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Why particle dark 
matter?

We have essentially eliminated a SM 
explanation; need physics BSM
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Why particle dark 
matter?

Why not just ordinary (dark) baryons? 

A: BBN and CMB make independent measurements of the baryon 
fraction.  Observations only accounted for with non-interacting matter 

20. Big-Bang nucleosynthesis 3
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Figure 20.1: The abundances of 4He, D, 3He, and 7Li as predicted by the standard
model of Big-Bang nucleosynthesis [11] − the bands show the 95% CL range. Boxes
indicate the observed light element abundances (smaller boxes: ±2σ statistical
errors; larger boxes: ±2σ statistical and systematic errors). The narrow vertical
band indicates the CMB measure of the cosmic baryon density, while the wider
band indicates the BBN concordance range (both at 95% CL). Color version at end
of book.
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Why particle dark 
matter?

Why not just ordinary (dark) baryons? 

A: BBN and CMB make independent measurements of the baryon 
fraction.  Observations only accounted for with non-interacting matter 
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Why particle dark 
matter?

Make baryons non-interacting by binding DM into 
MaCHOs?

A: looked for those and did not find them; 
eliminated MACHO range from 

2

where the δ
PBH

,δp and δr are the relative overdensities
of PBHs, Poisson fluctuations and radiation, respectively.
Since δp in Eq.(1)is observable and constant, one would
conclude that the quantity

S ≡ δ
PBH

−
3

4
δr = δp (4)

is gauge-invariant and conserved. Indeed this is the en-
tropy per PBH, which should remain constant as long as
the universe expands adiabatically (e.g. see Mukhanov
et al. 1992). The associated perturbations, generated in
this way are isocurvature(or entropy) perturbations, as the
curvature at large scales is not (immediately) affected by
the formation of compact objects at small scale.

As we are assuming that PBHs are the present day Cold
Dark Matter (CDM), the overdensity of CDM is given by

δ
CDM

(k) = Tad(k)δi,ad(k) + Tiso(k)S(k), (5)

where Tad(k) and Tiso(k) are the transfer functions for
adiabatic and isocurvature perturbations respectively. For
the following analysis we will use the analytical fits quoted
in Bardeen et al. 1986 to the transfer functions. Eq. (5)
leads to the following power spectrum

P
CDM

(k) = T 2
ad(k)Pi,ad(k) + T 2

iso(k)Pp. (6)

In this expression,Pi,ad(k) = Akn with n ≃ 1 is the adia-
batic power spectrum which is produced through inflation
(or an alternative method of generating scale-invariant adi-
abatic perturbations), while Pp is given in Eq.(2).

One can easily see that the isocurvature term on the
RHS of Eq.(2) contributes a constant to the power spec-
trum as both Pp and

Tiso(k) =
3

2
(1 + zeq) for k ≫ aeqHeq (7)

are independent of k (e.g. Peacock 1998). Note that this
is the simple linear growth due to gravitational cluster-
ing which is the same for adiabatic fluctuation. Since the
power spectrum of adiabatic fluctuations decays as k−3 at
small scales, one expects to see the signature of this Pois-
son noise at large k’s. Combining Eqs. (2),(6) and (7)
gives the power offset

∆P
CDM

≃
9M

PBH
(1 + zeq)2

4ρ
CDM

= 4.63

(

M
PBH

103M⊙

)

(Ω
CDM

h5)(h−1Mpc)3 (8)

which is also a lower bound on the matter linear power
spectrum.
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Fig. 1.— Linear power spectrum for different masses of the PBHs.
σ∗

8
is σ8 for the model without the PBHs and the amplitude of the

(initially) adiabatic modes is the same for all models.

Fig.(1) shows the linear power spectrum for different

masses of the PBHs. We see the Poisson plateau (Eq.
8) at large k’s which drops with decreasing mass. The
impact of this plateau on the Ly-α forest power spectrum
is discussed in the next section.

Fig. 2.— Influence of PBHs on the Ly-α forest flux power spec-
trum, PF (k). The black, solid curve shows our prediction for PF (k)
in a standard ΛCDM model (i.e., no PBHs) in which the amplitude
of the linear power spectrum, σ∗

8
, was adjusted to match the data

points from Croft et al. (2002). The other curves show the predicted
PF (k) when white noise power due to PBHs with various masses is
added. The Ly-α forest model parameters and σ∗

8
were not adjusted

to find a best fit for each mass so the disagreement between the PBH
models and the data points does not indicate that the models are
ruled out.

3. simulations of Ly-α forest

Afshordi, McDonald, Spergel
& 10�8M�
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Make baryons non-interacting by binding DM into 
MaCHOs?

A: looked for those and did not find them; 
eliminated MACHO range from 
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is σ8 for the model without the PBHs and the amplitude of the

(initially) adiabatic modes is the same for all models.

Fig.(1) shows the linear power spectrum for different

masses of the PBHs. We see the Poisson plateau (Eq.
8) at large k’s which drops with decreasing mass. The
impact of this plateau on the Ly-α forest power spectrum
is discussed in the next section.

Fig. 2.— Influence of PBHs on the Ly-α forest flux power spec-
trum, PF (k). The black, solid curve shows our prediction for PF (k)
in a standard ΛCDM model (i.e., no PBHs) in which the amplitude
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8
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points from Croft et al. (2002). The other curves show the predicted
PF (k) when white noise power due to PBHs with various masses is
added. The Ly-α forest model parameters and σ∗

8
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to find a best fit for each mass so the disagreement between the PBH
models and the data points does not indicate that the models are
ruled out.

3. simulations of Ly-α forest

Afshordi, McDonald, Spergel
& 10�8M�from 2005 talk by K. Griest
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Why particle dark 
matter?

Why not 
modify 
gravity?

A: Modified 
gravity 
theories tend 
to be sick

BBN
(baryons)

CMB
(curvature)

LSS
(matter)

Supernovae
(DE)

Galaxy curves
(matter)

A: Must get the entire range 
of observations right, not just 
galactic rotation curves
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Why particle dark 
matter?

Why not 
modify 
gravity?

A: Modified 
gravity 
theories tend 
to be sick

A: Must get the entire range 
of observations right, not just 
galactic rotation curves

X-ray: NASA/CXC/CfA/ M.Markevitch et al.; 
Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al. 

Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al
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Why particle dark 
matter?

By contrast, it is easy to explain everything 
with particle dark matter

From theoretical point of view, theories are 
compelling, testable. 

As the saying goes:
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Particle dark matter

No shortage of 
theories

Supersymmetry

Extra dimensions

Massive neutrino

MeV dark matter

Scalar dark matter

axion
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Particle dark matter

No shortage of 
theories

Note however: most 
based on a couple of 
very popular theories

Axions and WIMPs 
(usually, 
supersymmetric)
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Dark Matter: 
Standard Paradigm

Usual picture of dark matter is that it is:

single

stable 

(sub-?) weakly interacting

neutral
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Hidden Dark Worlds

Standard Model
Mp � 1 GeV

Our thinking has shifted

From a single, stable weakly 
interacting particle .....

(WIMP, axion)

...to a Hidden Valley 
with multiple states, 

new interactions

Models: Supersymmetric light DM sectors,
Secluded WIMPs, WIMPless DM, Asymmetric DM .....

Production: freeze-in, freeze-out and decay, 
asymmetric abundance, non-thermal mechanicsms .....
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Models of Dark Matter

The classic

SUSY

has all the ingredients

and they are present for other reasons

DM (sort of) free
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Idea Focus: 
Supersymmetry

• Provides sharp predictions

• Must be neutral.  

• Options sneutrino, bino, wino, higgsino

• Sneutrino scatters through Z
�̃ B̃, W̃3, H̃
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Weakly-interacting

Sneutrino, also being neutral, is a good DM 
candidate.... except for direct detection(!)

Its couplings are fixed by gauge interactions

Scatters off nucleons through Z boson

Let’s compute the ratef~
χ

χ

χ

χ

χ

χ

f

AZ
f f

f
_ f f

_ _

Figure 37: Tree level diagrams for neutralino annihilation into fermion pairs. From
Ref. [319].

B Neutralino Annihilation Cross Sections in the

Low Velocity Limit

In this appendix, we give the amplitudes and cross sections for the most impor-
tant neutralino annihilation channels in the low velocity limit (the first term in
the expansion σv = a + bv2 + ...). This is sufficient for indirect detection but
generally insufficient for relic density calculations in which velocity dependent
contributions are important. For a more complete list, with all S and P-wave
tree level annihilation amplitudes, see Refs. [195, 319, 397, 396, 106].

B.1 Annihilation Into Fermions

Neutralinos can annihilate to fermion pairs by three tree level diagrams [195,
213, 275, 276]. These processes consist of s-channel exchange of pseudoscalar
Higgs and Z0-bosons and t-channel exchange of sfermions (see Fig. 37).

The amplitude for pseudoscalar Higgs exchange is given by

AA = 4
√

2 g TA 11 hAff
1

4 − (mA/mχ)2 + i ΓAmA/m2
χ

. (164)

Here, mA is the pseudoscalar Higgs mass and ΓA is the pseudoscalar Higgs
width. TA 11 is the A0-neutralino-neutralino coupling and is given by

TA 11 = − sinβQ′′
1,1 + cosβS′′

1,1, (165)

where Q′′
1,1 = N3,1(N2,1 − tan θW N1,1) and S′′

1,1 = N4,1(N2,1 − tan θW N1,1).

N is the matrix which diagonalizes the neutralino mass matrix in the B̃-W̃ 3-
H̃0

1 -H̃0
2 basis, Mdiag

χ0 = N †Mχ0N (see Appendix A). θW is the Weinberg angle
and tanβ is the ratio of the Higgs vacuum expectation values. hAff is the
A0-fermion-fermion Yukawa coupling. For up-type fermions, this is given by

hAff = −
gmf cotβ

2mW±

. (166)

For down-type fermions, it is

hAff = −
gmf tanβ

2mW±

. (167)
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Figure 3.3: Supersymmetric gauge interaction vertices.

eq. (3.3.3). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.3.5) and (3.4.2)-(3.4.4) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.4.9)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
3.3f; any of these three vertices may be obtained from any other (up to a factor of

√
2) by replacing two

of the particles by their supersymmetric partners. There is also an interaction in Figure 3.3h which
is just like Figure 3.3g but with all arrows reversed, corresponding to the complex conjugate term in
the Lagrangian [the second term in the second line in eq. (3.4.9)]. Finally in Figure 3.3i we have a
scalar quartic interaction vertex [the last term in eq. (3.4.12)], which is also determined by the gauge
coupling.

The results of this section can be used as a recipe for constructing the supersymmetric interactions
for any model. In the case of the MSSM, we already know the gauge group, particle content and the
gauge transformation properties, so it only remains to decide on the superpotential. This we will do
in section 6.1. However, first we will revisit the structure of supersymmetric Lagrangians in section 4
using the manifestly supersymmetric formalism of superspace and superfields, and then describe the
general form of soft supersymmetry breaking terms in section 5.

4 Superspace and superfields

4.1 Supercoordinates, general superfields, and superspace differentiation and in-
tegration

Supersymmetry can be given a geometric interpretation using superspace, a manifold obtained by
adding four fermionic coordinates to the usual bosonic spacetime coordinates t, x, y, z. Points in su-
perspace are labeled by coordinates:

xµ, θα, θ†α̇. (4.1.1)

Here θα and θ†α̇ are constant complex anticommuting two-component spinors with dimension [mass]−1/2.
In the superspace formulation, the component fields of a supermultiplet are united into a single su-
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Figure 3.3: Supersymmetric gauge interaction vertices.
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Gauge interaction:Q|neutrinoi = |sneutrinoi
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Apply to scattering 
through Z boson

plug in and compare

Active    DM excluded by 
direct detection 

� ⇡ g4µ2
n

4⇡m4
Z

⇡ 10�39 cm2

Can evade constraint by mixing in sterile   ,   .  This state 
does not couple to Z.  But is not present in minimal model

⌫̃ Ñ

⌫̃

10 Direct Detection Program Roadmap 39
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013
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What about neutralino?

