Bernard Sadoulet

Dept. of Physics /LBNL UC Berkeley UC Institute for Nuclear and Particle Astrophysics and Cosmology (INPAC) UC Dark Matter Initiative

Direct Detection of Dark Matter: Where Are We Going?

Three broad classes of models

but no convincing hint so far

The immediate program

US G2 + equivalent world wide
The challenge of getting unambiguous results

Further in the future

Reaching the neutrino floor Other creative ideas

Three Classes of Particle Dark Matter

Particles in thermal equilibrium + decoupling when non-relativistic

Freeze out when annihilation rate \approx expansion rate

$$\Rightarrow \Omega_{DM} h^2 = \frac{3 \cdot 10^{-27} \, cm^3 \, / \, s}{\left\langle \sigma_A v \right\rangle} \qquad \Omega_{DM} \approx 25\% \Rightarrow \sigma_A \approx \frac{\alpha^2}{M_{EW}^2}$$

Cosmology points to W&Z scale Inversely standard particle model requires new physics at this scale => significant amount of dark matter

Weakly Interacting Massive Particles

Dark Matter could be due to TeV scale physics

A dark sector may be with dark matter—anti dark matter asymmetry

If similar to baryon anti-baryon asymmetry

$$\rho_{DM} \approx 5 \times \rho_{baryon} \Rightarrow M_{DM} \approx 5 \text{ GeV/c}^2$$

 $\rho_{\rm DM} \approx 5 \times \rho_{\rm baryon} \Rightarrow M_{\rm DM} \approx 5~{\rm GeV/c^2}$ Physics could be as complex as our ordinary matter sector: if light mediator could be at small masses

Athermal production: Result of spontaneous symmetry breaking

Main example Peccei Quinn axions to dynamically restore CP in QCD

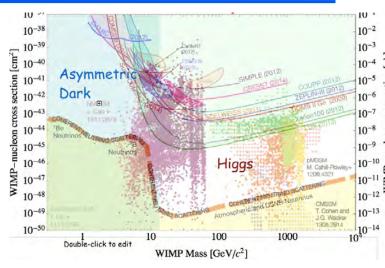
Recent Input from Particle Physics

Higgs at 126 GeV/c

No sign for supersymmetry

CMSSM too simple ->pMSSM,NSSM Crisis of naturalness?

No evidence from monojets, mono- γ 's


Note: Limits assumes high mass mediator Dark Sector models have typically low mass mediators

Complementarity with "Dark Photon" searches

750 GeV/c2 di-gamma

If true, may have nothing to do with dark matter.

At the minimum, would indicate that with MSSM, we have been barking at the wrong tree!

Basic complementarity

LHC probes well:

- monojets if high mass mediated
- ·masses below m_H/2
- intermediate mass in decay of gluinos (≈6x LSP), but needs to produce it!

Direct Detection:

- ·light mediators are OK
- ·loses only linearly at high mass

4 Complementary Approaches

Cosmological Observations

Planck

Keck telescopes

Dark Matter
Galactic Halo (simulation)

LHC MontBlanc

EHC!
ALUEE

WIMP production on Earth

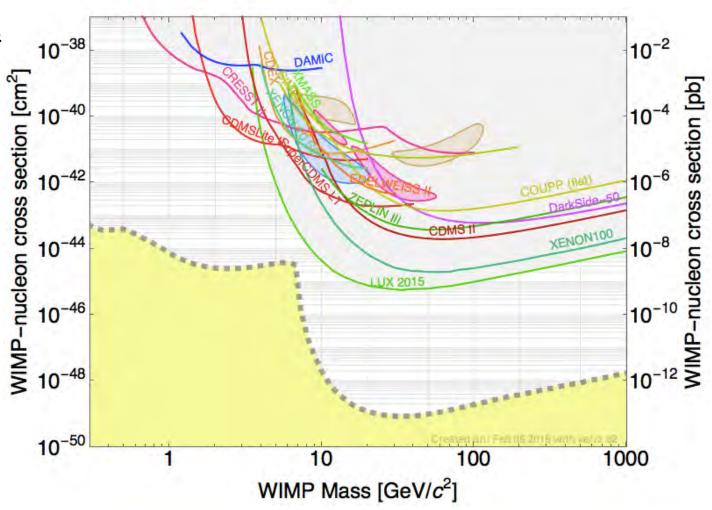
VERITAS, also HESS, Magic + IceCube (v)

WIMP annihilation in the cosmos

Fermi/GLAST

WIMP scattering on Earth:e.g. Super CDMS,LUX etc.

