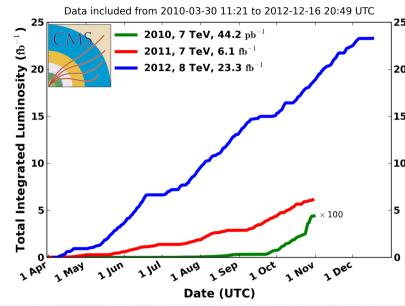
MET dept. HT cut

- >= 2 jets (one b-jet)
- ne b-jet)
- Di-bjets $H \rightarrow b\overline{b}$ single lepton trigger
 - One lepton + >= 4 jets (including >= 3 b-jets)
 - 2nd lepton veto
- No event overlapping between channels

Channels	leptons	photon	jets	b-jets
$H \rightarrow WW, ZZ, \tau\tau \& W \rightarrow \ell\nu$	еее, ееµ, еµµ, µµµ	_	≥ 2	_
$H \rightarrow WW, ZZ, \tau\tau \& W \rightarrow \ell\nu$	$e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}\mu^{\pm}$	_	≥ 2	_
$H \rightarrow \gamma \gamma \& W \rightarrow \ell \nu$	e^{\pm} , μ^{\pm}	≥ 2	≥ 2	=1
$H \rightarrow \gamma \gamma \& W \rightarrow q_1 q_2$		≥ 2	≥ 4	=1
$H \rightarrow b\overline{b} \& W \rightarrow \ell\nu$	e^{\pm} , μ^{\pm}	_	≥ 4	≥ 3

Table 1: The basic topology for the twelve pp $\rightarrow t\bar{t} \rightarrow Hq + Wb$ channels.

Data & Analysis Strategy

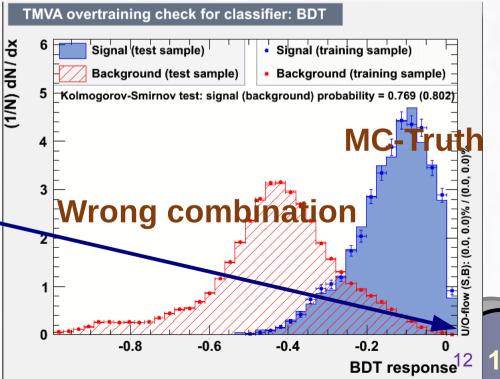

- Data recorded with the CMS detector
 - Integrated luminosity: ~20/fb at 8 TeV

CMS Integrated Luminosity, pp

- One top goes to FCNH
- Event signature:
 tt̄ → b(W → Iv, jj) + qH + jj
 where H → bb, γγ, WW/ZZ/ττ

 Generated with Madgraph 5, while tt decay in Pythia 6

- BR(H \rightarrow WW, ZZ, $\tau\tau$, $\gamma\gamma$, bb) from LHC Higgs working group
- Backgrounds:
 - Dominated by tt + jets
 - Background suppression with MVA algorithms
- Signal yields extracted with counting or template fit

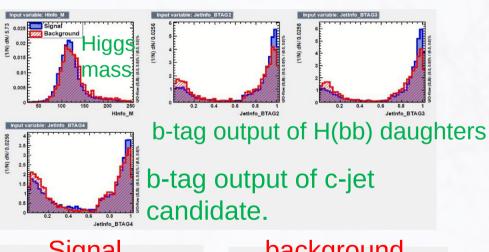


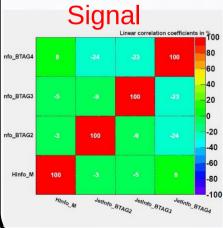
Per Event Candidate Selection

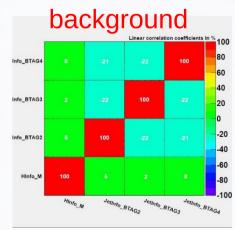
Taking $H \rightarrow b\overline{b}$ as example:

- 1. Getting the "signal correct combination" with BDT.
- 2. Consider all combination of final state 4+ jets in the selected event.
- 3. Signal is the MC-truth combination and wrong combinations are the background.
- 4. The one with the largest BDT value is the best candidate.

