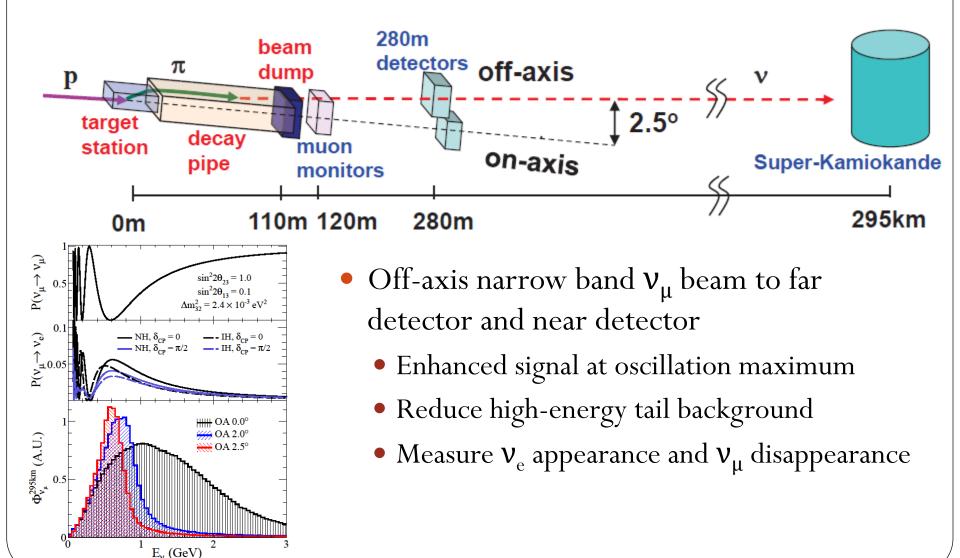
Neutrino Oscillation Results from T2K

Georgios Christodoulou For the T2K Collaboration Lake Louise Winter Institute, February 2016

