Recent Results from Daya Bay

Marco Grassi (IHEP - Chinese Academy of Sciences)

on behalf of the Daya Bay Collaboration

DYB Aims at Detecting Reactor Antineutrino to...

Determine θ₁₃ & mass splitting by measuring disappearance of antineutrinos at ~2km Measure reactor antineutrino flux and spectrum Search for Physics Beyond Standard Model

LLWI 2016

Eight Detectors in Three Underground Halls

M. Grassi

LLWI 2016

Eight Identical Antineutrino Detectors (ADs)

Antineutrino Detector composed of 3 nested vessels

- filled with 0.1% Gd-doped liquid scintillator (LS)
- filled with undoped scintillator
- filled with mineral oil

ADs are immersed in a water Cherenkov detector (bkg moderator & muon veto)

Eight Identical Antineutrino Detectors (ADs)

Energy scale calibrated using neutrons at the detector center

Time variation and position dependence corrected using gamma source

Multiple sources with different spatial distributions to validate uncertainty on energy scale

Less than 0.2% variation in reconstructed energy between detectors

LLWI 2016

Selection of Antineutrino Candidates (Signal)

Inverse Beta Decay (IBD) Reaction

Experimental signature: prompt+delayed coincidence

Selection Criteria:

 $\begin{array}{l} 0.7 \; \text{MeV} < \text{E}_{\text{PROMPT}} < 12 \; \text{MeV} \\ 6 \; \text{MeV} < \text{E}_{\text{DELAYED}} < 12 \; \text{MeV} \\ 1 \; \mu \text{s} < \; (\text{t}_{\text{D}} - \text{t}_{\text{P}}) \; < 200 \; \mu \text{s} \end{array}$

Muon veto to suppress cosmogenic bkg

Backgrounds

Antineutrino Oscillation Spectrum

PRL 115, 111802 (2015)

Total Exposure: 6.9·10⁵ GW_{th}-ton-days ▶ more than **150k IBD candidates** at far site

LLWI 2016

Antineutrino Oscillation Spectrum

Mass Splitting consistent & competitive precision with v_µ disappearance measurements (MINOS, T2K)

PRL 115, 111802 (2015)

Electron Antineutrino Survival Prob

Effective baseline takes into account multiple detectors / multiple cores

Independent θ_{13} Measurement via n Capture on H

nH IBD Candidates: pros and cons

Large sample, stat. independent from nGd Different systematics wrt nGd analysis High accidental background from longer capture time and lower delayed energy

Rate-only Result (217 days of data) $sin^{2}(2\theta_{13}) = 0.083 \pm 0.018$

PRD 90, 071101(R) (2014)

Search for Sterile Neutrinos

Sterile: not participating in V-A interactions Appealing non-baryonic DM candidate

PRL 113, 141802 (2014)

Experimental signature:

Modification of active-neutrino oscillation New mixing params: $\theta_{14} \Delta m_{14}$

M. Grassi

Reactor Antineutrino Flux

1508.04233 (PRL Accep.)

Measure \overline{v} flux from reactors

Average IBD yields in 3 Near ADs

Ratio Data/Prediction R (Huber+Muller) = 0.946 ± 0.022 R(ILL+Vogel) = 0.991 ± 0.023

LLWI 2016

Antineutrino Prompt Energy Spectrum

Data from 3 Near ADs combined after background subtraction

Stat + Detector Response + Bkg Unc.

1508.04233 (PRL Accep.)

- Huber + Muller Model

Predicted spectra normalised to measurement for shape comparison

Comparison over 0.7-12 MeV $\chi^2/ndf = 43.0/24 \triangleright 2.6\sigma$

Local significance: 4o

Comparison with ILL+Vogel yields similar result

Conclusions

Huge reactor antineutrino sample (1.2M IBDs) allowed Daya Bay Experiment to:

Deliver the world's best measurement of $sin^2(2\theta_{13})$

Determine Δm^2_{ee} with precision competitive to neutrino-beam experiments

Set best limit on sterile neutrino in the case of mass splitting smaller than 0.1 eV²

Confirm the existence of a spectral distortion in the reactor antineutrino spectrum

New data release (2x more statistics) expected in Summer 2016!