Input Variables	
Hadron top inv. mass	t τ Δ φ
Lepton top inv. mass	Lep-bjet(lep) $\Delta oldsymbol{\phi}$
C-jet candidate energy in top(had) reference frame	Higgs-cjet $\Delta oldsymbol{\phi}$
	bbpair $\Delta oldsymbol{\phi}$

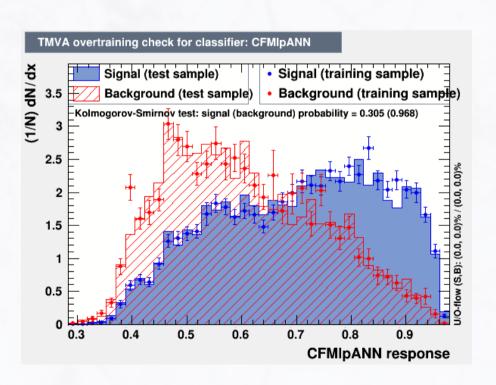




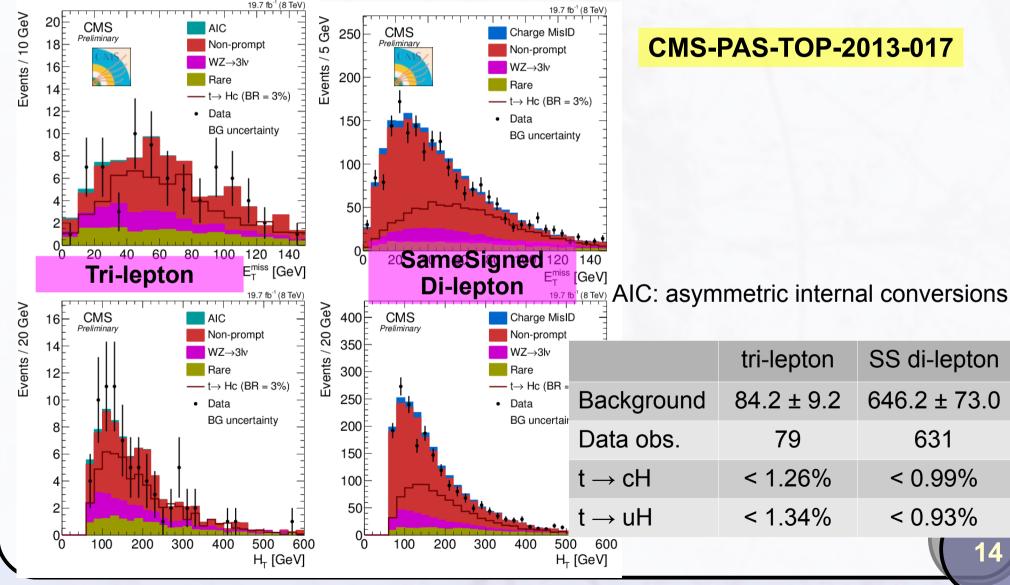

Signal Extraction

ANN input variables:

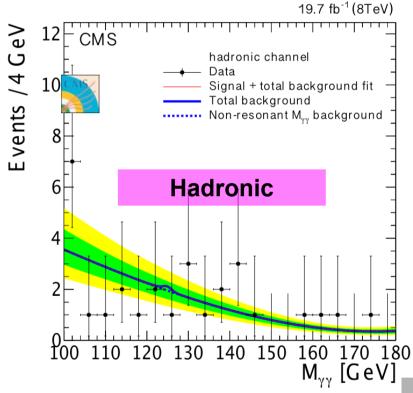
- 1. Higgs candidate invariant mass
- 2.CSV value of three jets on hadronically top decay side.

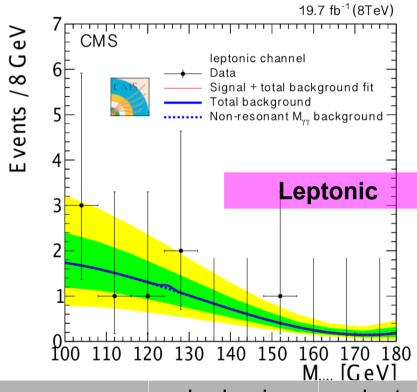


It's hard to model the ANN with the simple function.