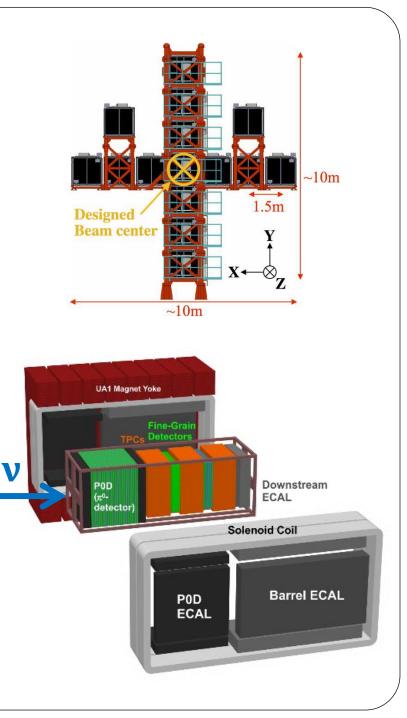


Neutrino oscillation physics

$$\begin{pmatrix} V_{e} \\ V_{\mu} \\ V_{\tau} \end{pmatrix} = \mathbf{U}_{PMNS} \begin{pmatrix} V_{1} \\ V_{2} \\ V_{3} \end{pmatrix} \qquad \mathbf{U}_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 + c_{23} + s_{23} \\ 0 - s_{23} + c_{23} \end{pmatrix} \begin{pmatrix} +c_{13} & 0 & +s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ 0 & 0 & +c_{13} \end{pmatrix} \begin{pmatrix} +c_{12} + s_{12} & 0 \\ -s_{12} + c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ (c_{ij} = \cos\theta_{ij}, s_{ij} = \sin\theta_{ij}) \\ P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \left(\cos^{4}\theta_{13} \cdot \sin^{2} 2\theta_{23} + \sin^{2} 2\theta_{13} \cdot \sin^{2}\theta_{23}\right) \cdot \sin^{2} \frac{\Delta m_{31}^{2} \cdot L}{4E_{\nu}} \\ P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}\theta_{23} \cdot \sin^{2} 2\theta_{13} \cdot \sin^{2} \left(\frac{\Delta m^{2}L}{4E_{\nu}}\right) \\ + CPV(\propto \sin\theta_{12} \sin\theta_{13} \sin\theta_{23} \sin\theta_{23} \sin\theta_{CP}) \\ + MatterTerm \end{pmatrix} \qquad \bullet \quad \text{Open questions} \\ \bullet \text{ Mass Hierarchy} \\ \bullet \text{ Open questions} \\ \bullet \text{ Mass Hierarchy} \\ \bullet \text{ Open questions} \\ \bullet \text{ Mass Hierarchy} \\ \bullet \text{ Open questions} \\ \bullet \text{ Mass Hierarchy} \\ \bullet \text{ Open questions} \\ \bullet \text{ Mass Hierarchy} \\ \bullet \text{ Open questions} \\ \bullet \text{ Mass Hierarchy} \\ \bullet \text{ Open questions} \\ \bullet \text{ Mass Hierarchy} \\ \bullet \text{ Mass Hierarchy} \\ \bullet \text{ Mass Hierarchy} \\ \bullet \text{ Mass Phase } \delta \\ \bullet \text{ Mixing Angles } \theta_{13}, \theta_{2} \\ \bullet \text{ Absolute Mass Scale} \\ \bullet \text{ Mass Phase } \\ \bullet \text{ Mass } \\ \bullet \text{ M$$

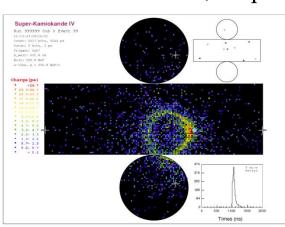
• Dirac or Majorana

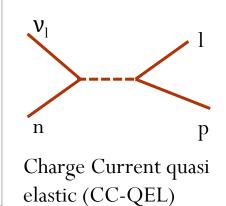
T2K long-baseline neutrino oscillation experiment in Japan

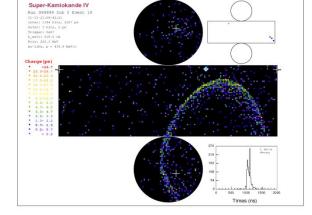

Near detectors

• INGRID

- **On-axis** to measure beam profile, position and stability
- Carbon and iron targets

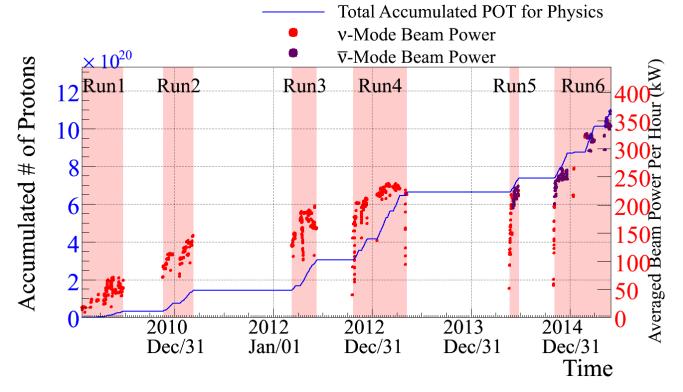

• ND280


- **2.5° Off-axis** to measure neutrino interactions and estimate the background contaminations
- Refurbished UA1 magnet 0.2T field
- Front optimized to measure π^0 interactions (P0D)
- Rear optimized to measure charged-current interactions
 - 2 Fine-Grained Detectors (FGD)
 - Carbon and Water targets
 - 3 Time Projection Chambers (TPC)
 - Tracking, dE/dx
- Surrounded by the electromagnetic calorimeter and muon detector