Backup

Independent θ_{13} Measurement via n Capture on H

nH IBD Candidates: pros and cons

Large sample, stat. independent from nGd Different systematics wrt nGd analysis High accidental background from longer capture time and lower delayed energy

nH Analysis Strategy

Prompt Energy cut raised to 1.5 MeV

50 cm vertex correlation cut applied

Residual accidental bkg evaluated w/ event mixing technique and statistically subtracted

Rate-only Result (217 days of data) $sin^{2}(2\theta_{13}) = 0.083 \pm 0.018$

PRD 90, 071101(R) (2014)

Energy Response Model

Non-linear (NL) energy response originated from:

- * particle-dependent NL light yield of LS
- Charge-dependent NL in the PMT readout electronics

Model parameters computed with unconstrained χ^2 fit to calibration datasets:

- 12 gamma lines from both deployed and naturally occurring sources
- * β decay spectrum of ¹²B produced by muon spallation inside the Gd-LS volume

Resulting uncertainty in absolute energy scale < 1%

Positron Response Model

Uncertainty band obtained using other response functions consistent with fitted calibration data within 68% C.L.

Resulting unc. in absolute energy scale <1%

Cross-check: response computed using:

53 MeV cutoff in the Michel electron spectrum from muon decay at rest

 $\beta + \gamma$ spectra from natural Bi and TI decays

Response Model Validation

Summary of Signal and Backgrounds

	EH1		EH2		EH3			
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
IBD candidates	304459	309354	287098	190046	40956	41203	40677	27419
DAQ live time(days)	565.436	565.436	568.03	378.407	562.451	562.451	562.451	372.685
$arepsilon_{\mu}$	0.8248	0.8218	0.8575	0.8577	0.9811	0.9811	0.9808	0.9811
$arepsilon_m$	0.9744	0.9748	0.9758	0.9756	0.9756	0.9754	0.9751	0.9758
Accidentals(per day)	8.92 ± 0.09	8.94 ± 0.09	6.76 ± 0.07	6.86 ± 0.07	1.70 ± 0.02	1.59 ± 0.02	1.57 ± 0.02	1.26 ± 0.01
Fast neutron(per AD per day)	0.78 ± 0.12		0.54 ± 0.19		0.05 ± 0.01			
⁹ Li/ ⁸ He(per AD per day)	2.8 ± 1.5		1.7 ± 0.9		0.27 ± 0.14			
Am-C correlated 6-AD(per day)	0.27 ± 0.12	0.25 ± 0.11	0.27 ± 0.12		0.22 ± 0.10	0.21 ± 0.10	0.21 ± 0.09	
Am-C correlated 8-AD(per day)	0.20 ± 0.09	0.21 ± 0.10	0.18 ± 0.08	0.22 ± 0.10	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.07 ± 0.03
$^{13}C(\alpha, n)^{16}O(\text{per day})$	0.08 ± 0.04	0.07 ± 0.04	0.05 ± 0.03	0.07 ± 0.04	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03
IBD rate(per day)	657.18 ± 1.94	670.14 ± 1.95	594.78 ± 1.46	590.81 ± 1.66	73.90 ± 0.41	74.49 ± 0.41	73.58 ± 0.40	75.15 ± 0.49

¹³C(a,n) ¹⁶O

α from natural radioactivity may interact with a nucleus and emit a neutron. α come from ²³⁸U, ²³²Th, and ²¹⁰Po decay chains (in the case of Gd-LS also from ²²⁷Ac) The nucleus ¹³C is a natural component of carbon, commonly found in LS.

History of $sin^2(2\theta_{13})$

Reactor Models

Two fissile antineutrino spectrum models

1) ILL + Vogel ILL model of ²³⁵U, ²³⁹Pu, ²⁴¹Pu

Vogel's theoretical model of ²³⁸U

Phys. Lett. B 118, 162 (1982) Phys. Lett. B 160, 325 (1985) Phys. Lett. B 218, 365 (1989) Phys. Rev. C 24, 1543 (1981)

2) Huber + Muller
Huber's model of ²³⁵U, ²³⁹Pu and ²⁴¹Pu
Muller's model of ²³⁸U
Phys. Rev. C 84, 024617 (2011)
Phys. Rev. C 83, 054615 (2011)
Chosen as reference because of improved treatment of beta-to-antineutrino conversions

Muon Veto

Muon veto to suppress cosmogenic bkg

Muon crossing Water Pool only: veto 0.6ms Muon crossing AD 20 MeV<E<2.5 GeV: veto 1ms E>2.5 GeV: veto 1s