2 component fermion       Majorana fermion

Possible operators, four Fermi, V-A structure:

SI vanishes identically; others are SD or 
velocity suppressed

OSI = (�̄�µ�)(q̄�
µq) = 0

Ovel dep. = (�̄�µ�5�)(q̄�
µq)

OSD = (�̄�µ�5�)(q̄�
µ�5q)

�
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Higgs Scattering

So neutralino is safe from 
Z-pole scattering

It scatters predominantly 
through Higgs boson

Higgs boson coupling to 
nucleon comes 
predominantly through a 
loop

q q

H, h

χ χ

q~

q q

χ χ

Figure 44: Tree level Feynman diagrams for neutralino-quark scalar (spin-independent)
elastic scattering. From Ref. [319].

C Elastic Scattering Processes

C.1 Scalar Interactions

Consider a WIMP with scalar interactions with quarks given by

Lscalar = aqχ̄χq̄q, (197)

where aq is the WIMP-quark coupling. Then the scattering cross section for
the WIMP off of a proton or neutron is given by

σscalar =

∫ 4m2
rv2

0

dσ(v = 0)

d|v⃗|2
=

4m2
r

π
f2

p,n, (198)

where v is the relative velocity of the WIMP, mr is the reduced mass of the
nucleon (mr ≃ mp,n for WIMPs heavier than ∼ 10 GeV) and fp,n is the WIMP
coupling to protons or neutrons, given by

fp,n =
∑

q=u,d,s

f (p,n)
Tq aq

mp,n

mq
+

2

27
f (p,n)

TG

∑

q=c,b,t

aq
mp,n

mq
, (199)

where f (p)
Tu = 0.020 ± 0.004, f (p)

Td = 0.026 ± 0.005, f (p)
Ts = 0.118 ± 0.062, f (n)

Tu =

0.014 ± 0.003, f (n)
Td = 0.036 ± 0.008 and f (n)

Ts = 0.118 ± 0.062 [209]. f (p,n)
TG is

related to these values by

f (p,n)
TG = 1 −

∑

q=u,d,s

f (p,n)
Tq . (200)

The term in Eq. 199 which includes f (p,n)
TG results from the coupling of the WIMP

to gluons in the target nuclei through a heavy quark loop. The couplings of
squarks and Higgs bosons to heavy quarks leads to a loop level coupling of the
WIMP to gluons [276, 61, 323]. Such diagrams are shown in Fig. 45.

To attain the scalar cross section for a WIMP scattering off of a target
nucleus, one should sum over the protons and neutrons in the target:

σ =
4m2

r

π

(
Zfp + (A − Z)fn

)2

, (201)
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H, hq

Figure 45: Feynman diagrams for neutralino-gluon scalar (spin-independent) elastic
scattering. Notice that no tree level processes exist. From Ref. [319].

where Z and A − Z are the numbers of protons and neutrons in the nucleus,
respectively.

The above expression is valid only at zero momentum transfer between the
WIMP and the nucleon. For finite momentum transfer, the differential cross
section must be multiplied by a nuclear form factor. The appropriate factor,
called the Woods-Saxon form factor, is given by [221]

F (Q) =

(
3j1(qR1)

qR1

)2

exp[−(qs)2], (202)

where j1 is the first spherical bessel function and the momentum transferred
is q =

√
smNQ. R1 is given by

√
R2 − 5s2, where R and s are approximately

equal to 1.2 fmA1/3 and 1 fm, respectively.
Although less accurate than the Woods-Saxon form factor, the following

simple form factor is sometimes used in its place [17, 240]:

F (Q) = exp[−Q/2Q0]. (203)

Here, Q is the energy tranferred from the WIMP to the target and Q0 =
1.5/(mNR2

0) where R0 = 10−13 cm [0.3 + 0.91(mN/GeV)1/3].
In the context of neutralino scattering, the value of aq can be calculated

from the parameters of the MSSM [248, 459, 197, 196]. Following Ref. [209], aq
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013

2

fp
u = 0.020, fp

d = 0.026, fp
s = 0.118, fn

u = 0.014, fn
d =

0.036, fn
s = 0.118 [17]. Note the value of the strange quark

content of the nucleon has a large effect on the cross section.
For example, taking the value of the strange quark content
as in [18], as motivated by recent lattice determinations, the
scattering cross sections become smaller by a factor of 2.

The neutralino masses and mixings depend on tan� =

vu/vd, µ, and the soft gaugino masses M1 and M2. The
scattering cross section is a function of the bino, wino and
Higgsino fractions of the neutralino, decomposed as �0

=

ZB
˜B + ZW

˜W + Zd
˜Hd + Zu

˜Hu. The masses of the lightest
CP even Higgs bosons, mh and mH , and the coupling of the
Higgs to the quarks, as determined by tan� and ↵, the Higgs
mixing angle, are also important. Higgsino fractions are found
by diagonalizing the neutralino mass matrix. For reference,
the (tree level) CP even Higgs masses are given through the
relations to the CP odd Higgs mass mA:

m2
h,H =

1

2

�
m2

A +m2
Z

⌥
q
(m2

A �m2
Z)

2
+ 4m2

Zm
2
A sin

2
2�

◆

m2
H± = m2

A +m2
W . (3)

At tree level, relevant parameters for the LSP and Higgs
sector phenomenology are tan�, M1, µ, MA, M2. Tak-
ing loop corrections into account, At and sfermion masses
also enter. We use Pythia 6.4 [19] to calculate spectra and
branching ratios where necessary. For large tan� and light
Higgs region, we find the scattering cross section

�n ⇡ 8.3⇥ 10

�42 cm2

✓
Zd

0.4

◆2 ✓
tan�

30

◆2 ✓
100 GeV

mH

◆4

⇥ 1

(1 +�mb)
2
, (4)

where we have taken the expression from [17] and added im-
portant corrections from the shifts in the b mass from super-
partner loops, which can be O(1) at large tan�[20]. These
modify the Yukawa coupling as yb ! yb(1 + �mb)

�1. We
quantify the exact size of these corrections below. At large
tan�, the cross section Eq. (4) agrees numerically with Mi-
crOMEGAs [21, 22] within a few percent. At somewhat
smaller tan� (as will be preferred by B decays, see below),
this formula is good to 10%. We see that CoGeNT is push-
ing the limits of the MSSM. To obtain a large enough scatter-
ing cross section we require a light Higgs, a substantial Hig-
gsino fraction of the lightest neutralino, and large tan� to en-
hance the couplings of the Higgs to the nucleon. The lighter
Higgs H is mostly a down type, and is nearly degenerate with
the pseudoscalar Higgs A, as can be seen from Eq. (3). The
charged Higgs also is light. While the near exact degeneracy
of the A and the lighter H is modified at the loop level, the
correction is typically small – in a numerical scan, covering
the region 350 GeV < Mf̃ < 2 TeV, |A| <2 TeV, M3 < 2
TeV, |µ| <300 GeV, but specializing to 20 < tan� < 30,

we find a maximum correction to the degeneracy no larger
than 5%. Similarly, the tree level relation between the pseu-
doscalar and charged Higgs mass is a good approximation,
with a maximum correction of 5%. It is often much smaller.

Since the Higgsino fraction of the neutralino should be
large to maximize the cross section, constraints from the in-
visible Z width are important. We impose the 2� constraint,
�(Z ! �0�0

) . 3 MeV [23]:

�(Z ! �0�0
) =

g2

4⇡

(Z2
u � Z2

d)
2

24c2w
MZ

"
1�

✓
2m�0

mZ

◆2
#3/2

.

(5)
where cw is the cosine of the weak mixing angle. This im-
plies a constraint, |Z2

u � Z2
d | . 0.13. While the scattering

cross section is not directly proportional to this combination,
when combined with the structure of the neutralino mass ma-
trix, it effectively implies a limit on Z2

d of 0.13. Cancellation
between Zu and Zd, which could allow Zd to be larger and
consistent with this constraint, occurs for small tan�. For
M1 ⌧ MZ ,M2, the Zd bound implies |µ| >⇠ 108 GeV.

Because the Higgs parameters are well-specified (low
mA0 , mH0 , mH+ and large tan�), it is possible to identify
several constraints. See [24] for a recent summary of similar
issues. Both direct production of the Higgs bosons and rare
decays are relevant.

First, the lightness of the charged Higgs opens the channel
t ! H+b. At tree level, and for moderate ( >⇠ 15) tan�, to
good approximation, the width is

�

tree
(t ! bH+

) =

g2mt

64⇡M2
W

✓
1� m2

H+

m2
t

◆2

m2
b tan

2 �,

(6)
where mb should be evaluated at the top mass, mb(mt) ⇡ 2.9
GeV. The corrections to the b-quark mass, �mb, change the
effective coupling of the charged Higgs (see e.g. [25]):

�

eff
(t ! bH+

) =

1

(1 +�mb)
2
�

tree
(t ! bH+

), (7)

We now quantify the size of the shift [20]:

�mb = (✏0 + y2t ✏Y ) tan�, (8)

with

✏0 =

2↵s

3⇡
M3µC0(m

2
b̃1
,m2

b̃2
,M2

3 ) (9)

✏Y =

1

16⇡2
AtµC0(m

2
t̃1
,m2

t̃2
, µ2

), (10)

where

C0(x, y, z) =
y log(y/x)

(x� y)(z � y)
+

z log(z/x)

(x� z)(y � z)
. (11)

It is possible to get good estimates for the experimentally
allowed ranges of ✏Y and ✏0. The limits from CDF, BR(Bs !
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Supersymmetry fixes what interactions can 
and cannot occur

Higgs does not interact with a “pure” state

Must have bino-Higgsino or Higgsino-wino 
mix

A bit about neutralino 
couplings

g̃ q

q̃

(a)

W̃ qL, ℓL, H̃u, H̃d

q̃L, ℓ̃L, Hu, Hd

(b)

B̃ q, ℓ, H̃u, H̃d

q̃, ℓ̃, Hu, Hd

(c)

Figure 6.3: Couplings of the gluino, wino, and bino to MSSM (scalar, fermion) pairs.

interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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Mass matrix:

Soft parameters,     and    .   Free in SUSY.

In SM, one Higgs works b/c can write field 
and conjugate

Not so in SUSY:

NeutralA Neutralino Mass Eigenstates

In the Minimal Supersymmetric Standard Model (MSSM), the neutral elec-

troweak gauginos (B̃, W̃ 3) and higgsinos (H̃0
1 , H̃0

2 ) have the same quantum num-
bers and, therefore, mix into four mass eigenstates called neutralinos. The neu-
tralino mass matrix in the B̃-W̃ 3-H̃0

1 -H̃0
2 basis is given by

MN =

⎛

⎜⎜⎝

M1 0 −MZ cosβ sin θW MZ sinβ sin θW
0 M2 MZ cosβ cos θW −MZ sinβ cos θW

−MZ cosβ sin θW MZ cosβ cos θW 0 −µ
MZ sinβ sin θW −MZ sinβ cos θW −µ 0

⎞

⎟⎟⎠ ,

(146)
where M1, M2 and µ are the bino, wino and higgsino mass parameters, respec-
tively, θW is the Weinberg angle and tanβ is the ratio of the vacuum expectation
values of the Higgs bosons. This matrix can be diagonalized by the matrix, N .

Mdiag
χ0 = N †Mχ0N. (147)

The masses of the four mass eigenstates are then given by [207, 62]

ϵ1Mχ0
1

= −(
1

2
a −

1

6
C2)

1/2 +

[
−

1

2
a −

1

3
C2 +

C3

(8a − 8
3C2)1/2

]1/2

+
1

4
(M1 + M2) ,

(148)

ϵ2Mχ0
2

= +(
1

2
a −

1

6
C2)

1/2 −
[
−

1

2
a −

1

3
C2 −

C3

(8a − 8
3C2)1/2

]1/2

+
1

4
(M1 + M2) ,

(149)

ϵ3Mχ0
3

= −(
1

2
a −

1

6
C2)

1/2 −
[
−

1

2
a −

1

3
C2 +

C3

(8a − 8
3C2)1/2

]1/2

+
1

4
(M1 + M2) ,

(150)

ϵ4Mχ0
4

= +(
1

2
a −

1

6
C2)

1/2 +

[
−

1

2
a −

1

3
C2 −

C3

(8a − 8
3C2)1/2

]1/2

+
1

4
(M1 + M2) ,

(151)

where ϵi is the sign of the ith eigenvalue of the neutralino mass matrix, and

C2 = (M1M2 − M2
Z − µ2) −

3

8
(M1 + M2)

2 , (152)

C3 = −
1

8
(M1 + M2)

3 +
1

2
(M1 + M2)(M1M2 − M2

Z − µ2) + (M1 + M2)µ
2

+(M1 cos2 θW + M2 sin2 θW )M2
Z + µM2

Z sin 2β , (153)

C4 = −(M1 cos2 θW + M2 sin2 θW )M2
Zµ sin 2β − M1M2µ

2

+
1

4
(M1 + M2)[(M1 + M2)µ

2 + (M1 cos2 θW + M2 sin2 θW )M2
Z + µM2

Z sin 2β]

+
1

16
(M1M2 − M2

Z − µ2)(M1 + M2)
2 −

3

256
(M1 + M2)

4 , (154)
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B̃ W̃ H̃u H̃d

M1 M2

LSM = ūyuQ�� d̄ydQ�⇤ � ēyeL�
⇤

WMSSM = ūyuQHu � d̄ydQHd � ēyeLHd

tan� =
vu
vd

v2u + v2d = v2 = (246 GeV)2
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WIMP annihilation 
processes

Bottom diagrams often dominate if DM is 
largely wino or largely Higgsino 
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~
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Figure 37: Tree level diagrams for neutralino annihilation into fermion pairs. From
Ref. [319].