Situation in February 2016


At High Mass

Nothing so far
Broadly consistent with the absence of SS observation at LHC

Focus point solution in CMSSM $\approx 10^{-45}$ is mostly excluded

Low Mass

A number of closed contours, and strong limits
What is going on?

Low Mass ???

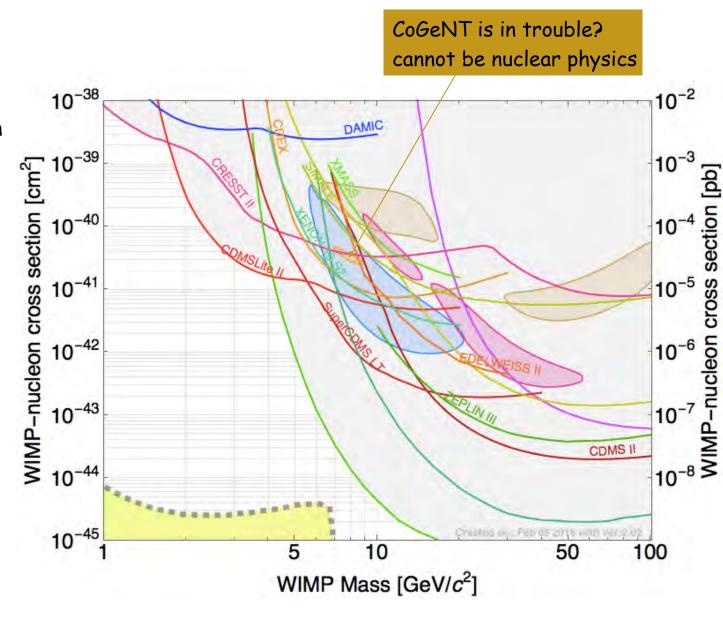
Optimistic

Accumulation of claims in that region

The exclusion by some experiments is based on unreliable calibration

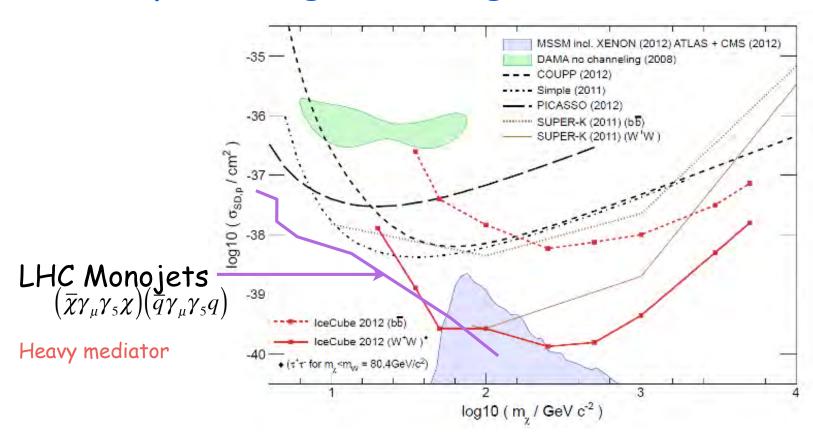
(but DD LUX calibration appears solid)

Just the region expected for asymmetric dark matter

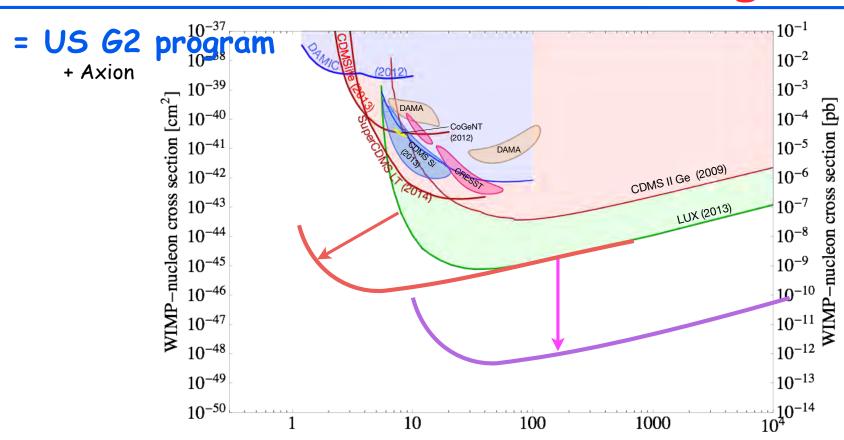

Pessimistic

Not compelling evidence

Close to threshold: Outliers?


