

DM-Ice: Results and Prospects

Antonia Hubbard Northwestern University

Has DAMA found dark matter?

- Bigger and more advanced experiments continue to produce increasingly sensitive limits
- We still have positive signals to explain away
 - CoGeNT, CRESST, CDMS-Si may be the results of backgrounds
- DAMA modulation (9σ+) remains unexplained
 - Is it dark matter?
 - No compatible background hypothesis
 - More exclusion limits will not answer this question

DAMA 1412.6524

DM-Ice

- Phased program designed to maintain DAMA's sensitivity to dark matter signal
 - Nal(TI) of similar size, threshold as DAMA
- Run in both hemispheres to decouple WIMP modulation from seasonal backgrounds

Lake Louise Winter Institute 2016

Hubbard

DM-Ice250: Set limits [Southern Hemisphere]

Global Nal(TI) Collaborative Effort

ANAIS Boulby University of Zaragoza Canfranc Laboratory Canfranc University of Washington

DM-Ice

& 3

Yale University University of Wisconsin Sheffield University University of Illinois University of Alberta Fermilab NAL **Boulby Laboratory**

å **KIMS**

Seoul National University Sejong University Kyungpook National University Yonsei University Yang **Ewha Womans University** Seoul City University Korea Res. Inst. of Standard Sci. **Tsinghua University**

Global Nal(TI) Collaborative Effort

DM-Ice

&

55 kg in Yangyang array Crystal R&D at Boulby 52 kg in Yangyang array Liquid Scintillator veto

KIMS

Combined NaI(TI) analysis effort

- 220 kg total mass across experiments
 - Y2L: 100 kg initial mass will upgrade to 150 kg

&

- June 2016 run start
- 2 years to probe DAMA result

10/30/15

DM-lce17

Hubbard

- Deployed December 2010
 - >99% uptime after June 2011
- 2 detectors located 2457 m deep
 - Optically isolated from the ice
- 14 cm dia. x 16 cm NaI(TI) crystals

DM-Ice17 Background Model

Low Energy Background Model

Remote Calibration

- Cosmogenic activation provides a calibration source for the remotely deployed detectors
 - Short-lived isotopes are identified by their energy and decay time

DM-Ice17 Muon Events

Muon Flux

 Flux of 2.93 ± 0.04 muons/ crystal/day with a 12.3 ± 1.7% modulation amplitude

PRD 93, 042001 (2016)

Lake Louise Winter Institute 2016

IceCube Coincidence

- 93% of DM-Ice Det-1 muons are coincident with IceCube events
- DM-Ice location information lowers misreconstruction rates and improves location reconstruction through IceCube
 - Little impact on astrophysical parameters

Muon-Induced Phosphorescece

- Large energy depositions in NaI(TI) induce long-lived phosphorescent decay
- Sharp increase in photon rate, correlated with muon energy deposition, that produces low energy pulses and slowly decays
 - Pulses are tagged by noise cuts

Rate [counts / keV / μ]

Modulation Analysis

- Modulation amplitude is consistent at all energies with both no modulation and the DAMA/LIBRA signal
 - Fit forces a June 2nd phase; 1 year period
- DM-Ice17 environment is stable
 - Temperature is stable to <0.3°C
 - Calibration stable to <0.2% after accounting for light yield changes
 - No time dependence observed in energy resolution, detector deadtime, cut efficiency, or muon-induced event rate

DM-Ice Exclusion Curves

Strongest exclusion limit from a Southern Hemisphere experiment.

Lake Louise Winter Institute 2016

Hubbard

Gains from DM-Ice37

- 2-18.3 kg crystals tested at Boulby Underground Lab
- Nal(TI) improvements
 - 3 dru above noise energies
 - Goal from DAMA: 1 dru
- Significant PMT improvements
- Improved threshold, resolution

Crystals	⁴⁰ K [mBq/kg]	²¹⁰ Pb [µBq/kg]	²²⁸ Ra- ²⁰⁸ TI
DM-Ice17	17	1500	160
DAMA	0.6	24.2	8.5
In progress	1.5	188	2

Conclusions

- DM-Ice17 has performed better than expected
 - Established South Pole as a good environment for NaI(TI) detectors
 - Longest direction detection exposure behind DAMA
 - Measured muon modulation and phosphorescence, cosmogenic activation, and performed modulation analysis
- DM-Ice37 achieved backgrounds to levels able to probe DAMA
- DM-Ice55/KIMS/ANAIS will come online June 2016
 - 2 years to probe DAMA result

Backup Slides

Lake Louise Winter Institute 2016

Hubbard

Scintillation Mechanism

Muon Identification

- Muons are identified through pulse shape discrimination and energy deposition
 - Alphas decay faster than gammas and muons
 - Muons exhibit a MIP energy deposition

Coincident Events

Detector Stability

Event Rates in the Region of Interest

days since Jan 1, 2011

Annual Modulation Allowed Regions

DM-Ice37 Background Reduction

