Dark Matter Theory:
Status and Updates
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Why particle dark
matter?

@ We have essentially eliminated a SM
explanation; need physics BSM
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Why particle dark
_curvature, z_eg m a'l' '|'e r?
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sound speed = baryon to radiation ratio

Baryon-to-photon ratio 1 x 1010

@ Why not just ordinary (dark) baryons?

@ A: BBN and CMB make independent measurements of the baryon
fraction. Observations only accounted for with non-interacting matter
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Why particle dark
matter?

@ Make baryons non-interacting by binding DM into
MaCHOs?

@ A: looked for those and did not find them;
eliminated MACHO range from = 10~°Mg

Afshordi, McPonald, Spergel

OBSERVER

SEESA INTENSL GRAVITY
BRIGHTENING BENDS THE LIGHT
OF THE STAR RAYS

OR GALAXY

Gravitational Lensing--how MACHOs focus light
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Why particle dark
matter?

@ Make baryons non-interacting by binding DM into
MaCHOs?

® A: looked for those and did not find them;
s o €liMinated MACHO range from = 10~ °M,
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Why particle dark
matter?

A
. > |
@ Why not : :

X P & k! - 3 -
modify : 3 " 3
gravity: : - £ £ i

2 \ -
@ A: MOdI ﬁ ed i 0 1072 Sec 1 Second 300,00|0 Years 1 Billion Years 12-15 Billion Yearlsﬁ

o Age of the Universe
gravi '|'Y A p A A A

: BBN CMB LSS S Gal
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to be sick

@ A: Must get the entire range
of observations right, not just
galactic rotation curves
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Why particle dark
matter?

@ Why not D e s - s B
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theories tend
tfo b iIck

@ A: Must get the entire range
of observations right, not just
galactic rotation curves
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http://arxiv.org/abs/astro-ph/0511345
http://arxiv.org/abs/astro-ph/0511345
http://arxiv.org/abs/astro-ph/0608407
http://arxiv.org/abs/astro-ph/0608407

Why particle dark
matter?

@ By contrast, it is easy to explain everything
with particle dark matter

@ From theoretical point of view, theories are
compelling, testable.

@ As the saying goes:
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Particle dark matter

@ No shortage of @ Scalar dark matter

theories
@ axion

@ Supersymmeftry
@ Extra dimensions

@ MGSSive neu.l-rino = :' neulrnnos m:‘\“l‘:ll"l)’;

KK photon
branon

Lt 2
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® MeV dark matter
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Particle dark matter

@ No shortage of @ Axions and WIMPs
theories (usually,

supersymmetric)

@ Note however: most
based on a couple of
very popular theories

neutralino

KK photon
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Dark Matter:
Standard Paradigm

@ Usual picture of dark matter is that it is:
@ single
@ stable

@ (sub-?) weakly interacting

@ neutral




HIDDEN DARK WORLDS
Our thinking has shifted

From a single, stable weakly
interacting particle .....

(WIMP, axion)

Models: Supersymmetric light DM sectors,
Secluded WIMPs, WIMPless DM, Asymmetric DM .....
Production: freeze-in, freeze-out and decay,

symmetric abundance, non-thermal mechanicsms .....

..to a Hidden Valley

Standard Model ith multiple states,

new interactions
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Models of Dark Matter

® The classic

@ SUSY

@ has all the ingredients
@ and they are present for other reasons

® DM (sort of) free
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IDEA FOCus:
SUPERSYMMETRY

e Provides sharp predictions

* Must be neutral.

e Options sneutrino, bino, wino, higgsino
U B, W3, H

e Sneutrino scatters through Z
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Weakly-interacting

@ Sneutrino, also being neutral, is a good DM
candidate.... except for direct detection(!)

()|neutrino) = |sneutrino) Gauge interaction: //i\ é |

P4 ~
P ANEUR
P d oy

@ Its couplings are fixed by gauge interactions

@ Scatters off nucleons through Z boson

@ Lets compute the rate X>MZA<
X N
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Apply to scattering
through Z boson

SuperCDMS Soudan CDMS-lite
SuperCDMS Soudan Low Threshold
LXENON 10 S2 (2013)
4+ CDMS-Il Ge Low Threshold (2011)
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Can evade constraint by mixing in sterile 7 ,N. This state
does not couple to Z. But is not present in minimal model
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What about neutralino?