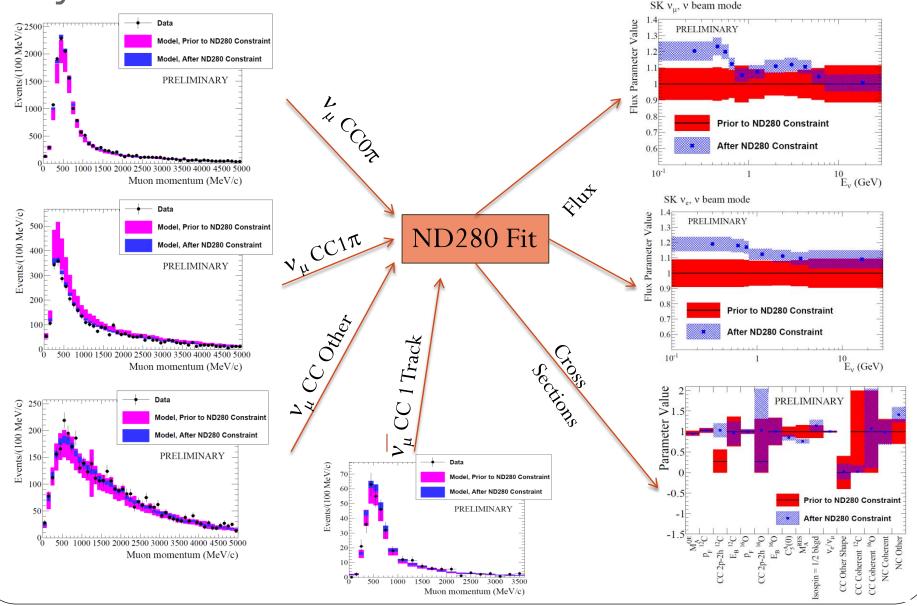


Far detector

- Super-Kamiokande
 - 295 km from beam source and 2.5° off-axis
 - 50 kton water Cherenkov detector
 - 22.5 kton fiducial mass
 - Excellent e/μ separation



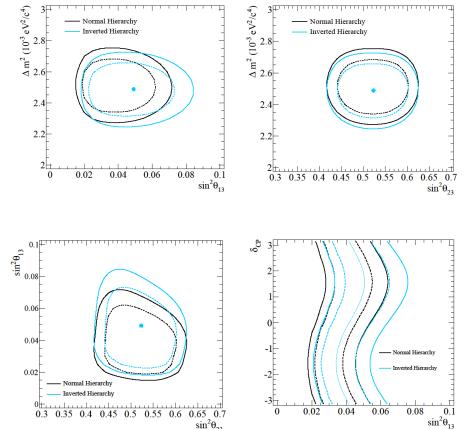
MC e-


MC μ-

Protons on target (POT) accumulated

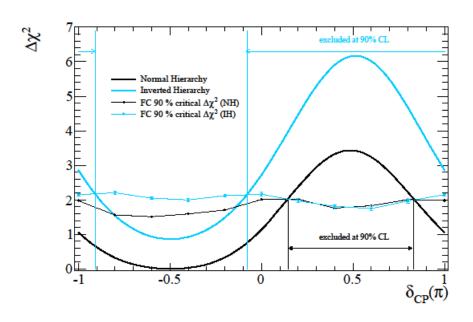
- Maximum beam power achieved is 371 kW
 - As of the end of Run6
- Accumulated 7.09×10²⁰ POT for ν -mode and 4.04×10²⁰ POT for $\bar{\nu}$ -mode

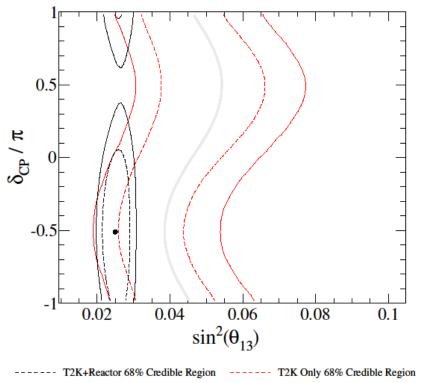
Constraining flux and cross-section systematics with ND280