B Neutralino Annihilation Cross Sections in the

Low Velocity Limit

In this appendix, we give the amplitudes and cross sections for the most impor-
tant neutralino annihilation channels in the low velocity limit (the first term in
the expansion σv = a + bv2 + ...). This is sufficient for indirect detection but
generally insufficient for relic density calculations in which velocity dependent
contributions are important. For a more complete list, with all S and P-wave
tree level annihilation amplitudes, see Refs. [195, 319, 397, 396, 106].

B.1 Annihilation Into Fermions

Neutralinos can annihilate to fermion pairs by three tree level diagrams [195,
213, 275, 276]. These processes consist of s-channel exchange of pseudoscalar
Higgs and Z0-bosons and t-channel exchange of sfermions (see Fig. 37).

The amplitude for pseudoscalar Higgs exchange is given by

AA = 4
√

2 g TA 11 hAff
1

4 − (mA/mχ)2 + i ΓAmA/m2
χ

. (164)

Here, mA is the pseudoscalar Higgs mass and ΓA is the pseudoscalar Higgs
width. TA 11 is the A0-neutralino-neutralino coupling and is given by

TA 11 = − sinβQ′′
1,1 + cosβS′′

1,1, (165)

where Q′′
1,1 = N3,1(N2,1 − tan θW N1,1) and S′′

1,1 = N4,1(N2,1 − tan θW N1,1).

N is the matrix which diagonalizes the neutralino mass matrix in the B̃-W̃ 3-
H̃0

1 -H̃0
2 basis, Mdiag

χ0 = N †Mχ0N (see Appendix A). θW is the Weinberg angle
and tanβ is the ratio of the Higgs vacuum expectation values. hAff is the
A0-fermion-fermion Yukawa coupling. For up-type fermions, this is given by

hAff = −
gmf cotβ

2mW±

. (166)

For down-type fermions, it is

hAff = −
gmf tanβ

2mW±

. (167)
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Figure 38: Tree level diagrams for neutralino annihilation into gauge boson pairs.
From Ref. [319].

U =

(
cosφ− − sinφ−
sinφ− cosφ+

)
(181)

and

V =

(
cosφ+ − sinφ+

sinφ+ cosφ−

)
, (182)

where

tan 2φ− = 2
√

2mW
(µ sinβ + M2 cosβ)

(M2
2 − µ2 + 2m2

W cos 2β)
(183)

and

tan 2φ+ = 2
√

2mW
(µ cosβ + M2 sinβ)

(M2
2 − µ2 − 2m2

W cosβ)
. (184)

The amplitude for annihilations to Z0-pairs is similar:

A(χχ→ Z0Z0)v→0 = 4
√

2 βZ
g2

cos2 θW

4∑

n=1

(
O′′L

1,n

)2 1

Pn
. (185)

Here, βZ =
√

1 − m2
Z/m2

χ, and Pn = 1 + (mχn/mχ)2 − (mZ/mχ)2. The sum is

over neutralino states. The coupling O′′L
1,n is given by 1

2 (−N3,1N∗
3,n +N4,1N∗

4,n).
The low velocity annihilation cross section for this mode is then given by

σv(χχ → GG)v→0 =
1

SG

βG

128πm2
χ

|A(χχ → GG)|2, (186)

where G indicates which gauge boson is being considered. SG is a statistical
factor equal to one for W+W− and two for Z0Z0.

It is useful to note that pure-gaugino neutralinos have a no S-wave annihi-
lation amplitude to gauge bosons. Pure-higgsinos or mixed higgsino-gauginos,
however, can annihilate efficiently via these channels, even at low velocities.
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Escaping direct detection 
constraints

So even if direct detection 
constraints are escaped by 
making neutralino pure ....

there may be strong 
indirect detection 
constraints

Photons from annihilation in 
galaxy today constrain pure 
wino or Higgsino DM
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Escaping direct detection 
constraints

Big cross-section! 5
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FIG. 1: The dashed red line shows �

�
�

0

�

0 ! W

+

W

��
v in cm3/s. The solid blue line shows

�

�
�

0

�

0 ! � �

�
v + 1

2

�

�
�

0

�

0 ! � Z

0

�
v in cm3/s. All three cross sections are computed in the

tree-level-SE approximation. One-loop e↵ects have been shown to reduce the cross section to line
photons by as much as a factor of 4 (see Sec. III B). The exclusion from Fermi (relevant for the
W

+

W

� channel) is the shaded red region, which is bordered by the dashed line. The exclusion
from H.E.S.S. (relevant for the � � + 1

2

� Z

0 channel) is the shaded blue region, which is bordered
by the solid line. These exclusion contours assume that the wino abundance is set by thermal
freeze-out. The H.E.S.S. limit is appropriate for an NFW profile, see Sec. III A. The shaded yellow
region between the dotted lines corresponds to ⌦ h

2 = 0.12 ± 0.006. In the black shaded region, a
thermal wino exceeds the observed relic density.

which the LHC and direct detection experiments are not sensitive. In particular, if the wino

makes up a non-trivial fraction of the DM, it can lead to observable rates for experiments that

search for photons from DM annihilation. Even in this case, the perturbative annihilation

cross section for winos is not always large enough to be observable. However, as the wino

mass becomes large with respect to the W±-boson mass, non-perturbative SE e↵ects due

to the presence of a relatively long-range potential become important, especially at low

velocities. The impact of the SE on wino annihilation has been studied in detail [1–8] and

must be properly accounted for when computing the wino relic density, as well as its present-

day annihilation cross section. Appendix A reviews the procedure we follow to compute these

non-perturbative e↵ects, and we refer the reader there for an overview of the computation,

as well as a description of the procedure used to minimize numerical convergence problems.

A number of ground- [33–37] and space-based [38–40] experiments place significant

constraints on wino annihilation. The strongest and most robust bounds come from Fermi

[40], for 100 GeV . M
2

. 900 GeV, and H.E.S.S. [33], for 600 GeV . M
2

. 25 TeV.

Cohen, Lisanti, Pierce, Slatyer
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While wino and Higgsino may be constrained 
by indirect detection, bino escapes

But, even bino has Higgsino component set by 

Require                        to get rid of 
Higgsino component

Same parameter enters into Z boson mass

Pure bino DM escapes

determine the phase of µ. Taking |µ|2, b, m2
Hu

and m2
Hd

as input parameters, and m2
Z and tan β as

output parameters obtained by solving these two equations, one obtains:

sin(2β) =
2b

m2
Hu

+m2
Hd

+ 2|µ|2
, (8.1.10)

m2
Z =

|m2
Hd

−m2
Hu

|
√
1− sin2(2β)

−m2
Hu

−m2
Hd

− 2|µ|2. (8.1.11)

(Note that sin(2β) is always positive. If m2
Hu

< m2
Hd

, as is usually assumed, then cos(2β) is negative;
otherwise it is positive.)

As an aside, eqs. (8.1.10) and (8.1.11) highlight the “µ problem” already mentioned in section 6.1.
Without miraculous cancellations, all of the input parameters ought to be within an order of magnitude
or two of m2

Z . However, in the MSSM, µ is a supersymmetry-respecting parameter appearing in
the superpotential, while b, m2

Hu
, m2

Hd
are supersymmetry-breaking parameters. This has lead to a

widespread belief that the MSSM must be extended at very high energies to include a mechanism that
relates the effective value of µ to the supersymmetry-breaking mechanism in some way; see sections
11.2 and 11.3 and ref. [66] for examples.

Even if the value of µ is set by soft supersymmetry breaking, the cancellation needed by eq. (8.1.11)
is often remarkable when evaluated in specific model frameworks, after constraints from direct searches
for the Higgs bosons and superpartners are taken into account. For example, expanding for large tan β,
eq. (8.1.11) becomes

m2
Z = −2(m2

Hu
+ |µ|2) + 2

tan2 β
(m2

Hd
−m2

Hu
) +O(1/ tan4 β). (8.1.12)

Typical viable solutions for the MSSM have −m2
Hu

and |µ|2 each much larger than m2
Z , so that signifi-

cant cancellation is needed. In particular, large top squark squared masses, needed to avoid having the
Higgs boson mass turn out too small [see eq. (8.1.25) below] compared to the direct search limits from
LEP, will feed into m2

Hu
. The cancellation needed in the minimal model may therefore be at the several

per cent level, or worse. It is impossible to objectively characterize whether this should be considered
worrisome, but it certainly causes subjective worry as the LHC bounds on superpartners increase.

Equations (8.1.8)-(8.1.11) are based on the tree-level potential, and involve running renormalized
Lagrangian parameters, which depend on the choice of renormalization scale. In practice, one must
include radiative corrections at one-loop order, at least, in order to get numerically stable results. To
do this, one can compute the loop corrections ∆V to the effective potential Veff(vu, vd) = V +∆V as a
function of the VEVs. The impact of this is that the equations governing the VEVs of the full effective
potential are obtained by simply replacing

m2
Hu

→ m2
Hu

+
1

2vu

∂(∆V )

∂vu
, m2

Hd
→ m2

Hd
+

1

2vd

∂(∆V )

∂vd
(8.1.13)

in eqs. (8.1.8)-(8.1.11), treating vu and vd as real variables in the differentiation. The result for ∆V has
now been obtained through two-loop order in the MSSM [135, 188]. The most important corrections
come from the one-loop diagrams involving the top squarks and top quark, and experience shows that
the validity of the tree-level approximation and the convergence of perturbation theory are therefore
improved by choosing a renormalization scale roughly of order the average of the top squark masses.

The Higgs scalar fields in the MSSM consist of two complex SU(2)L-doublet, or eight real, scalar
degrees of freedom. When the electroweak symmetry is broken, three of them are the would-be Nambu-
Goldstone bosons G0, G±, which become the longitudinal modes of the Z0 and W± massive vector
bosons. The remaining five Higgs scalar mass eigenstates consist of two CP-even neutral scalars h0
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Loops Matter

Even if Tree scattering 
process vanishes, Future 
WIMP DM probes can reach 
1-loop suppressed processes!

1-loop suppressed wino can 
be ruled out

1-loop Higgsino harder

3
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FIG. 2: SI cross sections for low-velocity scattering on
the proton as a function of mh, for the pure cases indi-
cated. Here and in the plots below, dark (light) bands
represent 1� uncertainty from pQCD (hadronic inputs).
The vertical band indicates the physical value of mh.

tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
to be within this error budget. Stronger cancellation
between spin-0 and spin-2 amplitudes in the doublet
case implies a smaller cross section,

�D
SI . 10�48 cm2 (95%C.L.) . (5)

We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0 � M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.

