Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Neutrino Oscillation Results from the NOvA Experiment

Evan Niner for the NOvA Collaboration Lake Louise Winter Institute 2016 11 February 2016

NuMI Off-axis ve Appearance Experiment

- Two functionally identical detectors 809 km apart and 14 milli-radians off-axis from NuMI beam.
- Narrow-band off-axis muon neutrino beam centered at 2 GeV.
- Neutrino and anti-neutrino beam modes.
- Measure $\theta_{13},\,\theta_{23},\,mass$ hierarchy, and δ_{cp}
- First analysis data from February 2014 to May 2015.
- 3.45x10²⁰ protons-on-target (POT) accumulated.
 - Full-detector equivalent 2.74x10²⁰
 POT (7.6% planned exposure)

- Functionally identical detectors made of planes of extruded plastic PVC cells.
- Each cell filled with liquid scintillator, light collected in a wavelength shifting . fiber, coupled to APD.
- Low-z design enhances electron/photon separation.
- Near Detector has 10 steel planes at downstream end to range out muons.

02/11/16

🔁 Fermilab

5

Far Detector 550 µs Readout Window

Cell hits colored by charge deposition

Evan Niner I Results from NOvA

Far Detector 10 µs NuMI Beam Window

Cell hits colored by charge deposition

Far Detector Neutrino Interaction

Cell hits colored by charge deposition

Muon Neutrino Disappearance Analysis

Muon Neutrino Disappearance Analysis

10

10

Events

- Use ND selected v_μ's to extrapolate FD prediction, reduces systematics.
- Cosmic ray backgrounds rejected by factor 10⁷.
- 99% percent reduction of neutral current events.

Energy spectrum in Near Detector with 14% hadronic energy correction, equivalent to 6% neutrino energy shift.

ND. 1.66 × 10²⁰ POT

- Data

0.2

----- Simulated Background

0.4

0.6

Muon ID

0.8

Simulated Selected Events

v_{μ} Spectrum

 211.8 ± 12.5 (syst.) events predicted in the absence of oscillations.

 33 candidate events between 0 and 5 GeV observed.

Best Fit Oscillation Parameters

2.74×10²⁰ POT equiv. 3.5 Normal Hierarchy, 90% CL T2K 2014 Δm²₃₂ (10⁻³ eV²) - - MINOS 2014 2.0 0.5 07 03 0.4 0.6 $sin^2\theta_{23}$ **Normal Hierarchy Inverted Hierarchy** $\Delta m_{32}^2 = (2.52^{+0.20}_{-0.18}) \times 10^{-3} \text{eV}^2$ $\Delta m_{32}^2 = (-2.52 \pm 0.19) \times 10^{-3} \text{eV}^2$ $\sin^2\left(\theta_{23}\right) = [0.38, 0.65]$ $\sin^2(\theta_{23}) = [0.37, 0.64]$ (68% CL) (68% CL) Degenerate best fit points at 0.44 and 0.59 Degenerate best fit points at 0.43 and 0.60 🗲 Fermilab

02/11/16

arXiv:1601.05037

Electron Neutrino Appearance Analysis

v_e Identification

- Likelihood Identifier (LID)
 - Compare longitudinal and transverse dE/dx in leading shower to template histograms for e/p/n/μ/π±/π⁰/γ.
 - Build neural net from these inputs and reconstructed quantities.
- Library Event Matching (LEM)
 - Compares input event to simulated event library.
 - Properties from most similar events fed into decision tree.
- 62% event overlap between selectors.
- LID chosen before unblinding as primary selector.

ve Appearance Analysis Strategy

- FD background prediction extrapolated from ND
 - ND selects ~7% more background in data relative to simulation.
- Combination of containment, topology and event classifier achieve cosmic rejection factor >10⁸. Effective FD fidicual volume of 10 kT.
- "Cut and count" analysis between 1.5 and 2.7 GeV in FD for the primary selector.

ve Appearance Analysis Results

- LID observed 6 events on a background prediction of 0.99±0.11(syst), 3.3σ excess.
- LEM observed 11 events on a background of 1.07±0.14(syst), 5.3σ excess.
- All LID events in LEM set.
- 7.8% probability of this overlap configuration or one less likely.

Far Detector v_e CC candidate

ve Appearance Analysis Results

ve Appearance Analysis Results

20 Evan Niner I Results from NOvA

Significance with Reactor Constraint

- Apply global reactor constraint
 - $\sin^2\theta_{13}=0.086\pm0.05$
- Marginalize over θ_{23} .
- Both selectors weakly prefer normal mass hierarchy and π<δ_{cp}<2π.
- This preference is consistent with T2K (arXiv:1502.01550)

arXiv:1601.05022

Summary

- First oscillation results from NOvA program with 7.6% of planned exposure.
- v_{μ} disappearance results consistent with MINOS and T2K.
- v_e appearance results hint at normal mass hierarchy and $\pi < \delta_{cp} < 2\pi$, consistent with T2K.
- Near Detector cross section studies in progress with v_e CC and coherent π^0 results shown at NuINT, publications in progress.
- Expect to produce second analysis with double the statistics in 2016.
- Stay Tuned!

ve Appearance Oscillation Probability

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \left| \sqrt{P_{atm}} e^{-i(\Delta_{32} + \delta)} + \sqrt{P_{sol}} \right|^{2}$$
$$= P_{atm} + P_{sol} + 2\sqrt{P_{atm}} P_{sol} (\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta)$$

$$\sqrt{P_{atm}} = \sin \theta_{23} \sin 2\theta_{13} \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31} \quad \text{Depends on relative sign of "a"}$$
$$\sqrt{P_{sol}} = \cos \theta_{23} \sin 2\theta_{12} \frac{\sin(aL)}{aL} \Delta_{21}$$

aL=0.08 for L=295km T2K baseline aL=0.23 for L=810km NOvA baseline

$$a = \frac{G_F N_e}{\sqrt{2}} \approx \frac{1}{3500 km}$$

🏞 Fermilab

02/11/16

Oscillation probability is sensitive to: mass ordering, CP violating phase, and θ_{23} octant.

Relation of Oscillation Parameters in NOvA

- NOvA makes a measurement of the oscillation probabilities:
 - $P(\nu_{\mu} \rightarrow \nu_{e})$
 - $P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})$
- The measured probabilities depend on the mass hierarchy, θ₂₃ octant, and

1 and 2 σ Contours for Starred Point

- (1) Estimate the underlying true energy distribution of selected ND events
- (2) Multiply by expected **Far/Near event ratio** and $\nu_{\mu} \rightarrow \nu_{\mu}$ oscillation probability as a function of true energy
- (3) Convert FD true energy distribution into **predicted FD reco energy distribution Systematic uncertainties** assessed by **varying all MC-based steps**

- Muon variables in agreement
- Best fit to hadronic energy prefers 14% increase in data

1 radiation length = 38cm (6 cell depths, 10 cell widths)

- through-going cosmic muons (right) Set absolute energy scale using stopping
- muons in data and tuned Monte Carlo (below)

02/11/16

🛟 Fermilab

Double-click to edit

Double-click to edit

1.6

1.8

3

🛟 Fermilab

3.5