T2K three flavour fit

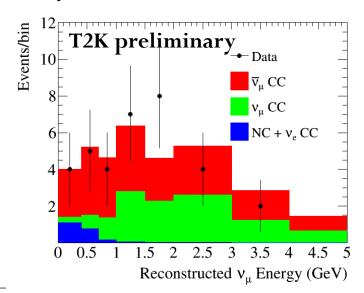
- Phys. Rev. D 91, 072010, 2015
- Joint fit to $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP}
- NH best fit results
 - $\operatorname{Sin}^2 \theta_{23} = 0.524 \substack{+0.057 \\ -0.059}$

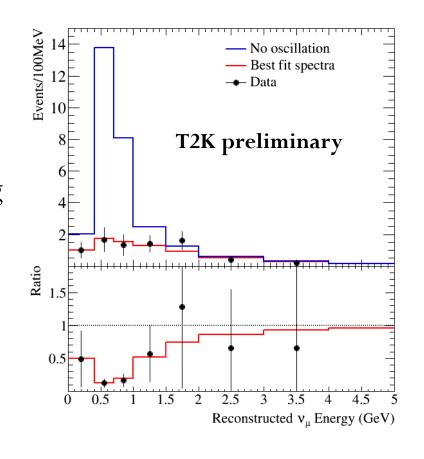

•
$$\operatorname{Sin}^2 \theta_{13} = 0.042 \substack{+0.013 \\ -0.021}$$


• $\Delta m_{32}^2 = 2.51_{-0.12}^{+0.11} \times 10^{-3} \text{ eV}^2/\text{c}^4$

T2K three flavour fit with reactor constraint

- External constraints from reactor neutrino experiments
 - $\operatorname{Sin}^2 \boldsymbol{\theta}_{13 \operatorname{reactor}} = 0.0243 \pm 0.026$
- Start constraining δ_{cp} in the lepton sector

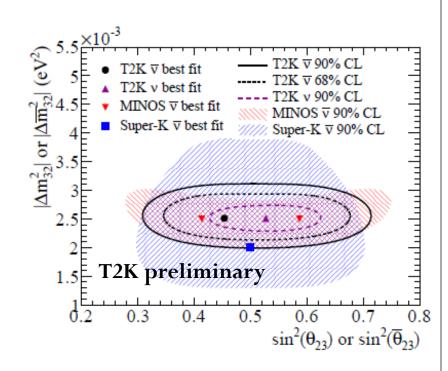

T2K+Reactor 90% Credible Region


T2K+Reactor Best Fit Point

- T2K Only 90% Credible Region
- T2K Only Best Fit Line

\bar{v}_{μ} disappearance

- 34 candidates selected
- Clear oscillation dip observed
- Use different parameters for ν and $\bar{\nu}$ for $\theta^{}_{23}$ and $\Delta m^2_{~23}$
- Maximum likelihood fit including shape, normalization and systematic effects


$\bar{\boldsymbol{v}}_{\boldsymbol{\mu}}$ disappearance results

- arXiv:1512.02495
- Best fit results
 - $\sin^2\bar{\theta}_{23} = 0.45^{+0.19}_{-0.07}$

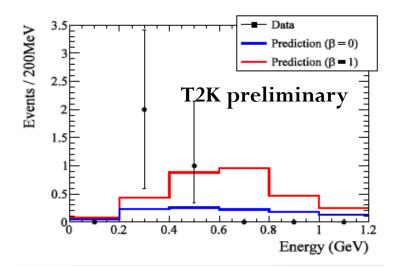
•
$$\Delta m_{32}^{2} = 2.51_{-0.25}^{+0.29} \times 10^{-3}$$

eV²/c⁴

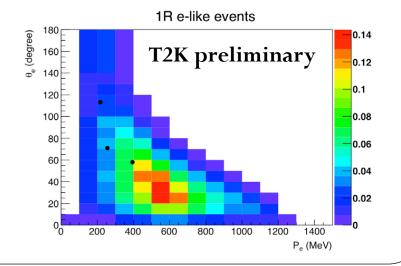
Systematic uncertainty	Error (%)
ND280 unconstrained cross section	10
Flux and ND280 constrained cross section	3.4
Super-Kamiokande detector	3.8
Pion FSI and re-interactions	2.1
Total	11.6