Consider a mixture of Majorana SU(2)W singlet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 , with

had
pert

doublet

triplet
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I
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).

respective masses MS and MD. The heavy-particle
lagrangian is given by (1), where hv = (hS , hD1 , hD2)
is a quintuplet of self-conjugate fields. The gauge
couplings are given in terms of Pauli matrices ⌧a,

T a =

0

B@
0 · ·
· ⌧a

4
�i⌧a

4

· i⌧a

4
⌧a

4

1

CA� c.c. , Y =

0

B@
0 · ·
· 02

�i12
2

· i12
2 02

1

CA . (6)

The couplings to the Higgs field and residual mass
matrix are respectively given by

f(H) =
g21p

2

0

B@
0 HT iHT

H 02 02

iH 02 02

1

CA+

"
iH ! H

1 ! 2

#
+ h.c. ,

�m = diag(MS ,MD14)�Mref15 , (7)

where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0

with  ⌘
p
2
1 + 2

2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading

Hill and Solon
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Loops Matter
Even 1-loop bino can 
be probed in some 
cases

DM experiments 
searching for WIMP 
enter into precision 
era
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FIG. 10. Left: The spin-independent cross section (per-nucleon) for the case of a right-handed

sbottom and a sbottom-bino mass splitting that is much less than the weak scale (�
b̃R

= 5 GeV).

For comparison, we show both the fixed-order (“LO”) approach and the complete result (“LO+LL”)

incorporating leading order matching to 5-flavor QCD and then leading-log resummations in the RG

flow down to 3-flavor QCD. The thickness of the bands corresponds to combined hadronic and theo-

retical uncertainties. The gray dashed lines show the projected reach of the LUX-ZEPLIN experiment

and the point at which the irreducible neutrino background should be relevant. Right: The spin-

independent nucleon cross sections for various values of the sbottom-bino mass splitting in GeV (white

boxes). The calculation is performed using the full “LO+LL” framework. The width of the bands

corresponds to the combined theoretical and hadronic uncertainties.

smaller than the mass of the bottom quark. Bino DM ranging from 2 � 20 TeV will remain

above the neutrino background for �
b̃R

⇡ 10 � 0 GeV, respectively. Interestingly, such small

mass splittings are also needed for the standard freeze-out of multi-TeV bino DM through

sbottom co-annihilation, and hence LZ and future experiments will be sensitive to thermal

bino DM in the multi-TeV mass range. For these scenarios, given the large hierarchy between

the bino mass and the weak scale, it is interesting to further consider the impact of running

from the theory defined at µ
�

⇠ m
�

as discussed in Sec. IVA.
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FIG. 8. Left: The spin-independent cross section (per-nucleon) for the case of a right-handed

stop in the optimistic limit that its mass is nearly degenerate with that of the bino, m
�

. For

comparison, we show both the fixed-order result (“LO”, dashed blue) and the result incorporating

leading order matching to 5-flavor QCD and leading-log resummation through RGE down to 3-flavor

QCD (“LO+LL”, red). We also illustrate the impact of including the running of the ↵
f

and �
f

coe�cients of Eq. (1) from the scale µ
�

⇠ m
�

(“LO+LL
�

”, green). (ms: change LL’ to LL
�

,

to avoid confusion with actual LL’ in QCD) The thickness of the bands corresponds to the

combined hadronic input and perturbative uncertainties. The grey dashed lines show the projected

sensitivity of the LUX-ZEPLIN experiment and the neutrino background. Right: The spin-dependent

cross section (per-neutron) for the case of a right-handed stop in the optimistic limit that its mass

is nearly degenerate with that of the bino, m
�

. The thickness of the band corresponds to hadronic

input uncertainties.

enhancing the prospects for direct detection. In light of this, we focus on the optimistic scenario

that the mass splitting, �
t̃R

= m
t̃R

�m
�

, is much less than the weak scale. Barring corrections

of the order O(�
t̃R

/m
t

), we set m
t̃R

= m
�

when determining weak scale matching coe�cients.

The resulting SI and SD cross sections per nucleon for scattering on a Xenon target are

shown in Fig. 8. Varying tan � would only a↵ect these results at the level of a few percent.
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FIG. 4. Weak scale matching conditions for the case of a right-handed stop. Crossed and charge-

reversed diagrams are not shown. Here, q refers to the quarks of 5-flavor QCD. In the bottom line,

the ellipsis denotes similar diagrams where the insertion of the gluon legs vary (see Appendix D 6).

Single (double) lines correspond to relativistic (heavy particle theory) fields. We have omitted the

label “bare” on the coe�cients on the right-hand side.

particular, a so-called “heavy-light current” describes the interactions of the heavy bino with

the heavy sfermion and light fermion. This is described in Sec. IIID.

B. Case I: Right-Handed Stop

The simplest example arises when the mass of the fermion partnered to the sfermion is

of order or greater than the weak scale, m
f

& µ
t

. Although this case broadly applies to

many models, for concreteness, we will restrict to the case of a single right-handed stop (t̃
R

)

interacting with the bino (�) and a top quark (t). Let us discuss in turn the ingredients c, R,

M , and f of the factorization presented in Eq. (8).

Weak scale coe�cients c(µ
t

) : The matching condition at the weak scale µ
t

⇠ m
t

is shown

in Fig. 4. The full theory amplitudes are computed using the Lagrangian in Eq. (1), while the

e↵ective theory amplitudes are computed using the Lagrangian in Eq. (12). The weak scale

particles W± , Z , h , G± , t , t̃
R

are highly virtual at low energies and are thus integrated out.

Their e↵ects are encoded into the Wilson coe�cients of an e↵ective theory describing a heavy

bino �
v

interacting with the quarks and gluons of 5-flavor QCD.

The contributions to the quark and gluon coe�cients begin at O(↵2
w

) and O(↵
w

↵
s

), respec-

tively. The h-exchange diagrams contribute to the scalar coe�cient c
(0)
q

, while the Z-exchange
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Waiting for SUSY
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> 1 TeV

> 200-300 GeV

• Strong constraints on strong particles

• Weak constraints on weak particles

LHC is not a DM Machine
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> 1 TeV

> 200-300 GeV

• Strong constraints on strong particles

• Weak constraints on weak particles

LHC is a Mediator Machine
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“Model Independent” 
Collider Searches for DM
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Mono-X is not a 
discovery mode

Important theory dependence in 
these plots!

Inappropriate use of higher 
dimension operators

Failure to take into account 
direct searches for mediator
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LHC is effective on heavy, 
relatively strongly coupled 
mediators

Direct detection is unparalleled 
when mediator is light, small 
couplings to protons 

Direct searches for mediator 
almost always more 
constraining than mono-X

Domain of Importance
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Model mono-h mono-Z direct constraints

Inelastic DM
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TABLE I: Summary of mono-Higgs and mono-Z topologies, as well as the relevant direct searches
considered in this work.
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Model mono-b/t direct constraints

sbottoms

b

g

b

�

�

bb̃

g

�

b
�

b

b̃

b̃

g

RPV stops q

�

t̃

tq

q

g

�

t
�

t

t̃

t̃

g

non-resonant mono-t

q

g

q

vmet

t

q

q

vmet

t

t

TABLE II: Summary of mono-b and mono-t topologies, as well as the relevant direct searches
considered in this work.

The outline of this paper is as follows. In the next section we summarize the models

and analyses utilized in our comparison of mono-X searches against various searches for

the mediating particle. In the following subsections, we then systematically compare the

constraints from mono-X to various searches for dijet resonances as well as supersymmetry

for each model in Table I and II. Our goal is to highlight the classes of models where mono-X

constraints shed the most new light on new physics, beyond what is already constrained by

more standard types of searches. Finally, we conclude.

Search Model where it matters

mono-h Inelastic DM, 2HDM
mono-z Inelastic DM, 2HDM
mono-jet squark mediated production, compressed spectrum
mono-b sbottom mediated production, compressed spectrum
mono-t stop mediated production, RPV-like

TABLE III: Summary of results: for each mono-X search we list the models where the analysis
can exclude part of the parameter space not already ruled out by some other search.

7
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When Should We Start 
Looking Elsewhere?

Cannot kill neutralino DM via direct 
detection, but paradigm does become 
increasingly tuned

Likewise, LHC will only continue to push 
constraints on mediating SUSY colored 
particles up, though relatively weak 
constraints on DM itself
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013
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Dark Matter Model 
Dynamics

(Looking beyond the vanilla WIMP paradigm)
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DM Paradigm:
recap

Usual picture of dark matter is that it is:

single

stable 

(sub-?) weakly interacting

neutral

Supersymmetry and axions fit the bill. 
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Hidden Dark Worlds

Standard Model
Mp � 1 GeV

Our thinking has shifted

From a single, stable weakly 
interacting particle .....

(WIMP, axion)

...to a hidden world 
with multiple states, 

new interactions

Models: Supersymmetric light DM sectors,
Secluded WIMPs, WIMPless DM, Asymmetric DM .....

Production: freeze-in, freeze-out and decay, 
asymmetric abundance, non-thermal mechanisms .....
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Hidden Valleys

Standard Model

Dark WorldWeak Interactions

Sub-weak Interactions
(DM here.)

LH
C

Strassler, KZ 2006

Inaccessibility

En
er

gy
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Hidden Valleys

Standard Model

Dark WorldWeak Interactions

Sub-weak Interactions
(DM here.)

LH
C

Strassler, KZ 2006

Torres del Paine

Inaccessibility
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Our Thinking Has 
Shifted: Why?

Simple, attractive, phenomenologically viable 
models exist

Example: ADM.  Start with a single DM particle 
X, and one discovers you need more particles

nX ⇠ 10�10T 3
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Our Thinking Has 
Shifted: Why?

Simple, attractive, phenomenologically viable 
models exist

Example: ADM.  Start with a single DM particle 
X, and one discovers you need more particles

nX ⇠ 10�10T 3
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Baryon and DM Number 
Related?

Standard picture: freeze-out of 
annihilation; baryon and DM number 
unrelated

Accidental, or dynamically related?

Experimentally,
Mechanism

�DM � 5�b

nDM � nb

mDM � 5 GeV
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Asymmetric DM
“Integrate out” heavy state
Higher dimension operators:

Standard Model
Dark Matter

(Hidden Valley)

N

X

X

Inaccessibility

En
er

gy

Luty, Kaplan, KZ 
0901.4117

mp ⇠ 1 GeV

Xucdcdc
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Astrophysical 
Implications

DM does not annihilate

It can accumulate in the center of stars

Notable case: neutron stars

Elastically scatter, come to rest in core

High density!
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Altering Stellar Interiors

Figure 2. Regions (colored) excluded by the nearby pulsars J0437-4715 (left) and J2124-3358

(right). The shaded, diagonal and square cross-hatched, and black regions are as in Fig. 1.

With the formation of a BEC, it is also sensitive to the mass range mX ⇤ 5 MeV� 13 GeV.
The captured scalar ADM cannot form a BEC in the pulsar J2124-3358. This is because it
has a relatively high central temperature, and the formation of a BEC requires a DM-nucleon
cross section larger than the saturation cross section ⇥max ⌅ 2.1⇥ 10�45 cm2.

Since the bound is sensitive to the DM density, we also consider neutron stars in regions
with high �X . Globular clusters o�er this type of environment, and observations of Pulsar
B1620-26 place it in the globular cluster M4 [47] with an age of 2.82⇥ 108 years [44]. Since
it is far away from us, its surface temperature is unknown, and we are not able to calculate
its central temperature. In our analysis, we take T = 106 K as a reasonable approximation
due to its advanced age. We take �X = 103 GeV/cm3 for the DM density and v̄ = 20 km/s,
motivated by simulations [24, 37]. Note that the exact value of DM density in globular
clusters is uncertain; see discussions in Refs. [24, 25, 37], and references therein. In Fig. (3),
we show the constraints on the DM-nucleon scattering cross section of scalar ADM from the
pulsar B1620-26 in the globular cluster M4. Note that when the DM mass is larger than
⇤ 4.7⇥ 103 GeV, NBEC � Nself and all captured DM particles collapse before a BEC forms.

VII. CONCLUSIONS

We have studied the consequences of scalar ADM accumulation in neutron stars. Neutron
stars have high density and are ideal objects for capturing DM at high rates. Since ADM
does not self-annihilate, a high mass of DM can accrete in the neutron star, and, lacking
Fermi degeneracy pressure, rapidly self-gravitate and exceed the Chandrasekhar limit. Fur-
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3

radiation so long as,

4⇡⇢B(GMBH)2

v3s
� 1

15360⇡(GMBH)2
+ CXmX > 0,

(3)

where MBH = NChandmX is the mass of the BH and
vs/c ⇠ 0.1 is the sound speed in a pulsar. The first and
second terms of (3) are the Bondi accretion and Hawking
radiation, while the third term accounts for DM feeding
into the BH from a BEC phase. As detailed in [27, 31]
(see also [37]), for mX & 100 GeV DM the black hole will
grow if subsequent BEC DM falls in more rapidly than
the BH evaporates. BEC DM not infalling this rapidly
would invalidate the mX & 100 GeV parameter space in
the top panel of Figure 1.