Model signal and bkg PDF with histogram function. (root hist PDF)

Results

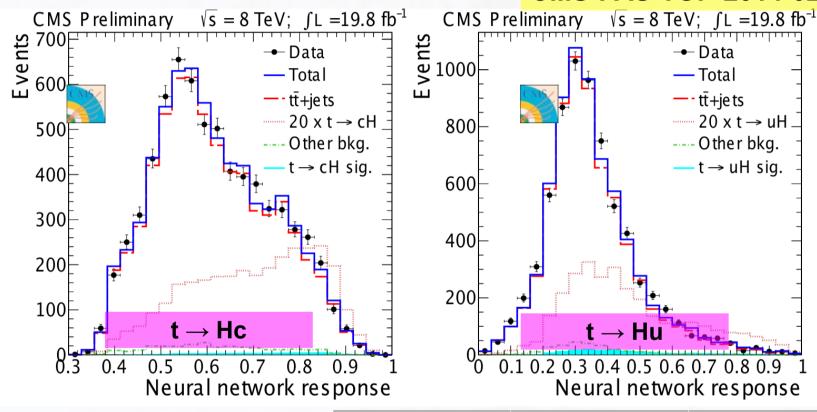

• Multi-lepton $H \rightarrow WW, ZZ, \tau\tau$


Results

• Di-photon $H \rightarrow \gamma \gamma$

 Signal extracted with template fit

CMS-PAS-TOP-2014-019


	hadronic	leptonic
Background	29.05 ± 5.40	8.04 ± 2.81
Data obs.	29	8
$t \to cH$	< 0.63%	< 1.59%
$t \to u H$	< 0.57%	< 1.56%

Results

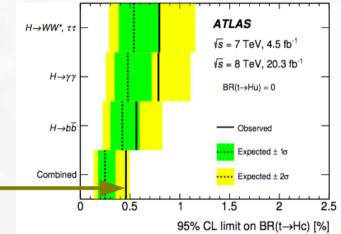
• Di-bjets $H \rightarrow b\overline{b}$

CMS-PAS-TOP-2014-020

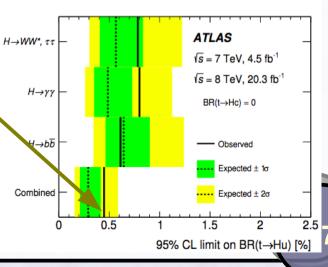
 Signal extracted with template fit

	$t \rightarrow cH$	$t \rightarrow uH$
Background	6766 ± 979.5	6636 ± 826.2
Data obs.	6840	6840
limit	< 1.16%	< 1.92%

Combined Result


 Re-fitted simultaneously on all sub-channels with (un)correlated systematic uncertainties

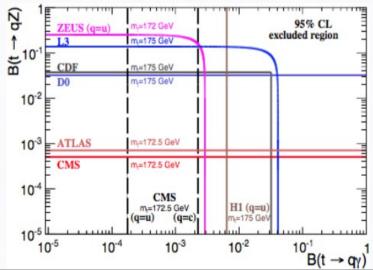
Comparable result to Atlas' study

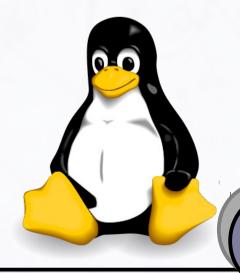

	$-\sigma$	$\mathcal{B}_{exp}(t{ ightarrow}Hc)$	$+\sigma$	$\mathcal{B}_{obs}(t \rightarrow Hc)$
Trilepton	0.95	1.33	1.87	1.26
Same-sign dilepton	0.68	0.93	1.26	0.99
Multilepton combined	0.65	0.89	1.22	0.93
Diphoton combined	0.44	0.67	1.06	0.47
b-jet plus multijet plus lepton	0.60	0.89	1.37	1.16

	$-\sigma$	$\mathcal{B}_{exp}(t\!\to\!Hu)$	$+\sigma$	$\mathcal{B}_{obs}(t \rightarrow Hu)$
Trilepton	1.05	1.47	2.09	1.34
Same-sign dilepton	0.62	0.85	1.16	0.93
Multilepton combined	0.60	0.82	1.14	0.86
Diphoton combined	0.39	0.60	0.96	0.42
b-jet plus multijet plus lepton	0.57	0.84	1.31	1.92

CMS-PAS-TOP-2013-017 CMS-PAS-TOP-2014-019 CMS-PAS-TOP-2014-020 Combined results currently under internal review

ATLAS: JHEP 12 (2015)





Feb. 7 - 13, 2016

Summary & Outlook

- Searches for "Flavor changing neutral currents" on top quark done with Atlas and CMS
 - Studies with either top decay or production
 - Best limit on BR(t \rightarrow qZ) < 0.05% Phys. Rev. Lett. 112 171802 (2013)
- Search for FCNC on t → qH with 2012 data at 8 TeV:
 - So far no exceeds beyond SM predictions seen
 - Upper limits on BR(t → qH, H→WW/ZZ/ττ, γγ, bb) given by Atlas and CMS
- Stay tuned for 2016 new results with 13 TeV data!

謝謝

Thank YOU!