• T2K results compared to Super-K and MINOS results

\bar{v}_e appearance


- 3 $\bar{\nu}_e$ candidates
 - ~3.7 expected w/ oscillation
 - 1.96 signal
 - 1.77 background
 - ~1.3 expected w/o oscillation
 - Weak hint for $\bar{\nu}_e$ appearance

- Introduce discrete parameter β
- $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) = \beta \times P_{PMNS}(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$
 - β = 0 no neutrino oscillation
 - $\beta = 1$ nominal oscillation



\bar{v}_e appearance results

- Two independent methods developed to fit the data
 - Reconstructed neutrino energy (E_{rec})
 - Electron $p-\theta$
- Test statistics $-2[lnL(\beta=1) lnL(\beta=0)]$
 - p-value $(p-\theta) = 0.34$
 - P-value(E_{rec}) = 0.16
- No clear discrimination between the two β hypotheses

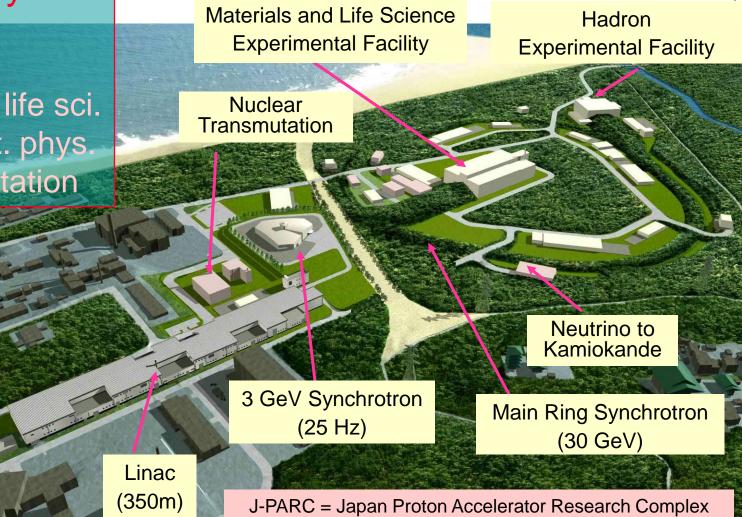
	δ _{CP} =-90°	$\delta_{\rm CP} = 0^{\circ}$	δ _{CP} =90°
NH	3.73	4.32	4.85
IH	4.18	4.85	5.45

Conclusions and future prospects

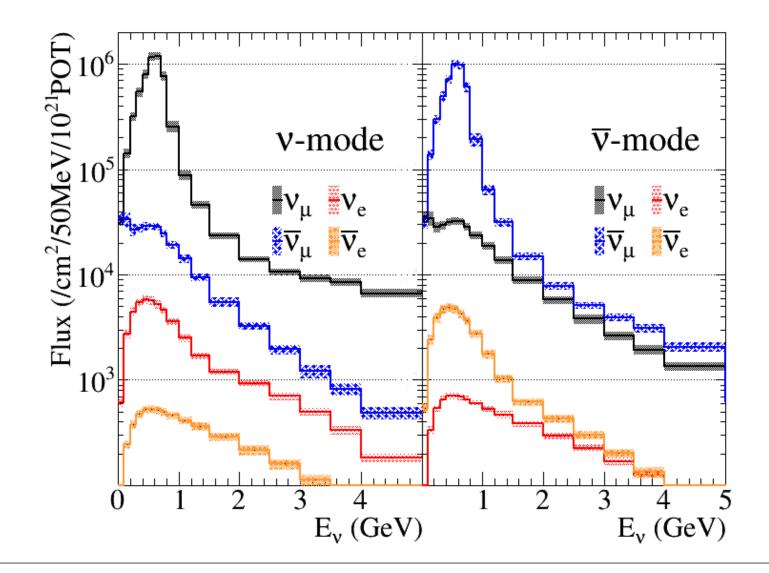
- Collect more anti-neutrino data in 2016
 - Improved measurements of the anti-neutrino oscillations
- Joint ν $\overline{\nu}$ fit
 - Better constraint on δ_{CP}
- Further constraints from ND280
 - FGD2 (contains water) measurements
 - More cross section channels
 - See talk from E. Scantamburlo for more