Using the recent observation of a young and highly
magnetized pulsar near the GC [11–14], along with the
detection of a much older pulsar near Earth with a more
di↵use DM background (⇢X ⇠ 0.4 GeV/cm3, v̄X ⇠
220 km/s), we can delineate what properties of DM are
consistent with dark BHs consuming pulsars at the GC,
while pulsars outside the GC remain extant. Pulsar
J0437-4715 is a 6.7 Gyr old millisecond pulsar 150 par-
secs from Earth [42] with a measured surface tempera-
ture of ⇠ 105 K, which implies a core temperature of
⇠ 106 K [27, 43]. The newly discovered magnetar J1745-
2900, 0.1 pc from the GC, resides in a much denser bath
of DM (⇢X ⇠ 7⇥104 GeV/cm3, v̄X ⇠ 200 km/s). In this
work we use typical values for pulsar mass and radius,
1.5M� ' 1.7 ⇥ 1057 GeV and 11 km, and assume the
magnetar at the GC has a temperature ⇠ 106 K.

In Figure 1 we show what DM masses and nucleon
scattering cross-sections are consistent with pulsars older
than ⇠ 105 � 107 yr imploding at the GC, while longer-
lived pulsars near earth do not collapse. Assuming that
absent ⇠ 107 yr old millisecond pulsars at the GC have
collapsed into BHs, these simultaneous requirements re-
strict asymmetric DM to a band of masses and very small
scattering cross sections. Of particular interest is the
bound on the DM-nucleon cross-section set by the young
pulsar, shown as a thick dashed line in Figure 1. A fu-
ture collapse of this young pulsar would indicate that
DM mass and couplings lie on this bounding line. For
the same reason, if one assumes the absence of expected
young pulsars at the GC [19] is the result of DM collapse,
the DM parameters should lie just below this line. Fur-
thermore, if young pulsars are being destroyed by bosonic
DM with very small self-interactions (� < 10�30 [31]) as
in the top panel, the DM responsible cannot have a mass
between 10 MeV and a TeV – this range is ruled out,
because thermalization takes longer than 105 years.

We consider DM fermions which collect in a pulsar
and collapse by overcoming Fermi degeneracy pressure
with very strong attractive self-interactions. We focus
on fermionic DM self-coupled by a light scalar mediator,
VY uk = ↵�XX̄ with mediator mass m� = 10 MeV and
Yukawa coupling ↵ = 0.1. This Yukawa term is a possible
explanation for flattened dwarf galaxy core mass halos
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FIG. 2. Curves for which fermionic DM will destroy a 7 Gyr
pulsars near earth, young pulsars 0.1 pc from the GC, and
GC millisecond pulsars, are shown with conventions given in
Figure 1. The parameter space shown is for fermionic DM
with a Yukawa coupling (↵ = 0.1) to a light (m� = 10 MeV)
boson. DM masses < 100 GeV may be excluded by bullet
clusters and the ellipticity of spiral galaxies [44].

[44, 45]. DM fermions with this self-coupling and even
very small nucleon scattering cross-sections will collapse
in pulsars [29, 36]. To determine the number of DM
fermions necessary for collapse, we numerically solve for
NX in

�Ek + V (Virial)
Y uk +

GN2/3
X ⇢BmX

( 43⇡)
�1/3m2

�

 
y2 +

mXm3
�

⇢By

!
= 0,

(4)

the virial equation of a DM particle at the edge of the
thermalized region, where the virialized kinetic energy

Ek is given by 3kBTNS for nondegenerate and
(3⇡2)2/3m2

�

mXy2

for degenerate DM. The variable y ' 1.6m�r/N
1/3
X is

the exponent of the Yukawa potential for nearest neigh-
bor fermions. Note that at collapse, the self-gravity of
the fermions is negligible. In this treatment we only con-
sider DM parameters for which the Yukawa potential is
strongly-screened (y > 1) at the onset of collapse, so that

in (4) V (Virial)
Y uk ' 8↵

⇣
m�e

�y

y +m�e�y
⌘
. The last term

in (4) is the baryonic and DM gravitational potential.
If ↵ > 4.7(m�/mX)2 collapse will continue when the

DM becomes relativistic. More details can be found in
[36]. Unlike the bosonic case in (3), the DM fermions
are not confined to a BEC and so will not e�ciently
feed into the BH after it is formed. The pulsar will be
swallowed if the number of collapsing fermions exceeds

NX ⇠
⇣

3.4⇥1036 GeV
mX

⌘
, which is the number required for

the baryonic accretion of the BH to outpace the Hawking
radiation rate. In Figure 2 we plot a detection band for
self-interacting fermionic DM which collapses pulsars in
the GC.
A prediction of GC pulsar collapsing DM is that there

is a maximum age that a pulsar can reach before a DM

Bramante, Linden 1405.1031

47

Figure 10: left: The Hertzsprung-Russell diagram for a 1 M� star, with �SD = 10�37 cm2. For a

moderate amount of DM accumulation, the star compensates for nuclear energy being lost in the

core by increasing it outside the core, making the star hotter and more luminous. This is shown by

the darkest blue curve with ⇢DM = 103 GeV/cm3. Eventually this is no longer possible, and the

star contracts and cools, which is shown by the evolution along the green and orange curves. This

yields a dramatic change in the usual evolution of the star that may be observable in a DM dense

region. From [194]. right: Impact of ADM on brown dwarves. Solid curves show the standard

evolution of low mass stars between 0.05 and 0.11M�. The main sequence is reached as t increases

when the luminosity stabilizes to a constant value, indicating that hydrogen burning has been

ignited. In the standard case, this occurs for M > 0.08 M�. By contrast, when DM is added (with

boost �B = 103 in comparison to the usual collection rate in the Sun for the same DM parameters,

so that enough DM is collected), the red and blue curves result. Stars between 0.08 and 0.1M�,

that entered the main sequence in the standard case, no longer enter the main sequence and instead

become brown dwarves. From [199].

C. Brown and White Dwarves

Similar types of e↵ects can be present in the evolution of low mass stars. In usual stellar

evolution, a low mass star, below 0.08 M�, evolves to a brown dwarf because the core
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0
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Figure 4. The ratio of the predicted 8B neutrino flux to the measured value �⌫
B,obs = 5⇥106 cm�2s�1,

for each type of spin-independent dark matter coupling defined in Eq. 1.1. In every case the white and
black lines show the isocontours where the flux is respectively 1 and 2� lower than the observed values,
based on observational (3%) and modelling (14%) errors, added in quadrature. The cross-sections
are normalized such that � = �

0

(v/v
0

)2n or � = �

0

(q/q
0

)2n, with v

0

= 220 km s�1 and q

0

= 40MeV.
Simulations carried out in the masked regions did not converge, due to the significant heat conduction
by the DM particles, leading in extreme cases to density inversions in the core.
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Direct Detection

Mediates _large_ scattering cross-sections

Simplified model gives rise to many effects
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FIG. 2: Magnetic dipolar DM �
1

annihilates to ��, �Z,ZZ (Left), while ff̄ occurs by coannihilation only with �
2

(Right).

• In the early Universe, the thermally-averaged coannihilation cross section is suppressed by a Boltzmann factor
exp(��m/T ). For �m ⇠ T

f

, the coannihilation rate becomes moderately suppressed, requiring larger couplings to
reproduce the correct thermal relic density.

• In the present Universe, �2 is not populated, and therefore �1�2 ! f ¯f does not contribute to any indirect detection
signals. However, direct annihilation �1�1 ! �� can occur, and the rate can be enhanced due to the large couplings
required for thermal freeze-out.

Ultimately, within a given model, there will exist a preferred parameter region for �m and couplings that can simultaneously
explain the relic DM density and the observed � signal. In this section, we first discuss some preliminaries for computing the
DM relic density, closely following Ref. [53], and then we consider specific models in parts A and B.

Similar to single species freeze-out, the relic DM abundance for a general coannihilation scenario is computed by solving a
Boltzmann equation

ṅ
�

+ 3Hn
�

= �h�e↵vi
�
n2
�

� (neq
�

)

2
�

(2)

where n
�

⌘ P
i

n
�i is the total �

i

density. In writing Eq. (2) in terms of only n
�

, we assume the individual densities n
�i are in

chemical equilibrium due to rapid �
i

f $ �
j

f and �
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$ �
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f ¯f processes, such that
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⌘ (m
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), with g
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degrees of freedom for
�
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vi, where �
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annihilation cross section
and its thermal average is
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ij
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The DM relic density today is given by

⌦dmh
2
=

1.07⇥ 10

9
GeV

�1

g1/2⇤ mPl

hR1
xf

x�2 h�e↵vi dx
i , (5)

where mPl ⇡ 1.22 ⇥ 10

19
GeV is the Planck mass and g⇤ is the number of degrees of freedom in the thermal bath during

freeze-out. The freeze-out temperature T
f

= m1/xf

is obtained by solving x
f

= ln

�
0.038 ge↵m1mPl h�e↵vi /pg⇤xf

�
, which

can be done iteratively. Alternately, one can directly solve Eq. (2) numerically; for the cases we consider below, we find that the
agreement with Eq. (5) is better than ⇠ 1� 3% depending on the mass splitting.

Now, we discuss two models which give rise to the Fermi line signal and a correct relic density with the coannihilation effect
in the early Universe.2

2 To be clear, our models rely on the mass splitting �m to suppress h�
e↵

vi, which is dominated by large �
1

�
2

and �
2

�
2

annihilation cross sections. This is
distinct from models where �

1

�
1

annihilation is itself too large, and h�
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vi can be suppressed by 1/g
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by having a “parasitic” species �
2

that does not
annihilate strongly (see, e.g., [54, 55]).
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(Right).

• In the early Universe, the thermally-averaged coannihilation cross section is suppressed by a Boltzmann factor
exp(��m/T ). For �m ⇠ T

f

, the coannihilation rate becomes moderately suppressed, requiring larger couplings to
reproduce the correct thermal relic density.

• In the present Universe, �2 is not populated, and therefore �1�2 ! f ¯f does not contribute to any indirect detection
signals. However, direct annihilation �1�1 ! �� can occur, and the rate can be enhanced due to the large couplings
required for thermal freeze-out.

Ultimately, within a given model, there will exist a preferred parameter region for �m and couplings that can simultaneously
explain the relic DM density and the observed � signal. In this section, we first discuss some preliminaries for computing the
DM relic density, closely following Ref. [53], and then we consider specific models in parts A and B.

Similar to single species freeze-out, the relic DM abundance for a general coannihilation scenario is computed by solving a
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can be done iteratively. Alternately, one can directly solve Eq. (2) numerically; for the cases we consider below, we find that the
agreement with Eq. (5) is better than ⇠ 1� 3% depending on the mass splitting.

Now, we discuss two models which give rise to the Fermi line signal and a correct relic density with the coannihilation effect
in the early Universe.2
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Connection to Intensity 
Experiments

sions. Constraints from past experiments and from neu-
trino emission by SN 1987A are presented in Section III.
In Section IV, we describe the five new experimental sce-
narios and estimate the limiting backgrounds. We con-
clude in Section V with a summary of the prospects for
new experiments. More detailed formulas, which we use
to calculate our expected search reaches, and a more de-
tailed discussion of some of the backgrounds, are given
in Appendices A, B, and C .

II. THE PHYSICS OF NEW U(1) VECTORS IN
FIXED TARGET COLLISIONS

A. Theoretical Preliminaries

Consider the Lagrangian

L = L
SM

+ ✏

Y

F

Y,µ⌫

F

0
µ⌫

+
1
4
F

0,µ⌫

F

0
µ⌫

+ m

2

A

0A
0µ

A

0
µ

, (3)

where L
SM

is the Standard Model Lagrangian, F

0
µ⌫

=
@

[µ

A

0
⌫]

, and A

0 is the gauge field of a massive dark U(1)0

gauge group [1]. The second term in (3) is the kinetic
mixing operator, and ✏ ⇠ 10�8 � 10�2 is naturally gen-
erated by loops at any mass scale of heavy fields charged
under both U(1)0 and U(1)

Y

; the lower end of this range
is obtained if one or both U(1)’s are contained in grand-
unified (GUT) groups, since then ✏ is only generated by
two-or three-loop GUT-breaking e↵ects.