@ 2 component fermion x  Majorana fermion
@ Possible operators, four Fermi, V-A structure:
Osr = (Xvux)(@"q) =0
Osp = (X7 15X) (@Y ¥59)

Ovel dep. &7 (XWMVBX) (CTV'LLQ)

@ SI vanishes identically; others are SD or
velocity suppressed
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Higgs Scattering

® So neutralino is safe from
Z-pole scattering

@ It scatters predominantly
through Higgs boson

@ Higgs boson coupling fo
nucleon comes
predominantly through a

loo
P fp.n 2 Z fo Y95 p,n g
Tasie i TG

Shifman, Vainshtein, Zakharov, q=1U, d , S q g—cC, b : 1
Phys.Lett. B78 (1978) 443
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Higgs scattering cross-
section
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Are there ways around?
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A bit about neutralino
couplings

@ Supersymmetry fixes what interactions can
and cannot occur

@ Higgs does not interact with a “pure” state

@ Must have bino-Higgsino or Higgsino-wino
mix
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Neutral

@ Mass maftrix: Y
B W Hy, a8 FH;

M, 0 — Mz cos Bsin Oy, My sin 3 sin Oy,

My = 0 My Mz cos B cos by, —Mzsin 3 cos Oy,

—Mz cos Bsin by, My cos 3 cos Oy, 0 =
Mz sin Bsin60y;, —Mzsin 8 cos 0y, — U 0

@ Soft parameters, M; and M. Free in SUSY.

@ In SM, one Higgs works b/c can write field
and conjugate Lsy = ay,Q¢ — dysQo* — ey. Lo

@ Not so in SUSY: Wyssy = ty,QH, — dysQHy — ey.LH,
tanir— i vi +- ’0621 = p? = (246 GeV)2
(%
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WIMP annihilation
processes

@ Bottom diagrams often dominate if DM is
largely wino or largely Higgsino




Escaping direct detection

constraints
X
@ So even if direct detfection X\
constraints are escaped by
making neutralino pure ... .

.
@ there may be strong /\V . i}
indirect detection 53 d ;
B TN
p by

constraints

@ Photons from annihilation in Jf
galaxy foday constrain pure
wino or Higgsino DM
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Escaping direct detection
constraints

@ Big cross-section!

Cohen, Lisanti, Pierce, Slatyer
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Pure bino DM escapes

@ While wino and Higgsino may be constrained
by indirect defection, bino escapes

@ But, even bino has Higgsino component set by u

@ Require (> My ~ myr  to get rid of
Higgsino component

® Same parameter enters into Z boson mass
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Loops Matter

@ Even if Tree scattering
process vanishes, Future

WIMP DM probes can reach
1-loop suppressed processes!

Hill and Solon

@ l-loop suppressed wino can
be ruled out

@ 1-loop Higgsino harder ‘ Do
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Loops Matter

Degenerate fp, tanB=>5

@ Even 1-loop bino can
be probed in some NS
cases S

@ DM experiments
searching for WIMP 300 500 700
. sinl m, [GeV]
enter into precision

br , Small 65R , tanf=5

era

-

-
-
E o w=

-
——“
-

Berlin, Robertson, Solon, KZ,
1511.05964

Tuesday, February 16, 16



Waiting for SUSY

ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS Preliminary
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LHC is not a DM Machine

* Strong constraints on strong particles

> 1 TeV

* Weak constraints on weak particles

et It (V)

> 200-300 GeV
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LHC is a Mediator Machine

* Strong constraints on strong particles

> 1 TeV

* Weak constraints on weak particles

et H (N;)

> 200-300 GeV
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"Model Independent”
Collider Searches for DM

-=- CMS MaonoJet CMS
= CMS MonoPholton \s=7TeV

— CDF 2012 -_ )
- XENON-100 ; J-l- di=5.01p

=== CoGeNT 2011
CDMSII 2011
- = CDMSII 2010

thermal freeze-out (early Univ.)

indirect detection (now)
P T
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DM SM
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@ Important theory dependence in
these plots!