Excluded by
XENON100
LUX
SuperCDMS Soudan
CDEX
CDMS does not see any

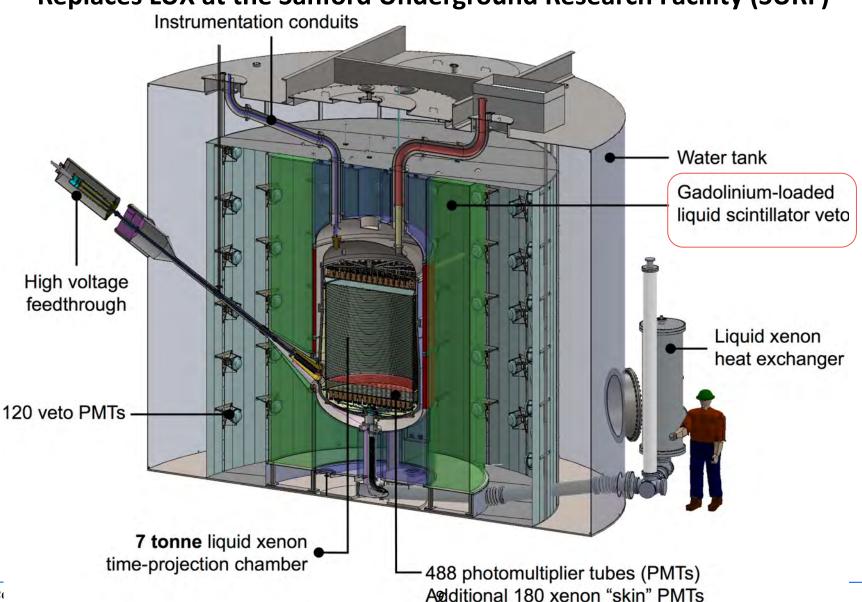
significant modulation


Spin dependent limits (e.g. p)

