Latest Results from MINOS and MINOS+

Will Flanagan University of Texas on behalf of the MINOS+ Collaboration

Outline

- Overview of the Main Injector Neutrino Oscillation Search Detector
- Exciting physics program:
 - $P(\nu_{\mu} \rightarrow \nu_{\mu})$ sensitive to **atmospheric parameters** (θ_{23} , Δm_{32}^2) and testing the 3 flavor paradigm
 - P(ν
 ^μ → ν
 ^μ) adds additional sensitivity to mass hierarchy, θ₂₃ octant, and matter effects.
 - $P(\nu_{\mu} \rightarrow \nu_{e})$ sensitive to θ_{13}, θ_{23} octant, mass hierarchy, δ_{CP}
 - The search for sterile oscillations $(\nu_{\mu} \rightarrow \nu_{s})$
 - Other exciting physics searches (LED, NSI, etc)

The MINOS Detector

- L_{Near} = 1 km, m_{Near} = 0.98 kton
- $L_{Far} = 735 \text{ km}, m_{Far} = 5.4 \text{ kton}$
- Two functionally similar steel-scintillator sampling calorimeters
 - 2.5cm thick steel planes, plastic scintillator with WLS fibers to M16/M64 Hamamatsu PMTs

The NuMI Beam

- Data collected from low energy beam February 2006 to April 2012
- Medium energy NOvA-era beam since September 2013
 - 500+ kW, 120 GeV beam, with 3.2×10¹³ protons per pulse
 - MINOS+ has recorded 7.6×10²⁰ PoT and counting (10×10²⁰ PoT projected).
- Beneficiaries of the Fermilab proton improvement plan (PIP)

MINOS ν_{μ} Disappearance

- Near Detector data used to predict unoscillated Far Detector spectrum.
- Low energy NuMI beam optimized for primary oscillation peak.
- PRL 110, 251801, 2013

Will Flanagan (University of Texas)

Lake Louise Winter Institute 2016

MINOS ν_e Appearance

- MC-based Library Event Matching (LEM) technique used to distinguish ν_e events from NC events.
- Non-zero value of θ₁₃
- Sensitivity to δ_{CP} when incorporating reactor limits (Dooble Chooz, Daya Bay, RENO) and $\theta_{23}/\Delta m_{32}^2$ measurements.
- PRL 110, 171801, 2013

Will Flanagan (University of Texas)

Lake Louise Winter Institute 2016

MINOS Combination: $\nu_e + \nu_\mu$ (Beam and Atmospheric)

- Neutrino physics enters a precision era!
- Normal Hierarchy:
 - $|\Delta m_{32}^2| = [2.28 2.46] \times 10^{-3} \text{ eV}^2$ (68% CL)
 - $\sin^2_{23} = [0.35 0.65] (90\% CL)$
- Inverted Hierarchy:
 - $|\Delta m_{32}^2| = [2.32 2.53] \times 10^{-3} \text{ eV}^2$ (68% CL)
 - sin²₂₃ = [0.34 0.67] (90%CL)
- PRL 112, 191801 (2014)

Comparison with T2K

- We continue to improve our sensitivity with more atmospheric neutrino data.
 - We accrue an additional 5 kt-yr each year
- Good agreement with T2K

The MINOS+ Result

- Updated spectrum for the first 3.0×10²⁰ PoT of MINOS+ running.
 - Data accrued from September 2013 to September 2014
- Statistical improvement to rising edge of primary oscillation.
- This data allows us to look for deviations from the standard 3 flavor prediction.
- MINOS+ spectrum consistent with MINOS best fit point:
 - $\Delta\chi^2$ between the 'MINOS+ only fit' and '2014 MINOS fit' is 1.3

MINOS/MINOS+ Combination

 Robust combination using both MINOS and MINOS+ disappearance samples.

But are there more than 3 flavors???

- The long baseline and broad spectrum of MINOS+ opens up swaths of unexplored parameter space.
- Both ν_{μ} CC and NC samples are used.
- Combination with the Bugey reactor experiment to set 3+1 sterile mixing limits relevant to ν_μ ↔ ν_e transitions (θ_{μe}).

• Combination with Daya Bay in progress.

We also search for steriles with ν_e appearance...

- The medium energy NOνA-era beam allows us to search for ν_e appearance from sterile neutrinos with minimal background from standard ν_μ → ν_e oscillations.
- Sensitivity is shown here for two Δm_{41}^2 values.

 Library Event Matching technique used to distinguish NC events from ν_e CC events.

LED Sterile Neutrinos

• The oscillation amplitude is given by Arkani-Hamed et al.

$$A(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i,j,k=1}^{3} \sum_{n=0}^{+\infty} U_{\alpha i} U_{\beta k}^{*} W_{ij}^{(0n)*} W_{ki}^{(0n)} e^{j \frac{(\lambda_{j}^{(n)}/a)^{2}L}{2E}}$$

where U and W are mixing matrices for active and Kaluza Klein states, $\lambda_j^{(n)}/a$ is the neutrino mass, m_0 is the smallest mass, and *a* is the extra dimension size.

LED Sterile Neutrinos

 MINOS+ will be able to achieve a limit on the extra dimension size of 0.4µm!

Paper in committee - please stay tuned!

Non-Standard Interactions

Neutrinos could interact in a non-standard way

- Friedland, Lunardini, Maltoni, PRD 70, 111301(2004)
- Coelho, Kafka, Mann, Schneps, Altinok, PRD 86, 113015 (2012)
- ν_{μ} disappearance sensitive to $\epsilon_{\mu\tau}$
- ν_e appearance sensitive to ε_{eτ}

$$H = U_{PMNS} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^2}{2E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^2}{2E} \end{bmatrix} U_{PMNS}^{\dagger} + \sqrt{2}G_F n_e \begin{bmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^{\star} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^{\star} & \epsilon_{\mu\tau}^{\star} & \epsilon_{\tau\tau} \end{bmatrix}$$

Non-Standard Interactions

- Disappearance: -0.20 < ε_{μτ} < 0.07 (90% CL) (left)
 PRD 88 072011 (2013)
- Appearance: Sets limits to $\epsilon_{e\tau}$ and δ_{CP} (right)

Conclusion

- MINOS+ is testing the 3 flavor paradigm with 7.6×10²⁰ PoT
- Our results allow valuable combinations with reactor and other long baseline searches.
- Unique sensitivity to sterile oscillations, large extra dimensions, and non-standard interactions.
- MINOS+ has a goldmine of data for new searches!

Backup

Combination with NO ν A

- No published beam oscillation result yet with MINOS+.
- MINOS+ results important for the next few years as NOνA strives to resolve mass θ₂₃ quadrant and mass hierarchy

Will Flanagan (University of Texas)

Lake Louise Winter Institute 2016

The Latest MINOS+ Atmospheric and Disappearance Result

The MINOS Detector - Aging

- Our detector has aged as expected. We've seen > 95% live time!
- We see a consistent decline in light yield which we are able to correct for.

Lake Louise Winter Institute 2016

Selection Efficiencies and Purities

- As a steel sampling calorimeter, MINOS is optimized for ν_{μ} CC selection.
- DIS, ν_e , and NC events are more difficult to disentangle.

MINOS Combination

- For sterile searches, the possibility of short baseline oscillations requires a new technique from previous long baseline searches.
 - Far over near ratio employed for both CC and NC samples.

Sterile Searches: F/N Ratio

Near detector oscillations become non-negligible for large Δm²₄₃

ve Appearance Sterile Search Parameter Space

