CRESST-II results on lowmass dark matter particles Lake Louise Winter Institute February 10, 2016 Florian Reindl Max-Planck-Institute for Physics Munich for the CRESST Collaboration ## The CRESST Collaboration Laboratori Nazionali del Gran Sasso ## Laboratori Nazionali del Gran Sasso 3600 m.w.e. # The Cryogenic Rare Event Search with Superconducting Thermometers aims to detect elastic dark matter particlenucleus scattering uses scintillating CaWO₄ crystals as target #### **Detector Module** Particle interaction in the crystal Phonon signal deposited energy Scintillation light particle discrimination #### **Detector Module** Particle interaction in the crystal Phonon signal deposited energy Scintillation light particle discrimination ## Transition Edge Sensor ## **Event Discrimination** $light yield = \frac{light signal}{phonon signal}$ #### **Event Discrimination** ROI: Region of interest for dark matter search #### CRESST-II: Current Phase 2 - Data taking from July 2013 to August 2015 - Result discussed today - Single module Lise - 52 kg days of exposure - Blind analysis Eur. Phys. J. C 76 (2016) ## Low Threshold Analysis - Motivation ## Lise – Trigger and Cut Acceptance #### Trigger Precisely measured with pulses injected to the heater Nuclear recoil threshold: 307eV #### Signal Survival Probability Acceptance down to threshold energy 12% @ 0.3keV 70% @2keV 12 ## Overall Background External 55 Fe source Flat background down to threshold! Linear decrease Data-driven background model ~8.5 counts per (kg keV day) ## Overall Background External 55 Fe source Flat background down to threshold! Linear decrease Data-driven background model ~8.5 counts per (kg keV day) ## Data ## Acceptance Region 50% of oxygen recoils below 99.5% of tungsten recoils above ## Acceptance Region 50% of oxygen recoils below 99.5% of tungsten recoils above Result #### Conclusions - Blind analysis of detector with lowest threshold (307eV) operated in phase 2 - World-leading below 1.7GeV/c² - Exploring new parameter space down to 0.5GeV/c² Hunting light dark matter requires a low threshold! #### New Modules for CRESST-III Design goal: Threshold of 100eV How? smaller crystals of available quality 250g → 24g ## Prototype Measurement Signal/Noise improved by a factor of ~6 → Threshold of ~50eV Design goal (100eV) exceeded #### On the Road to CRESST-III - Prototype(s) successfully tested - First four modules mounted in cryostat last week (Feb. 02-04) Cool-down: March 2016 ## Projection for CRESST-III Phase 1&2 #### Phase 1 50kg days: 10 modules, 1 year ## Projection for CRESST-III Phase 1&2 #### Phase 2 - 1 tonne days: 100 modules, 2 years - background improved by ~100 #### Final Statement ## BACKUP ## Overall Background – Zoom Out ## Detector: Long-term Stability Detector operating stably throughout entire data taking ## Multi-Element Target # Signal Survival Probability Determination -50 50 100 32 250 Time [ms] ## TES-Carrier (Composite Design) - Discrimination of events in carrier via pulse shape - Challenging when approaching low energies → CRESST-III: directly evaporate TES onto absorber ## Presence of Recoil Backgrounds 34 5σ #### CRESST-II: Current Phase 2 - Result published in 2014: - Single module TUM40 - 29 kg days of exposure - Nonblinded 2013 dataset - Result discussed today - Single module Lise - 52 kg days of exposure - Blind analysis ## **Detector Designs** - Veto for recoil backgrounds - Background level: - ~8.5 counts / (keV kg day) - 307eV threshold - 62eV resolution - Veto for recoil backgrounds - Background level: - ~3.5 counts / (keV kg day) - 603eV threshold - 100eV resolution ### Choice of Acceptance Region #### Differential Interaction Rate counts per kg, day and keV recoil energy $\frac{dR}{dE_R} = \frac{\rho_\chi}{m_N m_\chi} \cdot \int_{v_{\rm min}}^{v_{\rm