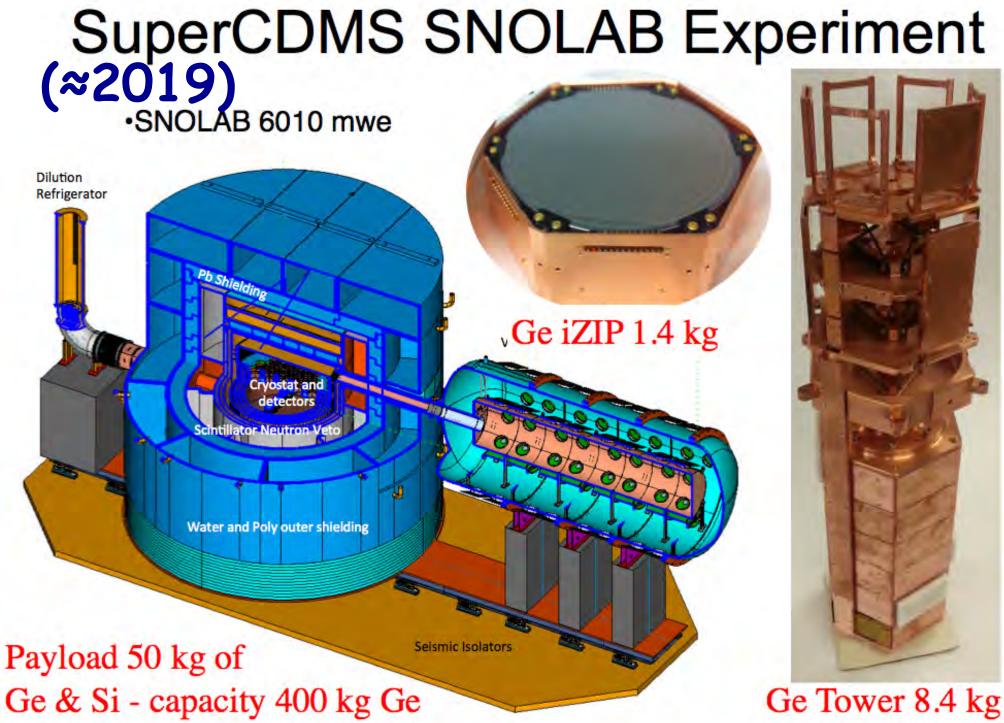
Finally entering SUSY region

B.Sadoulet

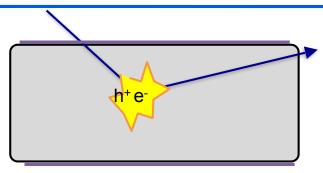
Where Do We Want To go?



2 directions WIMP Mass [GeV/c²]


- 1. Improve sensitivity at large mass
- 2. Improve sensitivity at small mass

US G2: LZ (≈2018)


Replaces LUX at the Sanford Underground Research Facility (SURF)

Lake Louise

CDMS: Use of Phonons and Cooper Pairs

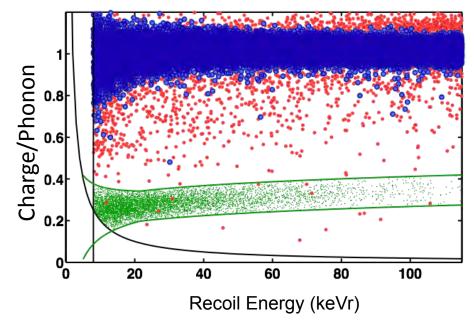
<1meV quanta

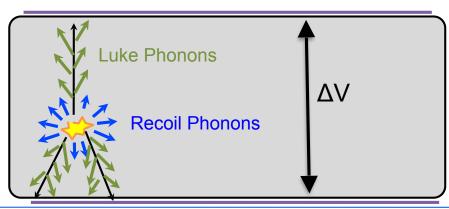
=> sensitivity but requires ≈30mK detailed information about the event

Recognition of nuclear recoils

Nuclear Recoils

- 8% e⁻/h⁺
- 92% phonons


Electron Recoils


- 25% e⁻/h⁺
- 75% phonons

Fiducialization ionization or phonons We can efficiently get rid of surfaces

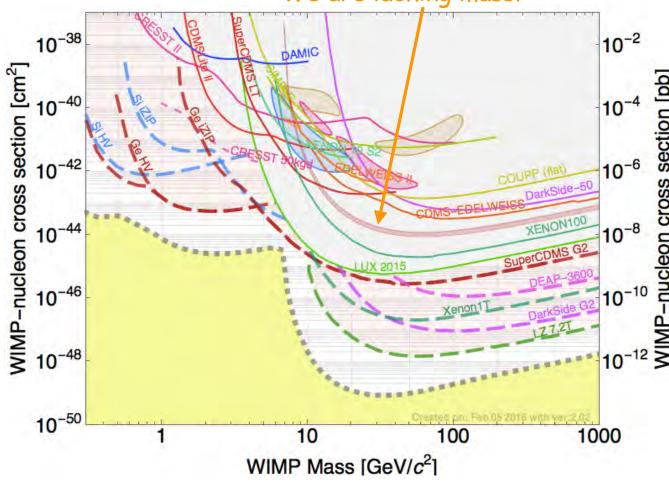
Amplification of ionization CDMS-HV: give up nuclear recoil ID

$$E_{\text{total}} = E_{\text{initial phonons}} + Nq\Delta V$$

The "Immediate" Future

US G2 + Equivalent

Xenon 1T + 7T XMASS 1.5T 2017, 7T 2019 Not all same statistical assumptions!

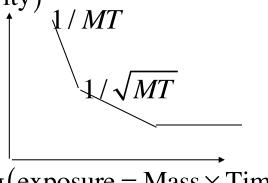

SuperCDMS+Eureca

Serious discussion of merging at SNOLAB.
The cryostat is designed to allow such upgrades

Neutrino floor

None of these experiments reach the "neutrino floor" which assumes subtraction by a factor ≈20

⁸B coherent neutrino scattering would be interesting: Proof of sensitivity + observation of Coherent Neutrino Scattering What we can do with 9 kg SuperCDMS at Soudan We are lacking mass!