A simple way of analyzing the low-energy e↵ects of the
A

0 is to treat kinetic mixing as an insertion of p

2

g

µ⌫

�p

µ

p

⌫

in Feynman diagrams, making it clear that the A

0 couples
to the electromagnetic current of the Standard Model
through the photon. This picture also clarifies, for ex-
ample, that new interactions induced by kinetic mixing
must involve a massive A

0 propagator, and that e↵ects
of mixing with the Z-boson are further suppressed by
1/m

2

Z

. Equivalently, one can redefine the photon field
A

µ ! A

µ+✏A

0µ as in [37], which removes the kinetic mix-
ing term and generates a coupling eA

µ

J

µ

EM

� ✏eA

0
µ

J

µ

EM

of the new gauge boson to electrically charged particles
(here ✏ ⌘ ✏

Y

cos ✓

W

). Note that this does not induce
electromagnetic millicharges for particles charged under
the A

0. The parameters of concern in this paper are ✏

and m

A

0 .
We now explain the orange stripe in Figure 1 — see

[3, 4, 5] for more details. In a supersymmetric theory,
the kinetic mixing operator induces a mixing between
the D-terms associated with U(1)0 and U(1)

Y

. The hy-
percharge D-term gets a vacuum expectation value from
electroweak symmetry breaking and induces a weak-scale
e↵ective Fayet-Iliopoulos term for U(1)0. Consequently,
the Standard Model vacuum can break the U(1)0 in the
presence of light U(1)0-charged degrees of freedom, giving
the A

0 a mass,

m

A

0 ⇠ p✏g

D

p
g

Y

m

W

g

2

, (4)

e�e�

Z

A0

�

FIG. 2: A

0 production by bremsstrahlung o↵ an incoming
electron scattering o↵ protons in a target with atomic number
Z.
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FIG. 3: (a) �

⇤ and (b) Bethe-Heitler trident reactions that
comprise the primary QED background to A

0 ! `

+
`

� search
channels.

where g

D

, g

Y

, and g

2

are the the U(1)0, U(1)
Y

, and
Standard Model SU(2)

L

gauge couplings, respectively,
and m

W

is the W-boson mass. Equation (4) relates
✏ and m

A

0 as indicated by the orange stripe in Figure
1 for g

D

⇠ 0.1 � 1. This region is not only theoret-
ically appealing, but also roughly corresponds to the
region in which the annual modulation signal observed
by DAMA/LIBRA can be explained by dark matter,
charged under the U(1)0, scattering inelastically o↵ nuclei
through A

0 exchange. We therefore include these lines for
reference in our plots.

B. A

0 Production in Fixed-Target Collisions

A

0 particles are generated in electron collisions on a
fixed target by a process analogous to ordinary pho-
ton bremsstrahlung, see Figure 2. This can be reli-
ably estimated in the Weizsäcker-Williams approxima-
tion (see Appendix A for more details) [38, 39, 40].
When the incoming electron has energy E

0

, the di↵er-
ential cross-section to produce an A

0 of mass m

A

0 with
energy E

A

0 ⌘ xE

0

is

d�

dxd cos ✓

A

0
⇡ 8Z

2

↵

3

✏

2

E

2

0

x

U

2

Log

⇥

(1� x +

x

2

2
)� x(1� x)m2
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0

�
E

2

0

x ✓

2

A

0

�

U

2

�
(5)

where Z is the atomic number of the target atoms,
↵ ' 1/137, ✓

A

0 is the angle in the lab frame between the
emitted A

0 and the incoming electron, the Log (⇠ 5� 10
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FIG. 1: Left: Existing constraints on an A

0. Shown are constraints from electron and muon anomalous magnetic moment
measurements, ae and aµ, the BaBar search for ⌥(3S) ! �µ

+
µ

�, three beam dump experiments, E137, E141, and E774,
and supernova cooling (SN). These constraints are discussed further in Section III. Right: Existing constraints are shown in
gray, while the various lines — light green (upper) solid, red short-dashed, purple dotted, blue long-dashed, and dark green
(lower) solid — show estimates of the regions that can be explored with the experimental scenarios discussed in Section IVA–
IVE, respectively. The discussion in IV focuses on the five points labeled “A” through “E”. The orange stripe denotes the
“D-term” region introduced in section IIA, in which simple models of dark matter interacting with the A

0 can explain the
annual modulation signal reported by DAMA/LIBRA. Along the thin black line, the A

0 proper lifetime c⌧ = 80µm, which is
approximately the ⌧ proper lifetime.

energy e

+

e

� colliders are a powerful laboratory for the
study of an A

0 with ✏ & 10�4 and mass above ⇠ 200
MeV, particularly in sectors with multiple light states
[32, 33, 34, 35, 36]. Their reach in ✏ is limited by lu-
minosity and irreducible backgrounds. However, an A

0

can also be produced through bremsstrahlung o↵ an elec-
tron beam incident on a fixed target [34]. This approach
has several virtues over colliding-beam searches: much
larger luminosities, of O(1 ab�1

/day) can be achieved,
scattering cross-sections are enhanced by nuclear charge
coherence, and the resulting boosted final states can be
observed with compact special-purpose detectors.

Past electron “beam-dump” experiments, in which a
detector looks for decay products of rare penetrating par-
ticles behind a stopped electron beam, constrain & 10
cm vertex displacements and ✏ & 10�7. The thick shield
needed to stop beam products limits these experiments to
long decay lengths, so thinner targets are needed to probe
shorter displacements (larger ✏ and m

A

0). However, beam
products easily escape thin targets and constitute a chal-
lenging background in downstream detectors.

The five benchmark points labeled “A” through “E”
in Figure 1 (right) require di↵erent approaches to these
challenges, discussed in Section IV. We have estimated
the reach of each scenario, summarized in Figure 1
(right), in the context of electron beams with 1–6 GeV
energies, nA–µA average beam currents, and run times
⇠ 106 s. Such beams can be found for example at the

Thomas Je↵erson National Accelerator Facility (JLab),
the SLAC National Accelerator Laboratory, the electron
accelerator ELSA, and the Mainzer Mikrotron (MAMI).

The scenarios for points A and E use 100 MeV–1 GeV
electron beam dumps, with more complete event recon-
struction or higher-current beams than previous dump
experiments. Low-mass, high-✏ regions (e.g. B and C)
produce boosted A

0 and forward decay products with
mm–cm displaced vertices. Our approaches exploit very
forward silicon-strip tracking to identify these vertices,
while maintaining reasonable occupancy — a limiting
factor. At still higher ✏, no displaced vertices are re-
solvable and one must take full advantage of the kine-
matic properties of the signal and background processes,
including the recoiling electron, using either the forward
geometries of B and C or a wider-angle spectrometer (e.g.
for point D). Spectrometers operating at various labora-
tories appear capable of probing this final region.

We focus on the case where the A

0 decays directly to
Standard Model fermions, but the past experiments and
proposed scenarios are also sensitive (with di↵erent ex-
clusions) if the A

0 decays to lighter U(1)0-charged scalars,
and to direct production of axion-like states.

Outline

In Section II, we summarize the properties of A

0 pro-
duction through bremsstrahlung in fixed-target colli-

2

✏

��
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DM Interactions and DM 
Halos 

Dark matter self-
interactions randomize 
momenta and isotropize 
halos

Lead to lower density dark 
matter halo cores

Dark matter halos (including 
baryon poor dwarf galaxies) 
seem to have cores rather 
than cusps (still controversy 
as to cause)

12 Cosmological Simulations of SIDM

based on number of collisions, but their scaled result is con-
tradicted by our direct simulations. We estimate that this
may be because they use a CDM value for the scale radius
and cNFW of dwarfs, and compare them to SIDM values
for their cluster. We find that σDM = 10−24 cm2GeV−1

produces NFW scale radii that are double that of CDM
(cf. Figure 6 and discussion); such a factor would go a long
way towards alleviating the discrepancy. Taking this into
account, we find the simulations of Yoshida et al. (2000b)
to be broadly consistent with ours.

Figure 13: Halo profile of the largest halo in our 643 simula-
tions, for a range of σDM values. Halos are progressively less
concentrated and have larger cores with increasing σDM.

In order to explore the high-σDM limit, we ran 643 sim-
ulations of SIDM with σDM = 10−25 − 10−22 cm2GeV−1.
The most illustrative result is to compare the density pro-
file of the largest halo in all our 643 simulations, as shown
in Figure 13. As seen in Figure 1, there is a smooth
trend of increasing core radius with σDM. SIDM with
σDM = 10−25 cm2GeV−1 is quite similar to CDM, though
it may also have a core below our 2h−1kpc resolution limit.
Increasing σDM to 10−22 cm2GeV−1, we continue to see no
evidence for the development of an isothermal core due to
accelerated heat transfer. The reason is because the colli-
sions are so frequent in the outer portion of the halo that
a dense core cannot develop. Instead, collisions randomize
the dark matter velocities and prevent a smooth radial in-
flow required to generate a dense core. As dynamically hot
material accretes onto the halo, heat keeps flowing inward
and a large core is maintained. Our results are in better
agreement with Bryan as opposed to Moore et al. (2000)
and Yoshida et al. (2000a). This also illustrates why sim-
ulating SIDM beginning with an isolated cuspy Hernquist
profile may not be appropriate for large σDM; one should
at least begin with a halo profile that is self-consistently
stable for a few dynamic times.

7. SUMMARY

We present a set of cosmological self-interacting dark
matter simulations having cross-sections in the range fa-
vored by Spergel & Steinhardt (2000). Our simulations
include the growth of halos from linear fluctuations in a
random volume of the universe, with sufficient volume and
resolution to obtain a statistical sample of galactic halos
resolved to 1h−1kpc. We compare the resulting halos on
a case-by-case basis to those in a collisionless CDM simu-
lation having the same initial conditions.

Overall, SIDM is remarkably successful at reproducing

observations of the inner portions of dark matter halos
where CDM appears to fail. In particular, we find:

1. The inner slopes of SIDM with σDM =
10−23 cm2GeV−1 typical halos have α ≈ −0.4 at
r ∼ 1h−1kpc, with some scatter in α. Our CDM
halos have α ≈ −1.5, in agreement with previ-
ous studies (e.g. Moore et al. 1999). SIDM with
σDM = 10−24 cm2GeV−1 is intermediate between
these cases, with median α ≈ −0.9. SIDM is in
better agreement with a preliminary analysis of Hα
rotation curves of low surface brightness galaxies
(Dalcanton & Bernstein 2000).

2. SIDM with σDM = 10−23 cm2GeV−1 produces cen-
tral densities ρc ∼ 0.01 M⊙pc−3 at 1h−1kpc, and
shows no trend with halo mass. SIDM with σDM =
10−24 cm2GeV−1 has somewhat higher ρc values,
but remains fairly independent of mass. Conversely,
ρc in CDM halos is much larger than observed, typi-
cally ∼> 0.1 M⊙pc−3 at 1h−1kpc, and shows a strong
trend with halo mass. With their steep profiles,
CDM halos are in significantly worse agreement at
smaller radii. SIDM is thus is in better agreement
with observations, as has also been argued by Fir-
mani et al. (2000a).

3. Simulations with SIDM having σDM =
10−24 cm2GeV−1 are intermediate between CDM
and SIDM with σDM = 10−23 cm2GeV−1, indi-
cating a smooth increase in the effect of SIDM
with cross section, a result that extends (using
lower-resolution simulations) from σDM = 10−25 →
10−22 cm2GeV−1. In particular, the generation
of singular isothermal halos is not seen in any
of the massive halos simulated, even for σDM =
10−22 cm2GeV−1. This suggests that the dynami-
cal process of halo growth in a cosmological setting
helps keep outer regions of halos hot and prevents
core collapse in a Hubble time.

4. We introduce a new mass concentration parameter
cM based on a more directly observable quantity,
the enclosed mass within tens of kpc. This halo con-
centration is significantly lower in SIDM models as
compared to CDM, providing an observationally ac-
cessible discriminant that is not dependent on fitting
a particular profile form. A rough estimate of cM for
the Milky Way, with large corrections for baryonic
effects, favors SIDM over CDM.