esc}} d^3 \nu \left(f(\vec{\nu}) \nu\right) \frac{d\sigma(\vec{v}, E_R)}{dE_r}$ minimal velocity to produce a recoil of energy E_R $$v_{\min} = \sqrt{m_N E_{\rm R}/2\mu_N^2}$$ ## TUM 40 - Energy Spectrum gamma lines caused by cosmogenic activation energy resolution: σ<100eV all lines within 5eV to tabulated values 1. decay inside clamp material # $^{210}\text{Po} \rightarrow ^{206}\text{Pb}(103 \text{ keV}) + \alpha(5.3 \text{ MeV})$ - 1. decay inside clamp material - 2. decay on or slightly below surface of the clamp a) α hitting clamp \rightarrow no scintillation light - 1. decay inside clamp material - 2. decay on or slightly below surface of the clamp - a) α hitting clamp \rightarrow no scintillation light - b) α hitting foil \rightarrow additional scintillation light (with different pulse shape) - 1. decay inside clamp material - 2. decay on or slightly below surface of the clamp - a) α hitting clamp \rightarrow no scintillation light - b) α hitting foil \rightarrow additional scintillation light (with different pulse shape) How to get rid of above background? passive Radon prevention even cleaner clamp material active only active surfaces facing the crystal #### CRESST-II Phase 1 - extensive physics run from 2009 to 2011 - 8 CaWO₄ modules used for DM analysis - 67 events in WIMP search regions # Phase 1 - Maximum Likelihood Analysis | | M1 | M2 | |-----------------------------|-------|-------| | e ⁻ /γ-events | 8.00 | 8.00 | | α-events | 11.5 | 11.2 | | neutrons | 7.5 | 9.7 | | Pb recoils | 15.0 | 18.7 | | signal events | 29.4 | 24.2 | | m _{wimp} (GeV) | 25.3 | 11.6 | | statistical
significance | 4.7 σ | 4.2 σ | excess above known background WIMPs would fit lower background level mandatory for clarification # TUM40 - Veto of Surface Backgrounds # TUM40 - Veto of Surface Backgrounds ## TUM40 - Radiopurity #### Direct Detection ↔ LHC LHC limits from; EPJ. C (2015) 75:299 CMS-PAS-EXO-12-05 (and references therei #### Direct Detection ↔ LHC ### Yellin Maximum Gap - Maximum Gap: Search for gap without event (N_{events} = 0) - Optimum Interval: Search for largest interval with $N_{events} = 1,2,3...$ #### TUM40 - Acceptance Region middle of oxygen band and below: leakage of gamma band ↔ including all nuclear recoil bands #### **CRESST-II Detector Designs** #### Conventional Design #### Stick/Raimund-Design #### K14 Design #### Beaker/Gode-Design #### Event-type Independent Total Energy - Energy is shared between phonon and light channel, quantified by the scintillation efficiency η - The calibration is done for 122keV gamma's (η_{TUM40}=6.6%) - for LY=1: no correction - for LY=0: 6.6% correction $$E = \eta E_l + (1 - \eta) E_p = [1 - \eta (1 - LY)] E_p$$ #### Event-type Independent Total Energy $$E = \eta E_l + (1 - \eta) E_p = [1 - \eta(1 - LY)] E_p$$ - Energy is shared between phonon and light channel, quantified by the scintillation efficiency η - The calibration is done for 122keV gamma's $(\eta_{TUM40}=6.6\%)$ - for LY=1: no correction - for LY=0: 6.6% correction - correction straightens gamma lines - corrections yield correct Qvalue for internal alpha decays ### Gaussianity of Recoil Bands - perfect Gaussian behaviour - 10⁵ events in peak only 1 outlier (probably alpha event) less than 1 leakage event expected out of 10⁵ events! #### Motivation for low-mass dark matter #### WIMP "Miracle" - Thermally produced in early Universe - Weak scale yields correct relic density - 10GeV/c² ~ 1TeV/c² #### **Asymmetric Dark Matter** - $\Omega_{DM}/\Omega_{B}\sim 5$: Why? - Link asymmetries for baryons and DM in early Universe - 0.1GeV/c² ~10GeV/c² #### **Detection Channels** #### Direct Dark Matter Detection Most common scenario: dark matter particle scatter - off nuclei - elastically - coherently: ~A² - (spin-independent) ## **Detection Techniques**