How to Get Unambiguous Results?

Lessons learned in the last few years

Need for good calibration (yields)

Need for good understanding of backgrounds log(sensitivity)

Difficulty from outliers (need redundant information)

$log(exposure = Mass \times Time)$

Unambiguous results

The goal should be negligible background!

We should not abandon blind analyses:

only unbiased way

Use likelihood methods to get confirmation of a signal
But extremely sensitive to background model. What about the unknown unknowns?

Use knowledge acquired about leaking backgrounds to design better

Complementarity of experiments

Real proof requires 2 experiments, which are as different as possible

We should pursue both the low and high mass regions (different paradigms)

We need a variety of targets to elucidate couplings and protect against cancellation. Xe, Ge, Ar, missing F, or Na

Further Out Ideas: Reaching Neutrino Floor

At high WIMP mass

greater target mass with appropriate reduction of the background (radon emanation, 39 Ar)

20T-50T of Argon

Darwin: Xe+ Ar

PICO (cheap)

H₂O₂ detectors (Druikier) for neutrino geology: extremely cheap?

At low mass

plenty of mass,

plenty of signal with Luke-Neganov amplification in SuperCDMS HV approach

but need to

reduce background

³²Si,³ H, ²¹⁰Pb on surfaces

restore background rejection

Matt Pyle: increase phonon resolution down to 10eV rms

(should go as T_c^3 but needs careful control of parasitic power, but demonstrated by space experiments, such as Sapphire)

=> restoration of nuclear recoils discrimination for HV mode of operation:

e.g., 1 e-h pair for electron recoil =3 eV, total phonon energy at 100V= 3+100 eV for nuclear recoil= 30 eV, total phonon energy at 100V= 30+100 eV

=> ionization+ phonon with phonon measurement only by using the locality of Luke Phonon emission.

Simpler low mass ideas?e.g. large gas spheres (Gerbier, Giomataris arXiv:1512.04346)

Even Further Out Ideas

Directionality for conventional WIMPs

If WIMP is at high mass: 10 tons of low pressure gas (100 torr)=10,000m³ with cubic mm pixels. Clever schemes based e.g., on CCDs

Even, DNA (Druikier) which through sequencing tricks could provide nm resolution

Go drastically lower in mass ≈ keV (warm dark matter)

Kathryn Zurek/Matt Pyle: breaking Cooper Pair in superconductors difficulty of dealing with single quanta (cf. QBits)

Axion-like particles

Peter Graham and Surjeet Rajendran

time varying nuclear electric dipoles which would precess in an electric field (cf NMR)

+ Dima Budker et al.: Phys. Rev. X 4, 021030 (2014) arXiv:1306.6089 CASPEr =>very low mass axions 10^{-9} to 10^{-6} eV

Dark Photons as Dark Matter

Peter Graham and Surjeet Rajendran: Hidden Electric Field Radio in a Faraday cage

+ Kent Irwin Phys. Rev. D 92, 075012 (2015) arXiv:1411.7382v2

Where Are We Going?

Importance of the 13 TeV LHC run

- Discovery of supersymmetry

Why so high scale?

Is this responsible for Dark Mattter: detect in Cosmos

- No supersymmetry (750 GeV di-gamma?)

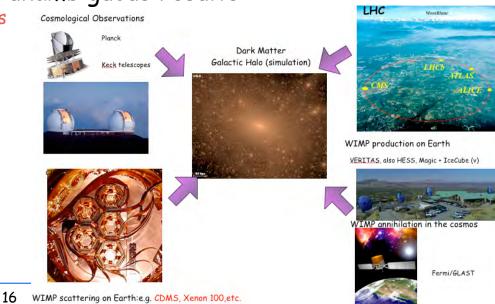
End of the naturalness concept?

Even larger importance of direct detection -> Dark Sector (low mass) + High Mass

Importance of G2 + equivalent program

- Pushing both down and left

Do not be afraid to be creative


- Search broadly, not only under the theoretical lamp post

- However, try to reach critical mass: unambiguous results

CDMS could use a few more collaborators Fascinating time

4 prong approach=>

complementary coverage constrain theory speculations