5. The central phase space density is lower in SIDM vs.
CDM mostly due to the reduction in ρc. The veloc-
ity dispersions in the inner regions are quite similar.
Both SIDM and CDM are consistent with observa-
tions shown in Dalcanton & Hogan (2000), though
SIDM is mildly favored.

6. SIDM produces halos that are more spherical, espe-
cially in their inner regions, as compared to CDM.
In principle, this is one of the strongest tests of the
SIDM paradigm, as near the center any value of σDM

that has a non-negligible effect on the dark matter
distribution will increase the core sphericity, while
CDM cores are almost always significantly triaxial.

Dave, Spergel, Steinhardt, Wandelt
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Implies Dark Forces!

Very big scattering cross-sections

Fits well with new models of DM!

Range of dynamics much bigger than 
previously thought

Particle imprints on DM halos

(�weak ⇠ 10�39 cm2)�/mX ⇠ 0.1 cm2/g ' 0.2⇥ 10�24 cm2/ GeV

�T ⇡ 5⇥ 10�23 cm2
⇣ ↵X

0.01

⌘2 ⇣ mX

10 GeV

⌘2
✓
10 MeV

m�

◆4
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Bound State Scattering 2

ment for annihilation. We compute �T numerically in this
regime, for both attractive and repulsive potentials.

In the remainder of this Letter, we first present analytic
results on elastic scattering, and we discuss the integral part
played by the dark force to relic density considerations. Next
we present our results, showing the importance of the resonant
self-scattering regime for DM self-scattering phenomenology.
Lastly, we give our conclusions. Further details regarding res-
onant dark forces will be presented in a forthcoming publica-
tion [30].

II. DM Annihilation and Elastic Scattering: We consider a
Dirac fermion DM particle X , coupled to a dark force vector
boson � with mass m� via

L
int

= gX ¯X�µX�µ , (2)

where gX is the coupling constant. We assume that X is
weakly coupled to the SM (e.g., through kinetic mixing of �
with U(1)Y hypercharge so that X thermalizes with the visi-
ble sector in the early Universe. (It is also possible that X is
hidden from the visible sector and experiences its own thermal
history [26].)

DM freeze out is governed by the velocity-weighted anni-
hilation cross section for X ¯X ! ��, given by h�vi

an

⇡
⇡↵2

X/m2

X where ↵X ⌘ g2X/(4⇡). For symmetric DM,
where DM consists of equal densities of X and ¯X , we re-
quire h�vi

an

⇡ 6⇥ 10

�26

cm

3/s to obtain the observed relic
density. For asymmetric DM, the present DM density is deter-
mined by a primordial asymmetry between X and ¯X , in anal-
ogy to the baryon asymmetry [27]. In this case, we require
larger h�vi

an

to deplete the symmetric X, ¯X density, leav-
ing behind only the residual asymmetric X density as DM.
Thus, we have ↵X & 4 ⇥ 10

�5

(mX/GeV) with the lower
bound saturated for symmetric DM. Asymmetric DM allows
for a broader region of parameter space, since annihilation
X ¯X ! �� sufficient to set the relic density only places a
lower bound on ↵X , rather than fixing it to a particular value
as a function of mX .

In our model, the same dark force carrier � also mediates
DM self-interactions. Here, the relevant quantity is the scat-
tering cross section weighted by the momentum transfer, i.e.,

�T =

Z
d⌦ (1� cos ✓)

d�

d⌦
, (3)

where d�/d⌦ is the usual differential cross section. The non-
relativistic interaction between two DM particles mediated by
� is described a Yukawa potential

V (r) = ±↵X

r
e�m�r . (4)

Since � is a vector, XX ! XX scattering is repulsive (+),
while X ¯X ! X ¯X is attractive (�). For symmetric DM, both

attractive (X- ¯X) and repulsive (X-X or ¯X- ¯X) interactions
are present; for asymmetric DM, where DM consists of only
X after the freeze-out, self-interactions are only repulsive.

Since both scattering and annihilation occur through a
common interaction, the cross sections are related. In the

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
¯¯
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FIG. 1: Velocity-dependence of �T for sample parameters within
different regimes. Blue line shows Born formula (6), in agreement
with numerical results (blue dots), for mX = 4 GeV, m� = 7.2
MeV, ↵X = 1.8⇥ 10�4. Green line shows classical formula (7), in
agreement with numerical results (stars), for mX = 2 TeV, m� = 1
MeV, ↵X = 0.05. Red lines show �T in the resonant regime for
mX = 100 GeV, ↵X = 3.4 ⇥ 10�3, illustrating s-wave resonance
(solid, m� = 205 MeV), p-wave resonance (dot-dashed, m� = 20
MeV), and s-wave antiresonance (dashed, m� = 77 MeV).

case where � is massless, the scattering cross section scales
roughly as �T ⇠ h�vi

an

/v4. If this relation holds to dwarf
scales (v ⇠ 10 km/s), the transfer cross section is �T /mX ⇠
10

3

cm

2/g (TeV/mX), which is too large compared to that
preferred by the simulation results [14, 24] unless the DM
mass is much larger than ⇠ 100 TeV. Therefore, a nonzero
m� is essential, softening the velocity-dependence of �T at
small v due to the finite range of the dark force.

The calculation of �T for a Yukawa potential with m� 6= 0

is non-trivial. We collect analytical results, where applicable,
in the appendix. Within the Born approximation (valid for
↵XmX/m� ⌧ 1), �T can be computed perturbatively. Out-
side the Born regime, multiple � scatterings lead to a nonper-
turbative modification of the DM two-body wavefunction, and
an analytical approximation has been obtained only within the
classical limit (mXv/m� � 1). However, outside the Born
and classical regimes, no analytic description is possible, and
one must compute �T by solving the the Schrödinger equa-
tion numerically using a partial wave analysis [25, 30]. Within
this “resonant” regime, �T exhibits a rich structure of quan-
tum mechanical resonances (for the attractive potential case).
Computing �T within this regime is crucial for understanding
for what parameters a dark force can explain simultaneously
small scale structure problems and the DM relic density.

To illustrate the different regimes and behaviors of DM self-
scattering, Fig. 1 shows �T /mX as a function of v for an
attractive potential, for several parameter choices. The blue
(green) line shows the analytic result for �T for a parame-
ter point within the Born (classical) regime; these formulae,
given in the Appendix, are in excellent agreement with our

FIG. 1: Colored regions show parameter points (a, b) within our numerical scan, with the corresponding
values of �

T

k2/(4⇡) (left) and `max (right) at each point. The classical, Born, and resonant regimes are
delineated by solid lines.

2. We solve Eq. (13) numerically within the domain x

i

 x  x

m

. The matching point x
m

is
determined by the condition a

2 � exp(�x

m

/b)/x

m

, where the potential term is suppressed
compared to the kinetic term.

3. At x = x

m

, we match �

`

(and its first derivative) onto the asymptotic solution, given by

�

`

(x) / x e

i�`
�
cos �

`

j

`

(ax)� sin �

`

n

`

(ax)

�
. (14)

Inverting Eq. (14), the phase shift is given by

tan �

`

=

ax

m

j

0
`

(ax

m

)� �

`

j

`

(ax

m

)

ax

m

n

0
`

(ax

m

)� �

`

n

`

(ax

m

)

, �

`

=

x

m

�

0
`

(x

m

)

�

`

(x

m

)

� 1 (15)

in terms of our numerical solution for �
`

at x
m

. Our numerical method makes an initial
guess for (x

i

, x

m

) and computes �

`

, and then successively decreases (increases) x

i

(x
m

)
until �

`

converges at 1%.

4. The last step is computing �

T

by summing Eq. (9) over `, truncating at `max. We iterate `max

until �
T

converges to 1% and �

`

max

< 0.01 through ten successive iterations. This condition
is quite conservative, typically summing many more `-modes than required.

For a given (a, b), we can then express �

T

in terms of the physical parameters (m

X

,m

�

,↵

X

, v).
Our numerical code for this solution was written using Mathematica.

With our numerical method in hand, we performed a fine-grained scan over 2⇥ 10

5 parameter
points (a, b). Fig. 1 gives a birds-eye view of our full numerical dataset, with the colored points
showing the parameters (a, b) in our scan. In the left panel, the different colors correspond to the
computed value of �

T

k

2
/(4⇡) obtained from Eq. (9), with the corresponding value of `max shown

in the right panel. The white region (upper right) was omitted from our scan. The solid lines at
b = 1 and ab = 1 delineate the Born regime (b ⌧ 1), the classical regime (ab � 1), and the
resonant regime (b & 1 and ab . 1). The latter exhibits a pattern of resonances in �

T

. [need to
update these plots]

There is an importance difference between our method and that of Ref. [10], which performed
a similar calculation of �

T

within the resonant regime, albeit for a limited choice of parameters.

8

Quantum Resonances 
and Strongly Coupled 
Dynamics in DM Halos

Tulin, Yu, KZ, 1302.3898

Tulin, Yu, KZ, 1210.0900
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Terra Incognita
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10-210-3

Yes, it is possible to go as low as ~1 MeV!

Direct Detection below 1 GeV?

10-1

??
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FIG. 2: Magnetic dipolar DM �
1

annihilates to ��, �Z,ZZ (Left), while ff̄ occurs by coannihilation only with �
2

(Right).

• In the early Universe, the thermally-averaged coannihilation cross section is suppressed by a Boltzmann factor
exp(��m/T ). For �m ⇠ T

f

, the coannihilation rate becomes moderately suppressed, requiring larger couplings to
reproduce the correct thermal relic density.

• In the present Universe, �2 is not populated, and therefore �1�2 ! f ¯f does not contribute to any indirect detection
signals. However, direct annihilation �1�1 ! �� can occur, and the rate can be enhanced due to the large couplings
required for thermal freeze-out.

Ultimately, within a given model, there will exist a preferred parameter region for �m and couplings that can simultaneously
explain the relic DM density and the observed � signal. In this section, we first discuss some preliminaries for computing the
DM relic density, closely following Ref. [53], and then we consider specific models in parts A and B.

Similar to single species freeze-out, the relic DM abundance for a general coannihilation scenario is computed by solving a
Boltzmann equation

ṅ
�

+ 3Hn
�

= �h�e↵vi
�
n2
�

� (neq
�

)

2
�

(2)

where n
�

⌘ P
i

n
�i is the total �

i

density. In writing Eq. (2) in terms of only n
�

, we assume the individual densities n
�i are in

chemical equilibrium due to rapid �
i

f $ �
j

f and �
i

$ �
j

f ¯f processes, such that

n
�i

n
�

⇡ neq
�i

neq
�

=

g
i

(1 +�

i

)

3/2
exp(�x�

i

)

ge↵
⌘ r

i

. (3)

We have defined x ⌘ m1/T , �
i

⌘ (m
i

�m1)/m1, and ge↵ ⌘ P
i

g
i

(1 +�

i

)

3/2
exp(�x�

i

), with g
i

degrees of freedom for
�
i

. The thermally-averaged effective cross section is h�e↵vi ⌘ P
i,j

r
i

r
j

h�
ij

vi, where �
ij

is �
i

�
j

annihilation cross section
and its thermal average is

h�
ij

vi = x3/2

2

p
⇡

Z 1

0
dv v2 (�

ij

v) e�v

2
x/4 . (4)

The DM relic density today is given by

⌦dmh
2
=

1.07⇥ 10

9
GeV

�1

g1/2⇤ mPl

hR1
xf

x�2 h�e↵vi dx
i , (5)

where mPl ⇡ 1.22 ⇥ 10

19
GeV is the Planck mass and g⇤ is the number of degrees of freedom in the thermal bath during

freeze-out. The freeze-out temperature T
f

= m1/xf

is obtained by solving x
f

= ln

�
0.038 ge↵m1mPl h�e↵vi /pg⇤xf

�
, which

can be done iteratively. Alternately, one can directly solve Eq. (2) numerically; for the cases we consider below, we find that the
agreement with Eq. (5) is better than ⇠ 1� 3% depending on the mass splitting.

Now, we discuss two models which give rise to the Fermi line signal and a correct relic density with the coannihilation effect
in the early Universe.2

2 To be clear, our models rely on the mass splitting �m to suppress h�
e↵

vi, which is dominated by large �
1

�
2

and �
2

�
2

annihilation cross sections. This is
distinct from models where �

1

�
1

annihilation is itself too large, and h�
e↵

vi can be suppressed by 1/g
e↵

by having a “parasitic” species �
2

that does not
annihilate strongly (see, e.g., [54, 55]).