BACK UP

The T2K Collaboration


~500 members, 59 Institutes, 11 countries

+

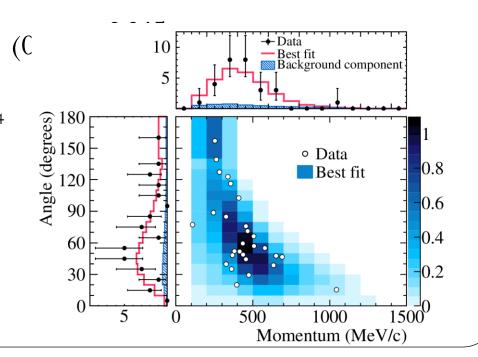

Canada	Italy	Poland	Spain	
TRIUMF	INFN, U. Bari	IFJ PAN, Cracow	IFAE, Barcelona	U. Sheffield
U. Alberta	INFN, U. Napoli	NCBJ, Warsaw	IFIC, Valencia	U. Warwick
U. B. Columbia	INFN, U. Padova	U. Silesia, Katowice		
U. Regina	INFN, U. Roma	U. Warsaw	Switzerland	USA
U. Toronto		Warsaw U. T.	ETH Zurich	Boston U.
U. Victoria	Japan	Wroklaw U.	U. Bern	Colorado S. U.
U. Winnipeg	ICRR Kamioka		U. Geneva	Duke U.
York U.	ICRR RCCN			Louisiana S. U.
	Kavli IPMU	Russia	United Kingdom	Stony Brook U.
France	KEK	INR	Imperial C. London	U. C. Irvine
CEA Saclay	Kobe U.		Lancaster U.	U. Colorado
IPN Lyon	Kyoto U.		Oxford U.	U. Pittsburgh
LLR E. Poly.	Miyagi U. Edu.		Queen Mary U. L.	U. Rochester
LPNHE Paris	Osaka City U.		STFC/Daresbury	U. Washington
	Okayama U.		STFC/RAL	
Germany	Tokyo Metropolitan	I U.	U. Liverpool	
Aachen U.	U. Tokyo			

MW Proton Facility : J-PARC

Unique facility 3GeV+30GeV Multi-purposes •Materials and life sci. •Nucl. and part. phys. •Nucl. transmutation

