LUX

Christina Ignarra LLWI February 10, 2016

The LUX Collaboration

Brown

Source .	
Richard Gaitskell	PI, Professor
Simon Fiorucci	Research Associate
Samuel Chung Chan	Graduate Student
Dongqing Huang	Graduate Student
Casey Rhyne	Graduate Student
Will Taylor	Graduate Student
ames Verbus	Graduate Student
mperial College .ondon	Imperial College Londor
lenrique Araujo	PI, Reader
im Sumner	Professor
lastair Currie	Postdoc
dam Bailey	Graduate Student

Khadeeja Yazdani Graduate Student

reee e Lawrence Berkeley + UC Berkeley

Bob Jacobsen	PI, Professor
Murdock Gilchriese	Senior Scientist
Kevin Lesko	Senior Scientist
Peter Sorensen	Scientist
Victor Gehman	Scientist
Attila Dobi	Postdoc
Daniel Hogan	Graduate Student
Mia Ihm	Graduate Student
Kate Kamdin	Graduate Student
Kelsey Oliver-Mallory	Graduate Student

Lawrence Livermore

Grp.

Staff Physicist

PI, Professor

Graduate Student

PI, Leader of Adv. Detectors

Adam Bernstein Kareem Kazkaz LIP Coimbra

Isabel Lopes
Jose Pinto da Cunha
Vladimir Solovov
Francisco Neves
Alexander Lindote

-	
Jose Pinto da Cunha	Assistant Professor
Vladimir Solovov	Senior Researcher
Francisco Neves	Auxiliary Researcher
Alexander Lindote	Postdoc
Claudio Silva	Postdoc

SLAC Nation Accelerator Laboratory

Dan Akerib	PI, Professor
Thomas Shutt	PI, Professor
Kim Palladino	Project Scientist
Tomasz Biesiadzinski	Research Associate
Christina Ignarra	Research Associate
Wing To	Research Associate
Rosie Bramante	Graduate Student
Wei Ji	Graduate Student
T.J. Whitis	Graduate Student

SD School of Mines

PI, Professor Graduate Student

Xinhua Bai Doug Tiedt

David Taylor

Mark Hanhardt

Project Engineer Support Scientist

lames White [†]	PI, Professor
Robert Webb	PI, Professor
Rachel Mannino	Graduate Student
Paul Terman	Graduate Student

PI, Professor

Graduate Student

Graduate Student

Postdoc

University at Albany, SUNY

Matthew Szydagis Jeremy Mock Sean Fallon Steven Young

> Mani Tripathi Britt Hollbroo

John Thmpso Dave Herner

Ray Gerhard

Aaron Manala

Scott Stephen

James Morad

Sergey Uvarov

Harry Nelson

Mike Wither

Susanne Kyre

Dean White

Carmen Carn

Scott Haselso

Curt Nehrkor

Melih Solma

ŝ

Sally Shaw

Chamkaur Ghag

Jacob Cutter

	PI, Professor
k	Senior Engineer
1 IIII	Development Enginee
	Senior Machinist
	Electronics Engineer
ysay	Postdoc
son	Postdoc
	Graduate Student
	Graduate Student
,	Graduate Student

JC Santa Barbara

1	PI, Professor
ell	Professor
e	Engineer
	Engineer
nona	Postdoc
hwardt	Graduate Student
m	Graduate Student
z	Graduate Student

PI, Lecturer Graduate Student

University of Edinburgh

Alex Murphy Paolo Beltrame James Dobson Tom Davison Maria Francesca Marzioni

University of Maryland

Carter Hall Jon Balajthy **Richard Knoche**

Frank Wolfs	PI, Pr
Wojtek Skutski	Senio
Eryk Druszkiewicz	Gradu
Dev Ashish Khaitan	Gradu
Mongkol Moongweluwan	Gradu

U.	University of South Dakota
the University of South Scicula	

Dongming Mei
Chao Zhang
Angela Chiller

PI, Professor Postdoc Graduate Student Graduate Student

Graduate Student

Graduate Student

Brian Tennyson

Lucie Tvrznikova

-
- 1

PI, Reader **Research Fellow** Postdoc

Graduate Student Graduate Student

PI. Professor

Graduate Student Graduate Student

University of Rochester

V	
ank Wolfs	PI, Professor
ojtek Skutski	Senior Scientist
yk Druszkiewicz	Graduate Student
ev Ashish Khaitan	Graduate Student
ongkol Moongweluwan	Graduate Student

Motivation

- Much evidence for the gravitational effects of dark matter
 - We believe it may consist of Weakly Interacting Massive Particles (WIMPs)
 - To confirm, we would like to see
 WIMPS via direct detection

The LUX Detector

- Dual-phase Xe Time Projection Chamber
- Located at Sanford Underground Research Facility (SURF), 4850 ft below the surface (muon shielding)
- 370 kg LXe (250 kg active)
- Outer water tank for gamma&neutron shielding
- 122 PMTs split between top and bottom arrays
- Dimensions:
 - Height: 48 cm
 - Diameter: 47cm
 - Water tank diameter: 7.6m

Events in LUX

- Two scintillation signals for each event.
 - S1: de-excitation of shortlived xenon dimers
 - S2: electrons liberated at the event site extracted into the gas phase and electroluminesce.
- Time difference between
 S1 and S2 gives depth
- S2 hit pattern gives lateral position information