@ Inappropriate use of higher
dimension operators

® Failure to take into account
direct searches for mediator
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Domain of Importance

@ LHC is effective on heavy,
relatively strongly coupled
mediators

@ Direct defection is unparalleled
when mediator is light, small
couplings to protons

@ Direct searches for mediator
almost always more
constraining than mono-X

Tuesday, February 16, 16



direct constraints

Inelastic DM

| Search || Model where it matters

mono-h Inelastic DM, 2HDM

mono-z Inelastic DM, 2HDM
Squarks/sbottoms mono-jet || squark mediated production, compressed spectrum
mono-b [|sbottom mediated production, compressed spectrum
mono-t stop mediated production, RPV-like

s-channel vector

s-channel scalar

Inelastic squark

Liew, Papucci, Vichi, KZ, fo appear
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When Should We Start
Looking Elsewhere?

@ Cannot Kill neutralino DM via direct
detection, but paradigm does become
increasingly tuned

@ Likewise, LHC will only continue to push
constraints on mediating SUSY colored
particles up, though relatively weak
constraints on DM itself
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Dark Matter Model
Dynamics

(Looking beyond the vanilla WIMP paradigm)




DM Paradigm:
recap

@ Usual picture of dark matter is that it is:
@ single
@ stable
@ (sub-?) weakly interacting

@ neutral

Supersymmetry and axions fit the bill.
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Hidden Dark Worlds

Our thinking has shifted

From a single, stable weakly
interacting particle ...

(WIMP, axion)

l

Models: Supersymmetric light DM sectors,

[T 11 Secluded WIMPs, WIMPless DM, Asymmetric DM ...

Matter Production: freeze-in, freeze-out and decay,
asymmetric abundance, non-thermal mechanisms .....

...To a hidden world
with multiple states,
new interactions

Standard Model
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HIDDEN VALLEYS

Strassler, KZ 2006

Sub-weak Interactions
(DM here.)

Energy

Standard Model

Weak Interactions Dark World

Inaccessibility >
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HIDDEN VALLEYS

Strassler, KZ 2006

A
Sub-weak Interactions
C) M Torres del Paine
2 - g
(]
Standard Model
: Dark World
Weak Interactions
Inaccessibility
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Our Thinking Has
Shifted: Why?

@ Simple, attractive, phenomenologically viable
models exist

@ Example: ADM. Start with a single DM particle
X, and one discovers Yyou need more particles

e |
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Our Thinking Has
Shifted: Why?

@ Simple, attractive, phenomenologically viable
models exist

@ Example: ADM. Start with a single DM particle
X, and one discovers Yyou need more particles

Y

s 0 U1
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Baryon and DM Number
Related?

@ Standard picture: freeze-out of oot Energ,
ot e . 3%
annihilation; baryon and DM number g s
B‘a e( e
unrelated Matie' 75

@ Accidental, or dynamically related?

Experimentally, Qpa =~ 582
Mechanism  7pm = b

M ppar o~ Hh GeV

Tuesday, February 16, 16



Asymmetric DM

"Integrate out” heavy state fi e, Kz
Higher dimension operators: '
Xudda X
Tt /
\ X
m, ~ 1 GeV

Standard Model
Dark Matter

(Hidden Valley)

Inaccessibility
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Astrophysical
Implications

® DM does not annihilate
® It can accumulate in the center of stars

® Notable case: neutron stars

A
i
i

@ Elastically scatter, come to rest in COI"Q(*’.-_" 5 kG o

o High density!

L
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Altering Stellar Interiors

McDermott, Yu, KZ 1103.5472 Bramante, Linden 1405.1031 Taoso et al, 1005.5711 Vincente et al, 1504.04378

no ADM
Py = 192 GeV r:’cr:p3 m, =5GeV ——
Py = 10° GeV‘f'CIHf m, =10 GeV ——
Py = 10;i G‘re\r","cm:_5 m, = 10 GeV
p,, = 10° GeV/em® m = 10 GeV
Py = 10° GEV‘;:ICIIIJ m, = 10 GeV

J0437-4715

t=6.69x10° Years
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_ 3 T
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log [T,g/K]
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Exp. Implications of
Dark Sectors ...

@ ... with dark forces
® Direct Detection
@ Intensity experiments

@ DM self-scattering and halo shapes
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Direct Detection

@ Mediates _large__ scattering cross-sections

DM relic abundance = DM self-scattering
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Connection to Intensity
Experiments

@ Dark sectors may be more efficiently
produced in low energy intensity experiments

® Once above mass scale of mediafglr,
production x-sect scales as - ~ %

@ Low energy, very intense beams generated
Increased sensitivity

@ Prefer beam energy sitting on mass of
mediator £ ~ my,
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Connection to Intensity
Experiments

0.1
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DM Interactions and DM
Halos

® Dark matter self-
interactions randomize
momenta and isotropize
halos

Dave, Spergel, Steinhardf, Wandelt

@ Lead to lower density dark
matter halo cores

@ Dark matter halos (including
baryon poor dwarf galaxies)
seem to have cores rather
than cusps (still controversy

as to cause)



Implies Dark Forces!