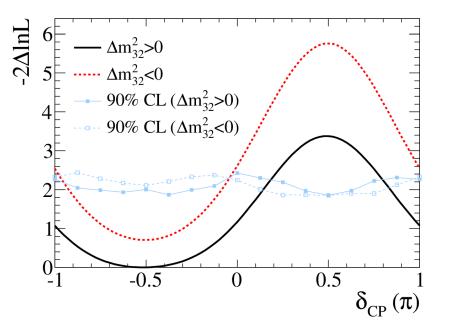
Neutrino flux

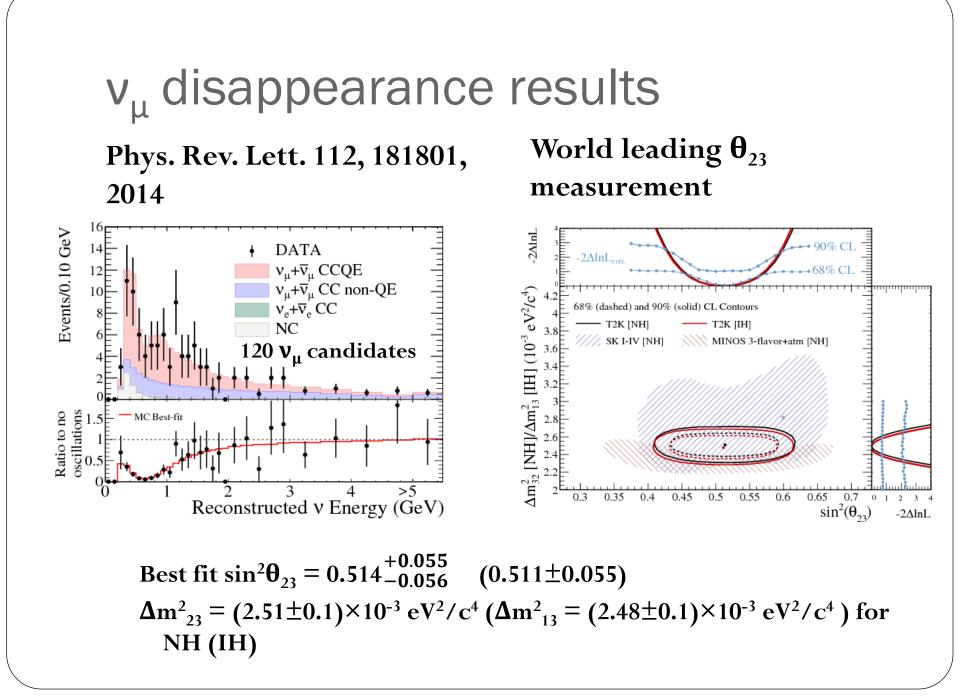
Neutrino phenomenology: from flavor eigenstates to oscillations


- Flavor eigenstates are superpositions of mass eigenstates $\left|\nu_{i}\right\rangle = \sum_{i=1}^{n} U_{ij} \left|\nu_{j}\right\rangle$
 - If the unitary mixing matrix U is non-diagonal, then get flavor eigenstates as neutrinos propagate $|v(t)\rangle = \sum_{j=1}^{n} U_{ij} e^{-iE_j t} |v_j\rangle \sim e^{im_j^2 L/2p} |v_j\rangle$
- Probability of selecting flavor b, at a distance L

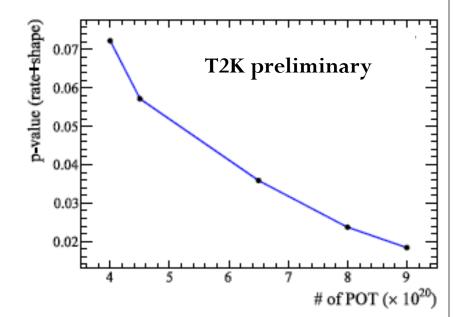
$$P(v_a \rightarrow v_b) = \delta_{ab} - 4\sum_{i>k} \operatorname{Re}\left(U_{ak}^* U_{bi} U_{ai} U_{bk}^*\right) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$
$$\pm 2\sum_{i>j} \operatorname{Im}\left(U_{ak}^* U_{bi} U_{ai} U_{bk}^*\right) \sin\left(\frac{\Delta m^2 L}{2E}\right)$$

v_e appearance results


- 28 ν_e candidates selected (Phys. Rev. Lett. 112, 061802, 2014)
 - 4.92±0.55 expected background
 - 7.3σ significance
- Best fit result
 - $\sin^2 2\theta_{13} = 0.140^{+0.038}_{-0.032}$ assuming
 - $|\Delta m_{32}^2| = 2.4 \times 10^{-3} \, eV^2/c^4$
 - $\sin^2\theta_{23} = 0.5$


•
$$\delta_{\rm CP} = 0$$

Constraints on δ_{CP}


- Combine T2K and reactor neutrino data to constrain δ_{CP}
 - Phys. Rev. Lett. 112, 061802, 2014
 - For NH (IH), excludes δ_{CP}
 [0.19,0.80]π ([-0.08,1.09]π)
 at 90% CL

Future sensitivity for \bar{v}_e appearance

- Currently T2K has selected
 3 ν_e candidates for
 4.01×10²⁰ POT
- p-value < 0.02 for 9.0×10²⁰
 POT
 - No statistical uncertainty and PMNS prediction exactly correct