Event Discrimination

- We plan to detect WIMPs via Nuclear Recoils (NR)
- Most of our background events are Electron Recoils (ER)
- These two types of events produce different amounts of light and charge in the detector
 - Need to study this so we can tell them apart!
 - Characterize charge-to-light ratios (S2 vs S1) and amounts as a function of energy

Signal Production – Signal Events

- Nuclear Recoils
- Lower charge-to-light ratio

Signal Production – Background Events

- Electron Recoils
- Higher charge-to-light ratio

ER energy Calibration

Measurement of light and Run03 WS Doke Plot charge collection efficiencies 6.5 Kr83 42keV 640 Light and charge are antiq1=0.1167 +/- 0.003 correlated (follows from 560 g2=12.05 +/- 0.83 branching on previous 6.0 slides) 480 Consistent over a wide range S1/E [phd/keV] 5.5 400 of energies 163keV Energy 207keV Fundamental input to the 410keV 237ke\ analysis 5.0 5keV 240 160 4.5 80 609keV 4.0 662ke\ 250 300 350 400 450 S2/E [phd/keV]

Light And Charge From Radioactive Sources

Background and Signal Calibrations

Background Events

- Electron Recoil (ER)
- Higher charge-to-light ratio

Signal Events (WIMP-like)

- Nuclear Recoils (NR)
- Lower charge-to-light ratio

ER background Calibration

Background Events

- Electron Recoil (ER)
- Higher charge-to-light ratio
- Calibrate using high-statistics tritium dataset (165,863 events)
 - Tritium injected into detector at the end of run3
 - Recent paper on tritium calibration, arxiv: 1512.03133

NR Signal Calibration

Signal Events (WIMP-like)

- Nuclear Recoils (NR)
- Lower charge-to-light ratio
- Calibrate using D-D neutrons
 - In-situ nuclear recoil (NR) calibration
 - Sensitive to 1.1 keV (Previously 3 keV)
 - New for run3 reanalysis (arxiv:1512.03506v2)
 - Significant improvement for low mass WIMP search

More Updates to analysis

- Background model
 - Enables substantial increase in analysis volume
- Improvements to XY position reconstruction
 - Allows us to make better use of background model

- Further improvements
 - Calibration of PMT waveforms using detected photons (rather than photoelectrons)
 - Fine tuned pulse-finding algorithms
 - Removed systematic biases and noise in pulse area measurements
 - S2 based on both PMT arrays

Profile Likelihood Ratio (PLR)

- Compares data to background distribution and signal distributions for different mass models
- Function of S1, S2, radius, and depth
- Fit for systematic parameters (derived from DD data)
- More powerful after calibrations, increased understanding of detector

(new for run3 reanalysis arxiv:1512.03506v2)

Limits

- 23% reduction in high-WIMP-mass cross-section limit
- Significant improvement in low-mass reach due to lowering of kinematic thresholds

Green and yellow bands represent 1 and 2 sigma ranges (background only)

Conclusion

- Improvements to run 3 analysis (95 live days) across many aspects of the analysis
 - Allows reach to lower masses
 - Will benefit run 4 analysis as well as LZ
- More to come! Currently in Run 4 (300 live days)
 - Will run for a few more months at which point LUX will be removed and replaced by LZ
 - Much more data in run 4 so stay tuned!

Backup

D-D neutron calibration

D-D neutron calibration Nuclear recoils measured *in situ* Stat errors

red: detection of an S2 with more than one emitted electron Green: detection of an S1 with more than one PMT detecting photons Blue: detection of both an S1 and S2 Black: detection of both an S1 and S2 passing threshold

(arxiv:1512.03506v2)

D-D Signal Calibration

- In-situ nuclear recoil (NR) calibration
- Yields:
 - Double scatters → electrons/keV
 - + Single Scatters → photons/keV
- Sensitive to 1.1 keV
 - Previously 3 keV
- Significant improvement for low mass WIMP search

Nuisance parameters

Parameter	$\operatorname{Constraint}$	Fit value
Lindhard k	0.174 ± 0.006	_
${ m S2}~{ m gain}~{ m ratio:}~g_{2,{ m DD}}/g_{2,{ m WS}}$	0.94 ± 0.04	-
Low-z-origin γ counts: $\mu_{\gamma,\text{bottom}}$	172 ± 74	165 ± 16
Other γ counts: $\mu_{\gamma, rest}$	247 ± 106	228 ± 19
β counts: μ_{β}	55 ± 22	84 ± 15
¹²⁷ Xe counts: μ_{Xe-127}	91 ± 27	78 ± 12
³⁷ Ar counts: $\mu_{\text{Ar-37}}$	-	12 ± 8
Wall counts: μ_{wall}	24 ± 7	22 ± 4

Background Model

- Internal background
 - Uniform throughout detector volume: Kr-85, Ar-37, Xe-137
- Wall background:
 - Rn222-PB206
 - Including wall model increases analysis radius from 18cm to 20cm

All limits – snowmass (out of date)

ER leakage into NR

Waveform Example

More updates to analysis: VUV Photons

- Calibration of PMT waveforms using detected photons (rather than photoelectrons)
 - Get 2 photoelectrons ~20% of the time
 - Now use 175nm Xe single photons (rather than 470 nm calibration LEDs)
 - Accounts for doublephotoelectron emission at the photocathode