�

�

A’

e, n
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Tuesday, February 16, 16



New Phases of Matter

• Nuclear Recoils are fundamentally 
kinematically limited

• 30 MeV DM corresponds to 1 eV of 
energy deposit on nucleons

• Electron targets extract more energy

ED ' q2/(2me,N ) q ⇠ mXv

Tuesday, February 16, 16



Material Gap
But target electrons have a gap

Semi-conductors -- silicon, germanium [CDMS] -- 1 
eV gap; Nuclei -- at least 10’s of eV

Does not allow to detect DM lighter than 1 MeV
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Need new kinematics...

.... Dark matter has much more kinetic 
energy than is extracted in nuclear recoils

How do we extract all the kinetic energy?

ED ' q2/(2me,N ) q ⇠ mXv

vs

E =
1

2
mXv2
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Superconductors have 
the needed features
Need a nearly gapless material

Metals are gapless (conduction electrons)

But also very susceptible to thermal 
vibrations 

Superconductors are perfect: meV gap 
decouples phonon vibrations from electrons

Y. Hochberg, Y. Zhao, KZ, 1504.07237
Y. Hochberg, M. Pyle, Y. Zhao, KZ

1512.07630
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Target Fermi Velocity

Allows to extract entire 
DM kinetic energy

Non-rel (nuclear or 
electron) target: deposited 
energy reduced by target 
mass

In metal: 

of the momentum transfer as

ED ' 1

2

✓
q2

mT

+ 2~q · ~vi,T
◆

, (2)

where vi,T is the initial velocity of the target. The velocity of the target is usually due to

the property of ground state of the target system, for example the electrons in Fermi sea in

metal. DM scatters the system into its excited states, and then the system will later decay

back to its ground state. The measurement in the experiment is the energy released during

this decay, which is precisely the energy deposition from the DM-target scattering. [YZ: The

wording might be improved by Matt.] When this initial target velocity is substantial,

a larger amount of energy can be deposited on the target, though both the magnitude of the

momentum transfer and the angle of scattering di↵er in the two relevant limits, when the DM

is heavier or lighter than the electron. When DM is very heavy compared to the electron, the

collision between the DM and the electron barely changes the velocity of the DM, and the initial

and final states of electron have the same magnitude in velocity but opposite direction. In the

lab frame, the electron velocity changes at most from vi,T to (vi,T+2vX), with opposite direction.

Thus the maximum energy deposition can be written as ED,max = 1
2
mT [(vi,T +2vX)2�v2i,T ], and

the momentum transfer is 2mTvX . When vi,T � vX , this reduces to Emax
D ' 2mTvi,TvX . On

the other hand, in the limit that the DM is much lighter than the target, the maximum energy

deposition happens when the DM is fully stopped by the target. For example, an electron with

velocity (0,
q
v2i,T � v2X/4, vX/2) can fully stop a DM particle with velocity (0, 0, vX), and the

momentum transfer in this case is simply the DM initial momentum, i.e. mXvX . Since the

deposited energy is approximately 1
2
mXv

2
X , the experiment must have meV energy resolution

to be sensitive to keV mass DM.

Now, in traditional direct detection via nuclear scattering, the target has negligible initial

velocity. Depending on the target, this need not be the case, however; Fermi-degenerate ma-

terials (liquid or metal) are such that the electrons (in a metal like aluminum) or nucleons (in

a liquid like Helium-3) have substantial non-zero velocity – the Pauli blocking even at T = 0

implies that electrons (or nucleons) in the sea pick up a momentum ranging from zero to the

Fermi momentum pF . The size of the Fermi momentum depends on the material. A metal

like aluminum has valence electrons with pF = 50 keV, giving rise to a Fermi velocity for the

electrons of vF ' 10�2. Superfluids like Helium-3, where the nucleus has half-integer spin, also

display Fermi degeneracy. In the case of Helium-3, the Fermi energy is EF = 4.2 ⇥ 10�4 eV,

7
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Superconductors and 
Dark Matter

Ordinary metal undergoes phase transition 
as temp is cooled

Energetically favorable for electrons in pair 
up; gap appears
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Figure 3:The density of electronic states in the close vicinity of the Fermi energy !!. (a) For a normal metal, the density of states is basically
constant.The dark colored area indicates the occupied states according to the Fermi-Dirac statistic at finite temperature. (b) In the case of a
superconductor, an energy gap opens around !!; it grows continuously as the temperature is reduced below "". The dotted arrow indicates
possible excitations of the occupied states above the gap [first term in (1)], leading to a quasiparticle peak at# = 0. For the electronic excitations
shown by the solid arrow, a minimum energy of 2Δ is required; their contribution is captured by the second term in (1).The dark shaded area
up to |Δ(") + ℏ#| indicates states that can contribute to the conductivity by absorption of photons of arbitrary energy ℏ#. (c)The full size of
the superconducting energy gap is given by 2Δ 0 for " = 0. No quasiparticle peak is present, leading to absorption only above ## = 2Δ/ℏ.The
states removed from the gap area are pilled up below and above the gap, leading to a !/√!2 − Δ20 divergency.
factor relevant for these excitations.The so-called coherence
factor ((Ek,Ek!) describes the scattering of a quasiparticle
from a state k with energyEk to a state k$ = k+qwith energy
Ek! = Ek + ℏ# upon absorption of a photon with energy ℏ#
and momentum q. If summed over all k values, it reads [41–
43, 46] ( (Δ,E,E$) = 12 (1 + Δ2EE$) . (5)

Only for energies below the gap 2Δ, this factor is appreciable:( ≈ 1 for ℏ# ≪ 2Δ. For ℏ# ≥ 2Δ, the coherence
factors are reversed, and ( vanishes in the present case. For
large energies, the coherence effects become negligible since
E,E$ ≫ 2Δ and ( ≈ 1/2. Hence the coherence peak is
seen as a maximum in 11(") in the low-frequency limit;

it becomes smaller with increasing frequency and shifts to
higher temperatures.The height of the peak has the following
frequency dependence:

(111%)max
∼ log {2Δ (0)ℏ# } . (6)

The peak disappears completely for ℏ# ≥ Δ/2 (well below2Δ). At " = 0 and # < 2Δ/ℏ the complex part of the
conductivity12/1% describes the response of the Cooper pairs
and is related to the gap parameter through the expression12 (")1% ≈ 7Δ (")ℏ# tanh{Δ (")29&"} ≈ lim'→ 07Δ (0)ℏ# . (7)
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The Idea

DM scatters with electrons in Cooper pair.  
If energy deposited is greater than meV, 
break Cooper pair and create quasi-particles.  
Detect quasi-particle.

Cooper Pair Quasiparticles
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Down to the Warm Dark 
Matter Limit?

Energy in resulting 
quasiparticles must be 
collected

Concentrate 
quasiparticles onto heat 
sensor

Heat sensor = TES

Superconducting Substrate (Al)

Insulating layer

TES (W) 

SuperConducting Bias Rails (Al)

QuasiParticle Collection Pads (Au) 

Matt Pyle

Tuesday, February 16, 16



Transition Edge Sensor
Superconducting heat sensor 
doped at superconducting 
transition

Already in use in microwave, x-
ray and DM applications (SPT, 
ACT, SuperCDMS)

Need energy resolution sufficient 
to detect meV deposits -- not 
there yet

TABLE I. Three existing devices and their energy resolution scalings to our device, having Tc = 9 mK

and volume 25µm ⇥ 6µm ⇥ 35nm. The energy resolutions are obtained by taking the demonstrated

energy resolution, �E,Ref , and scaling by T 1.5
c and

p
V , where V is the total volume of the TES.

TES Tc [mK] Volume [µm⇥ µm⇥ nm] Power Noise [W/
p
Hz] �now

E [meV] �scale

E [meV]

W [18] 125 25⇥ 25⇥ 35 2.72⇥ 10�18 120 1.1

Ti [19] 50 6⇥ 0.4⇥ 56 2.97⇥ 10�20 47 22

MoCu [20] 110.6 100⇥ 100⇥ 200 4.2⇥ 10�19 295.4 0.3

The energy resolution of the existing devices described in Table I is not at the level needed

in order to observe energy deposits as low as meV. The energy resolution can be improved,

however, by the combination of lowering the temperature of the device and reducing its size.

Assuming the thermal noise is the dominant limitation of the energy resolution, the energy

resolution can be written in terms of the heat capacity of the TES C, as well as the operating

temperature T (see e.g. Ref. [21]):

�E = 
p
4kBT 2C , (4)

where  is a device dependent O(1) constant and kB is the Boltzmann constant. The heat

capacity scales as C = �V T , where V is the TES volume and � is a constant specific to the

device. The energy resolution thus scales linearly with the volume, and with the temperature

as T 1.5.

In our design concept, a pair of collection fins is attached to each TES, such that each

absorber has multiple TESs. The noise, however, scales with the total volume of the TESs.

In the right column of Table I, we show the energy resolution of our proposed detector, where

the total volume of the TESs is 25µm⇥ 6µm⇥ 35nm, operating at a temperature T = 9 mK.

(This is actually imagined to be 6 TESss each of size 25µm⇥ 1µm⇥ 35nm connected to the 12

collection fins discussed previously.)

The reason why we choose our absorber as a superconductor rather than a normal metal is

to control the noise in the TES. As has been alluded to earlier, the absorber itself can be split

into two systems: the phonon degrees of freedom and the charge degrees of freedom, namely

the quasiparticles. The coupling between the electron system of the TES and the phonon

13
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Astrophysically Feasible?

Y. Hochberg, Y. Zhao, KZ, 
1504.07237

Y. Hochberg, M. Pyle, Y. Zhao, KZ
1512.07630
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FIG. 4. Left: Direct detection cross section for light DM scattering o↵ electrons via a scalar or

vector mediator, for several benchmarks. These are I: ↵X = 10�15,↵e = 10�12; II: ↵X = ↵e = 10�15;

and III: ↵X = 10�15,↵e = 10�18. These depicted parameters obey bounds from self-interactions and

decoupling at recombination for m� ⇠< eV, though stellar emission may place strong constraints; see

text for details. Right: Direct detection cross section between light DM and electrons, for several

benchmarks of heavy mediators. These are A: m� = 1 MeV, ge = 10�5e, ↵X = 0.1; B: m� = 10 MeV,

ge = 10�5e, ↵X = 0.1; and C: m� = 100 MeV, ge = 10�4e, ↵X = 0.1. These depicted parameters

obey all terrestrial and astrophysical constraints, though sub-MeV DM interacting with SM through

a massive mediator may be strongly constrained by BBN; see text for details. The Xenon10 electron-

ionization data bounds [43] are plotted in thin dashed gray. In both panels, the black solid (dashed)

curve depicts the sensitivity reach of the proposed superconducting detectors, for a detector sensitivity

to recoil energies between 1 meV�1 eV (10 meV�10 eV), with a kg·year of exposure. For comparison,

the gray dot-dashed curve depicts the expected sensitivity utilizing electron ionization in a germanium

target as obtained in Ref. [7].

benchmark points, dark mater and/or the mediator can be brought into thermal equilibrium

with the SM plasma. BBN and Planck limits on Ne↵ thus place constraints on, at least, the

simplest of such models. These bounds can potentially be evaded in a variety of ways; they

can be lifted if, for instance, the couplings and/or the masses of the particles involved evolve

during the thermal history of the universe. (This is much in the spirit of Ref. [41], and bares

relation to the ideas of Ref. [42] as well.) Model building e↵orts along these lines, both for

27
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Summary

We have some good ideas about the DM 
sector.  A couple of directions have become 
very well developed: SUSY and axions

New ideas and corresponding search 
strategies are developing.  

Important to keep searches and ideas as 
broad and inclusive as possible
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Summary

Dark Matter has not shown itself yet, but we 
continue to probe from all sides!

Astro 
Objects
AMS
CDMS
COUPP
CoGeNT
Cresst
DM ICE
Fermi

Icecube
KIMS
LHC
LUX

PAMELA
Panda-X
XENON

....

SUSY light
Hidden 
Valley 

Secluded 
WIMPless 

ADM
freeze-in 
freeze-out 
and decay 

non-
thermal 
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