@ Very big scattering cross-sections

o/mx ~ 0.1 cm?/g~0.2x 107?* cm?/ GeV

® Fits well with new models of DM!

2l sy 2 /10 MeV \
~5x 1072 em? (=) (2= )
i W01 et M

@ Range of dynamics much bigger than
previously thought

@ Particle imprints on DM halos
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Bound State Scattering

Milky Way cluster
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Terra Incognita
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New Phases of Matter

Nuclear Recoils are fundamentally
Kinematically limited

Ep ~ q¢*/(2me n) q ~ Mmxv

30 MeV DM corresponds to 1 eV of
energy deposit on nucleons

Electron targets extract more energy




Material Gap

@ But target electrons have a gap

@ Semi-conductors -- silicon, germanium [CDMS] -- 1
eV gap; Nuclei -- at least 105 of eV

@ Does not allow to detect DM lighter than 1 MeV

uperCDMS Soudan CDMS-lite
SuperCOMS Soudan Low Threshold
XENON 10 S2 (2013)
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Need new kinematics...

@ ... Dark matter has much more kinetic
energy than is extracted in nuclear recoils

Ep ~ ¢°/(2me n) g~ mxv

VS

1
E = “mxv?
2mv

@ How do we extract all the kinetic energy?
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Superconductors have
the needed features

@ Need a nearly gapless material
@ Metals are gapless (conduction electrons)

@ But also very susceptible to thermal
vibrations

@ Superconductors are perfect: meV gap
decouples phonon vibrations from electrons

Y. Hochberg, Y. Zhao, KZ, 1504.07237
Y. Hochberg, M. Pyle, Y. Zhao, KZ
1512.07630
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Target Fermi Velocity

@ Allows to extract entire
DM Kinetic energy mx =1 keV < Ey, = 1 meV

@ Non-rel (nuclear or
electron) target: deposited
energy reduced by target
mass

o In metal: wvp ~ 1072
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Superconductors and
Dark Matter

@ Ordinary metal undergoes phase fransition
as temp is cooled

@ Energetically favorable for electrons in pair
up; gap appears
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The Idea

® DM scatters with electrons in Cooper pair.
If energy deposited is greater than meV,
break Cooper pair and create quasi-particles.
Detect quasi-particle.

O

Cooper Pair Quasiparticles
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Down to the Warm Dark
Matter Limit?

@ Energy in resulting
quasiparticles must be
collected

@ Concentrate
quasiparticles onto heat
sensor

® Heat sensor = TES

Matt Pyle
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Transition Edge Sensor

@ Superconducting
doped at superconducting
transition

E)
)
O
k)
o
Q
=
g
K
D
nr:

@ Already in use in microwave, x-
ray and DM applications (SPT,
ACT, SuperCDMS) | 9 100 102 104

Temperature [mK]

@ Need energy resolution sufficient
to detect meV deposits -- not

there et g —
- ]| Volume [ppm x pm x nm]|Power Noise [W/v/Hz]|o 3" meV]
1.1

25 x 25 x 35 2.72 x 10718

[19] 6 x 0.4 x 56 2.97 x 10720

Y. Hochberg, M. Pyle, Y. Zhao, KZ 19
1512.07630 MoCu [20] : 100 x 100 x 200 4.2 x 10~
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Astrophysically Feasible?

Light mediator Massive mediator

10> 107* 1073 . 10°* 1073
myx[GeV] myx[GeV]

Y. Hochberg, Y. Zhao, KZ,
1504.07237
Y. Hochberg, M. Pyle, Y. Zhao, KZ
1512.07630
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Summary

@ We have some good ideas about the DM
sector. A couple of directions have become
very well developed: SUSY and axions

@ New ideas and corresponding search
strategies are developing.

@ Important to keep searches and ideas as
broad and inclusive as possible
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Summary

@ Dark Matter has not shown itself yet, but we
continue to probe from all sides!

SUSY light
Hidden
Valley

Secluded
WIMPless
ADM
freeze-in
freeze-out
and decay
non-
thermal
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